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A thick ring on a unilateral elastic foundation can be used to model important applications such as non-
pneumatic tires or bushing bearings. This paper presents a reduced-order compensation scheme for
computing the static deformation response of a thick ring supported by a unilateral elastic foundation to
an arbitrary applied force. The ring considered is an orthotropic and extensible ring that can be treated as
a Timoshenko beam. The elastic foundation is a two-parameter foundation with a linear torsional
stiffness but a unilateral radial stiffness whose value vanishes when compressed or tensioned. The paper
first derives the deformation response for the linear foundation case for which Fourier expansion
techniques can be applied to obtain an analytical solution. Then, the nonlinear unilateral foundation
problem is solved via an iterative compensation scheme that identifies regions with vanishing radial
stiffness and applies a compensation force to the linear foundation model to counteract the excessive
foundation forces that would not be there with the unilateral foundation. This scheme avoids the need
for solving the complex set of nonlinear differential equations and gives a computationally efficient tool
for rapidly analyzing and designing such systems. Representative results are compared with Finite Ele-

ment Analysis (FEA) results to illustrate the validity of the proposed approach.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The flexible Ring on Elastic Foundation (REF) model [1,2] is a
classical one that has been studied for decades. This is because of
its broad and important applications such as automotive tires
[3-5], railway wheels and gears [6], and others [7].

Different criteria can be used to classify the focus of existing
works that analyze REFs. The simplest categories are the treatment
of the static deformation problem [7,8] vs. the dynamic problem as
free vibration [6] or forced vibration [2,9]. Considering the ring
mechanics, the ring has been treated as a tensioned string that has
direct tensile strain but no bending stiffness [10]; as an Euler-
Bernoulli beam or thin ring whose plane section remains plane
and always normal to the neutral axis of the ring after deformation
[7,5,9]; or as a Timoshenko beam or thick ring [11] which takes the
shear deformation into account by assuming that the normal of a
plane section is subject to rotation. Further distinctions exist
between extensional and inextensional rings. [12,1] studied the
vibration problem for both a rotating thin ring and a thick ring,
and pointed out that the inextensional assumptions in thick ring
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theories are improper because extensional coupling effects are as
important as shearing effects especially for a rotating ring.

As an important component of the REF model, the treatment of
the elastic foundation can be used as another criterion to classify
the existing research. Numerous works, including all of the ones
cited above, assume a linear and uniformly distributed stiffness for
the whole elastic foundation, independent of location and defor-
mation state. The distributed stiffness can be modeled with one
parameter [7,10] where the foundation has a stiffness only in the
radial direction; or with two parameters [2,9] involving both radial
and torsional stiffness values; or even more parameters [6], where
in addition to the radial and torsional stiffness, a stiffness asso-
ciated with the distortion of the foundation due to in-plane rota-
tion of a cross-section of the ring is included.

Although much has been gained from linear and uniform
elastic foundation assumptions, not all REF problems have a per-
fect linear elastic foundation with uniformly distributed stiffness.
Examples for nonuniform distribution include planetary gearing
where tooth meshes for the ring and planets are not equally
spaced [13] and tires with non-uniformity [14]. For these type of
problems, [13] studied the free vibration of rings on a general
elastic foundation, whose stiffness distribution can be variable
circumferentially in the radial, tangential, or inclined orientation,
and gave the closed-form expression for natural frequencies and
vibration modes. [14] studied the natural frequencies and mode
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shapes of rings supported by a number of radial spring elements
with a constant radial stiffness using modal expansion and
receptance method. However, in both works, the distributions of
the stiffnesses for the elastic foundations still did not change with
the deformation of the ring resting on them.

A more complicated problem was invoked by considering
deformation-dependent elastic foundations, such as those with
unilateral stiffness whose values vanish when compressed or
tensioned. The difficulty in solving this group of problems is in the
fact that the compressed or tensioned region is not known in
advance. It depends on the loading and consequently on the
deformation. An example for the application is the non-pneumatic
tire presented in [15], whose structure is a deformable shear ring
supported by collapsible spokes which offer stiffness only in ten-
sion [16]. Another example is a bushing bearing, whose external
sleeve can be modeled as a ring on a tensionless foundation and
the internal sleeve as a ring on a collapsible foundation. Not too
many works exist that deal with such rings on unilateral founda-
tions. [17] worked on the forced response of a thin and inexten-
sible ring on a tensionless two-parameter foundation under a time
varying in-plane load. To solve the unilateral problem, an auxiliary
function is used in the coefficients of the equations to track and
reflect the status of the foundation. This auxiliary function makes
the differential equations of the system nonlinear and difficult to
solve. Furthermore, the tangential displacement of the ring is
obtained from the inextensible assumption, which cannot be
adopted in a more general case, such as that with extensible
Timoshenko ring. [18] studied the static deformation and the
contact pressure of a non-pneumatic tire resting on collapsible
spokes, when it contacts against a rigid plane ground. The gov-
erning differential equations were derived only for the thick ring
modeled via Timoshenko beam theory by treating the supporting
force by collapsible spokes as radial distributed force which van-
ishes in collapsed spoke regions. The ring was divided into three
regions according to the post-deformation status of the spokes
(tensioned or buckled spokes) and contact status with the ground
(contact region or free region). Closed-form expressions for the
deformation and contact stress are given in terms of angular
bounds of these three regions, which then need to be solved
numerically. However, the method has limitations in two aspects:
(1) For more complex loading cases, such as that with multiple
forces applied at multiple locations, the number of regions into
which the ring must be divided grows with the number of the load
regions. Multiple unknown angular bounds would then need to be
solved numerically. (2) It is difficult to extend this method to
practical dynamic cases.

The present paper studies the deformation of a thick ring on an
elastic two-parameter foundation where the radial stiffness is
unilateral. The deformation response to an arbitrary in-plane force
is considered. The ring is modeled as an orthotropic and extensible
circular Timoshenko beam. As the first step, the linear foundation
problem is solved analytically using Fourier expansion techniques
for both the radial and tangential directions. It is then shown that
the linear foundation case includes an excessive foundation force
compared with that of the unilateral foundation. An iterative
compensation scheme is then set up to both find the region of
vanishing radial stiffness with the unilateral foundation and that
of the required compensation force to counteract the excessive
force predicted via the linear foundation. The method is an
intuitive and efficient alternative to numerically solving the cou-
pled and complex system of nonlinear differential equations for a
flexible ring on a unilateral foundation. In addition, compared with
discretization-based numerical methods such as nonlinear FEA,
the proposed scheme avoids the time-consuming modeling and
meshing work, which makes it attractive specially for rapid
parameter studies at the design stage. Compared with the method

in [18], the method proposed in this paper is capable of handling
arbitrary force distributions and directions, without increasing
complexity. Furthermore, since the proposed scheme is Fourier
expansion-based, it can be easily extended to the dynamic cases
(both forced response and dynamic contact) as we illustrate in our
other work [19].

The rest of the paper is organized as follows. Section 2 restates
the problem and gives the governing equations. Section 3 gives the
analytical solutions for the linear foundation problem and extends
them to the unilateral case. Then, in Section 4, discussions of some
example results are given and compared with FEA results. Con-
clusions and future work are given in Section 5.

2. Statement of problem and governing equations

Fig. 1 shows a schematic of the model for a thick ring on a two-
parameter elastic foundation. The ring with thickness h is assumed
to have a radius R at its centroid. The width perpendicular to the
plane of the ring is b. The uniformly distributed radial and tan-
gential stiffnesses are assumed to be K; and Kp, respectively. They
have units of stiffness per radian. For a linear elastic foundation,
the distributed radial stiffness K, is constant. However, for the
unilateral elastic foundation, the radial stiffness vanishes when the
elastic foundation is tensioned or compressed. A polar coordinate
system with origin located at the ring center is adopted. The center
of the ring is fixed and friction is neglected.

The radial and tangential displacements at the centroid are
assumed to be u,(R, 8) and uy (R, 9), respectively. Following [20],
the cross-section of the ring is assumed to have a rotation ¢ (R, 6)
at the centroid at circumferential position € and keeps its plane
after deformation. Then, the radial and tangential displacements at
an arbitrary point on the ring with radius r and circumferential
position 6, u,(r, ) and uy,(r, ), can be represented by

u(r, 0) = ur(R, 9)
ug(r, 0) = ug(R, 6) + (r — R)g(R, 9) M

The strain-displacement relationships in polar coordinates are
[21]

0
er(r, 0) = Eur(r, 0)
10 1
eop(1, 0) = ?@u,,(r, 0) + ?ur(r, 0)

10 0 1
(1, 0) = ——u(r, 0) + gug(r, 0) - 7ug(r, 0)

r 00 )

¢ (R, 0)

Fig. 1. Thick ring on a two-parameter elastic foundation.
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where e, (1, 0), e (T, 0), 1, (1, 0) are the radial, tangential and shear
strains, respectively.

The ring is assumed to be orthotropic and homogeneous. We
consider that the ring material axes coincide with the polar
coordinate system adopted. The stress-strain relationships are
[21]

E:(vor can(1, ) + (1 6))

9) =
O'rr(r. ) —Urg Vgr + 1
Eg(l/rg €rr(r, (9) + Egg(r, 9))
0'99(7" 9) - —vrg vor + 1
frg(r, H) = Gy,g(r, 9) (3)

where o, (1, 6), 6y (r, 8) and 7,4 (r, ) are radial, tangential and shear
stresses, respectively. E,, Ey and G are the elastic moduli in the
radial and tangential directions and the shear modulus, respec-
tively. v is the Poisson's ratio.

The strain energy stored in the ring is given by

R+h/2
=5 [” A w2 (Orr€rmr + Cpp€gy + TroYy) T dr dO @

The strain energy stored in the elastic foundation is given by

2 2
U= L [Kr(ur(R _h 0)) + K(,.(ug(R _h 9)) )de
2 2 2
€)
Note here that the radial and tangential displacements for internal
edge of the ring u,(R — h/2, 6) and uy(R — h/2, 6) couple the ring

and the elastic foundation.
The work by the applied forces is obtained from

z h h h
W_b/_”(qrur(R+§, 6)+q9u9(R+§. 9))(R+§)d9 ®)

where ¢, =q,(R+ h/2,6) and q, = q,(R + h/2, §) are distributed
forces applied to the external edge of the ring (at the radial loca-
tion R + h/2) in the radial and tangential directions, respectively.
The units of g, and q, are in Force/Area.

Invoking the principle of virtual work [22]:

5(U1+ U2)=5W @)

After substitution of (1)-(6) into (7) and some manipulations
according to Euler-Lagrange equation, the governing equations for
the present thick ring on an elastic foundation problem can be
derived. Here, for brevity, v, and v, are set to zero for the gov-
erning equations given as (8). However, the proposed approach
will hold for the general case where these are not zero:

A (B ),
Rb 30> " "\ Rb ' Rb

EA, K; h
(= (me 3

_EAy & EA, GA)o
— Uy
Rb 062

GA o

b a0

b 2 b Rb  Rb)oo
GA K\ (n.h
+(R—b+7 UQ—(R+2)q0
ﬂ_}rlthij_%i @iu
b "4 b Rb 002 b o’

GA 1Kyh 1 h
+ ( - —H—)ug = E(R + E)hqg

®

where the following notations are used:

uy = (R, 0)
Uy = u,g(R, 9)
¢=¢(R 0)
h
q Qr(R + Ev )
h
qy = %(R 5 9) )
and
EAg = Eg x A
GA=GxA
EIg=EgXI (10)

where A=bxh is the cross-sectional area of the ring and
I = (1/12)bh3 is the area moment of inertia of the cross-section.
The following approximations are used in the manipulations to
obtain the governing equations above, considering that Rsh:

R+h/2 R+h/[2
‘/R Tgrel ar=n

= r=—
—hj2 T R JR-n/2 R
R+h/2 (r — R R+h/[2
/ ( )dril r—R)dr=0
R-h/2 r R JR-n/2
R+h/2 (1 — R R+h/2 3
/ ( ) dril (r—R)Zdr: 1
R-h/[2 r R JR-h/2 12 R an

3. Method of solution

In this section, the governing equations (8) are first solved
analytically by considering a linear foundation with constant cir-
cumferential distribution of the foundation stiffnesses. The
approach we use is to first get Fourier series expansion of the
applied arbitrary force, and then the governing equations are
solved harmonic-wise in both the radial and tangential directions.
The solution for the total displacements will then be the super-
position of the harmonic contributions in both directions. Then the
solutions are extended to the unilateral foundation case via the
iterative compensation scheme proposed in this work.

3.1. Solution for linear elastic foundation

An arbitrary circumferentially distributed (with respect to &) or
concentrated force F(9) can be decomposed into its radial and
tangential components as

F©O)=EO7T +F(0)8 (12)

where F.(9) and F,(@) are force components in the radial and
tangential directions, respectively. Using Fourier expansion on
[ — =, z], these components can be approximated by

F0) = Z Quyrc cOs(n(@ - 0)) + Z Quyrs SIN(nO = 60))

n_—N n_—N

Z Qs SIN(N(@ - 69))

E©) = ZQneccos(nw 00)) + 13

where N is the cut-off harmonic number, Qur¢, Qnrs, Qnoc and
Qs are corresponding coefficients of the nth harmonic force for
radial, tangential and cosine, sine components. The subscript r or
indicates that the coefficient is for radial or tangential direction,
respectively, while ¢ or s represents cosine or sine component,
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respectively. 6, is used to define the rotation of the local cylind-
rical coordinate system with respect to the global Cartesian coor-
dinate system. In this paper, 6 is always set to 0, which indicates
6 = 0 corresponds to the bottom point of the ring.

Considering only the nth harmonic force, the force per unit area
applied on the external edge of the ring (where the radial location
is R + h/2) can be written for the radial and tangential directions
independently, where each direction consists of cosine and sine
components:

]

h
, 6) + qnﬁ,s(R + 7 9) (14)

The cosine or sine component in each direction can be expressed
in terms of the width of the ring, the radial coordinate and the
corresponding force component:

h h
qm(R + 5 0) = qn'm(R + =, 9) + qmvs(R + 5

NS NS

h
qné)(R + 5' 6) = qn,e,c(R +

Qurc COS(H(@ - '90))
Qu,rs sin(n(o — o))
Qu,c cos(n(0 — 6y))

7}1(2“,5,5 sin (n(6 — 6o))
b(R + —)

2 (15)
The four components of the nth harmonic force in (15) can be
solved separately and then superposed to get the deformation for
the nth harmonic. In order to solve for the response to the first

force component in (15), which is the cosine part in the radial
direction, g, and g, in (8) can be replaced with g, and gq,,:

1

Qyr = anc(R + EY 0) =——~Qnrc COS(Tl(0 - 00))
g 2 h
b(R + )

2
Gny =0 (16)

Noting that the right hand side of the first equation in (8) has a
cosine function, combined with the order of differentiation to the
variables, it is easy to obtain the assumed ansatz:

Urnrc(R, 0) = Cur.c(n)cos(n(0 — 6o))
Ugnrc(R, 0) = Cubyc(n)sin(n(6 — 6o))
Pnr.c(R 0) = Chy.c(n)sin(n(0 — 0o)) a7

where u;;rc(R, 0), Ugnrc(R, 6) are displacement solutions in radial
and tangential direction for the centroid and ¢, , (R, 6) is the
cross-section rotation. The subscripts n, r, ¢ indicate that they are
the solution components due to the cosine part of nth harmonic
force in the radial direction. Cun., Cuf; and C¢, . are modal
coefficients to be solved for. They are indexed by the harmonic
(circumferential mode) number n. Substituting (16) and (17) into
(8) and noting that the coefficients of cos(n(@ - 6p)) or
sin(n(@ — 6y)) in all three equations in (8) should be equal, one
obtains 3 equations with 3 unknown coefficients Cur; ., Cué,. and
C¢, .. These can be solved explicitly and the results are given in the
Appendix. The responses to the other three components of the nth
harmonic force in (15) can be solved for in a similar way.

The solutions for the sine component in the radial direction are
given by

Urnrs(R, 0) = Cuts(n)sin(n(0 — 6o))
Upnrs(R, 0) = Cubys(n)cos(n(0 — 6p))
¢n,r,s(R‘ 9) = Cz/;,vs(n)cos(n(e - 60)) (18)

And the solutions for the cosine and sine components in the
tangential direction are given by

Ur.npoc(R, 8) = Curyc(n)sin(n(6 - o))

Upnoc(R, 0) = Cubyc(n)cos(n(0 - 6o))

bnoc(R 0) = Chy (n) cos(n(6 - 6o))

Urnos(R, 0) = Cunys(n)cos(n(o — 6))

Ugns(R, 0) = Cubys(n)sin(n(6 — 6p))

#nos(R. 0) = Cys(m)sin(n(6 - 6o)) 19)

The corresponding modal coefficients are given in the Appendix.
The final displacement solutions for the governing equations in
(8) are then written as follows:

N

ur(R' 9) = ZN [ur.n.r,c(Rv '9) + ur,n,r,s(Rv 9) + ur.n,a.c(R' 9) + ur.n,ﬁ.s(R' 9)]
e
N

ug(R, 0) = ZN [Uonr.c(R, 0) + Upnrs(R, 0) + Ugnoc(R, 0) + Ugnos(R, 0)]
Py
N

¢(R' 9) = 2 [’/)n.r,c(R* 9) + (/)n,r.s(R' ‘9) + {/)n.a,c(R' 9) + {/’n.a.s(R' 9)]
n=N (20)

3.2. Solution for unilateral elastic foundation

The radial displacement solution u, (R, #) obtained from (20)
considers support by the foundation whether the displacement is
positive and negative. With a collapsible foundation, there is no
support in regions where u,(R, §) is negative. In this region, an
excessive force is included by the linear foundation assumption.
The amount of this excessive force F,(9) is proportional to the
extent of negative deformation:

E (0) _ Jur®R, 0Kr where u;(R, 9) <0
7o, where 1, (R, 6) > 0 1)

For tensionless foundation, a similar excessive force exists in
regions where u; (R, ) is positive. But the remainder of the analysis
will be the same as the case of the collapsible foundation.

In order to counteract the excessive force and obtain the
deformation for the unilateral foundation case, a compensation
force Fp(9) which has the same magnitude as the excessive force
can be applied to the linear elastic foundation:

Fp(6) = F(6) 2)

F.p can be expanded into Fourier series on [ — #, ] using the same
harmonic numbers as F(6):

Fcn(g) =

= 3 [Hn,,,C cos(n(6 = 6o)) + Hyrs sin(n(o - 00))]

n=

23)

Because the unilateral property of the foundation only exists in the
radial direction, this compensation force will only have radial
components.

The compensation force is then applied to the external edge of
the foundation, at internal ring radius R — h/2. The distributed
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compensation force per unit area in both the radial and tangential
directions is given by

Hy,rc cos(n(6 — 6o))

h
qcp,n,r,c(R - Ev 0) = 7}1
R_1
i(r-3)

h .
qcp,n,r,s(R -5 0) = 7hH"'r's sin(n(6 — 6p))
o(-3)

h
QCp,n,G,c(R - E' 0) =0

h

qc"'"'”"(R 7 9) -0 24)
Substitution of (24) into (8) for g, and g, leads to the governing
equations for the compensation displacements driven by the
compensation force. Note that the external ring radius R + h/2 in
the right hand sides of (8) needs to be replaced by the internal ring
radius R — h/2. The governing equations can then be solved using
the same approach as above as they are still linear differential
equations. In so doing, the nonlinear unilateral foundation pro-
blem is approximated by applying a compensation force to the
linear foundation model instead of directly solving the system of
coupled nonlinear differential equations for the problem.

However, instead of solving the linear differential equations
again with the compensation force, the following observations can
be used to get the compensation displacements to further reduce
the computational load. Since the radius on the right hand sides of
(8) (updated) will be canceled out by those in the denominators of
(24), the displacement solutions are only affected by the magni-
tude of the forces regardless of how they are applied on the
external edge of the foundations or the outside of the ring. So,
based on (17) and (18), the cosine and sine components of the
compensation displacements caused by the compensation force
can be obtained directly by

H
ur.cp,n,r.c(R' 9) _ e Currlc(n)cos(n(g - 00))

nr,c
Hn,r,c

nr,c
Hn,r,c

nr,c

H .
Urcpmrs(R 0) = —""2Cur.s(n)sin(n(6 - o))

nr,s

ua,cp,n,r,c(Rv 9) = Cut9r,c(n)sin(n(0 - 90))

¢cp,n,r,C(R' 9) = C‘ﬁr,c(n)sm(n(‘g - 00))

H,
Ug,epnrs(R 0) = —"">Cubrs(n) cos(n(6 — 6o))

nr,s

H
Pepnrs(R, 0) = Z22>Copy (n)cos(n (6 — 6o))
nr,s (25)
By using these simple algebraic equations, even the linear differ-
ential equations need to be solved only once.
Correspondingly, the compensation displacements are obtained
from

N
ur,cp(Ry 9) = z [ur,cp,n,r,c(Rv (9) + ur,cp,n,r,s(Ry 9)]

n=-N
N
Uep(R0) = X [tocpmrc(R 0) + tocpnrs(R. 0)]
n=-N
N
(R 0) = e\ R 0 s (Ko 0
ta(R.0)= X [donrc(R0) + dpnrs(R.0)] 26,

The new total displacements are the summation of the original
solutions (20) and the compensation displacements (26):

Uy (R, 6) = ur(R, ) + urep(R, 6)
ﬁa,cp(R, 9) = UQ(R, 6) + uH,Cp(Rv 9)
Dep(R. 0) = #(R. ) + (R, 0) @7)

Due to the change of radial displacement from u, (R, §) to
il (R, 0), the excessive force in (21) needs to be updated as well.
Thus, the procedure from (21) to (27) needs to be repeated,
thereby setting up an iterative scheme. This scheme is considered
to converge when values of the compensated displacements in
(27) do not change anymore with further iteration steps. The
converged displacements in (27) can then be taken as the solution
for the unilateral foundation case.

4. Results and discussion

In this section, two examples are included to demonstrate the
utility of the proposed method. In the first example, a radial point
force with both positive and negative magnitudes is considered
and the results obtained using the iterative compensation
approach introduced above are compared with those obtained via
FEA. In the second one, a more general distributed force, with both
radial, tangential and sine, cosine components are applied and the
solutions are shown.

4.1. Response to a concentrated force

As a basic comparison, we consider a radial concentrated force
F. applied at the bottom of the ring. A Gaussian function repre-
sentation allows one to model different degrees of “concentration”
of this force:

1 e—(0-00)/52

Je(0) = e 28)

where Q = + 1000 N is the magnitude of the force, ¢ is a para-
meter that determines how concentrated the applied force is. The
smaller ¢ is, the more concentrated the force is. Fig. 2 shows the
effect of ¢ to the distribution density of a unit force. It can be seen
that with ¢ — 0, f.(6p) > o, and the force becomes an ideal
concentrated force with 0 distribution width. The integration of
the distribution density function around the ring always equals to
the concentrated force:

/_l”fc(e)dHZFC (29)

f(0) can be expanded into Fourier series in [ — z, #]:

f:(0)= X Qucos(n(6 - )

n=-N

N
= i Q X e 4m” cos(n(0 - o)) 30)
n=-N
that is
1 2.2
- —(1/4)n“c
Qn 2T[Qe 31

The displacement responses due to this concentrated force are
then solved by using the iterative scheme described above. A
collapsible unilateral foundation is considered and compared with
a linear foundation. Parameter values used for the results given
below are listed in Table 1. In this case, negligible tangential
stiffness is considered for the comparison with FEA results.

A 2-D FE model of the ring on a unilateral foundation is built
using the commercial finite element software Abaqus/Standard.
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Fig. 2. Effect of ¢ to the distribution density of a unit force.

Table 1
Value of parameters.

Parameters Definition Value Unit
R Radius of ring centroid 0.2 m
h Ring thickness 0.02 m
b Ring width 0.06 m
Ey Extensional modulus of the ring 1lel0 Pa
G Shear modulus of the ring 4e6 Pa
K; Radial stiffness of the foundation le5 N/m per radian
Ko Radial stiffness of the foundation 1 N/m per radian
ks Stiffness of discretized spring element 5.236e3 N/m
F. Magnitude of concentrated force +1000 N
a Distribution factor of Gaussian 0.02 NA
function

The thick ring is meshed using the second-order quadrilateral
plane stress element with reduced integration, CPS8R, with 6 lay-
ers of elements in the radial direction and 120 divisions in the
circumferential direction. In the examples, only radial stiffness is
taken into account for the foundation, which is modeled using 120
evenly distributed and discretized spring elements SpringA. The
property of these spring elements can be set to linear or nonlinear
to represent the linear or unilateral elastic foundation. The stift-
ness of every linear spring element (or the effective non-vanished
stiffness for the nonlinear spring element representing unilateral
foundation) is calculated by

ke = 2z K,
TN 32)

where Ny=120 is the number of the spring elements.

Fig. 3 shows the deformation of the ring centroid for both
collapsible and linear foundation with F. = — 1000 N (pointing to
the ring center). The deformations are amplified by 10 times for
clarity. It can be seen that the solutions obtained by the proposed
iterative approach match the results by the FEA very well, for both
the linear and unilateral foundation cases.

For the unilateral foundation case, it is expected that the
magnitude of displacements will be different under a positive and
negative force with same magnitude. Fig. 4 shows the deformation
responses under F. = + 1000 N for the ring on collapsible foun-
dation. In this figure, the displacements by positive force are
shown with flipped sign so that they can be easily compared with
those by negative force. It can be seen that for the collapsible
foundation case, a negative force will lead to a larger magnitude of
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Fig. 3. Comparison of deformed centroid: collapsible foundation vs. linear
foundation.
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Fig. 4. Comparison of deformed centroid: response by positive and negative force.

u, at the position where the force is applied because negative force
will directly compress the local area of the foundation to make it
collapse while the positive force will stretch it so the effective
stiffness there is higher than that for a negative force.

4.2. Response to a more complex distributed force

A more complex distributed force is also considered as shown
in Fig. 5. This arbitrarily assigned distributed force consists of both
tangential and radial components, and the corresponding dis-
tribution density is plotted separately. Due to the asymmetry of
the distribution, the Fourier expansion of this general distributed
force will include both cosine and sine components. The same
parameters as in Table 1 are used for the REF model except for the
higher, more practical value of K, = 0.5e5N/m per radian. The
deformation results solved by this general force are plotted in
Fig. 6. Again the deformation is amplified by 10 times for clarity. In
addition to the deformation of both linear and unilateral founda-
tion cases, the identified collapsed regions can be seen in this
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Fig. 5. Distribution density of a general distributed force.

figure, corresponding roughly to the circumferential regions of the
applied distributed force (more on the left than on the right).

Finally, we remark that with a cut-off harmonic number N=50,
even for the complex applied force cases the iterative computa-
tions are completed within seconds on a modern PC. This makes
the proposed methods suitable for parametric design studies
where the different beam and foundation material properties,
geometric dimensions, etc. can be quickly optimized.

5. Conclusion and discussion

In this paper, the analysis of the well-studied REF model has
been extended to the unilateral foundation case. This paper
focused on the static deformation problem of a Timoshenko ring
resting on a two-parameter foundation with unilateral radial
stiffness and subject to arbitrary in-plane force. For the case of a
linear foundation, the governing equations have been derived and
solved analytically for both the radial and tangential displace-
ments as well as for the section rotation. It is then observed that
for a unilateral foundation, the ring on the linear foundation can
be treated as supported by a distributed excessive force to the
linear foundation model. Then, the nonlinear unilateral foundation
problem can be solved via the compensation of this excessive
force, thereby setting up a simple iterative scheme. Comparison
with FEA results for a concentrated radial force illustrated the
validity and accuracy of the proposed approach. Then a more
complex distributed force with both radial and tangential com-
ponents is considered and the deformation as well as the deter-
mined collapsed region are shown.

This approach achieves the solution to the nonlinear unilateral
foundation problem in a physically-motivated, fast and elegant
way. The computation involves simple iterations based on linear
analytical solutions. Direct numerical solution of the governing
nonlinear differential equations is avoided. Compared with FEA,
the proposed method achieves the nonlinear solution without
time-consuming modeling and meshing work. Compared with the
existing semi-analytical method in [18], the proposed method is
capable of solving for the deformation response to an arbitrary
complex distributed force in a unified way. Furthermore, in our
continuing work, we shall show how the method can be easily
extended to solve the static contact problem with arbitrary surface
profiles. In a companion paper [19], the authors present the
application of this iterative approach in the analysis of the
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0.05 +  Collapsed Region
0 -
-0.05
0.1 +
-0.15
'0'2 1 1 o~ 1 — 1

-0.2 -0.1 0 0.1 02

Fig. 6. Deformation of ring centroid due to the distributed force given in Fig. 5.

dynamic forced response problem of a ring on a unilateral elastic
foundation. Therein lies the major benefit of the iterative
approach. It avoids the need for solving the complex, coupled and
nonlinear differential equations for the unilateral elastic founda-
tion. It can therefore be used to accelerate parametric design
sensitivity studies and optimizations to select the proper ring and
foundation materials and geometric properties for the envisaged
application of the REF.

Appendix A. Coefficients for displacement solutions

Coefficients for solutions of radial direction components

(Zrur4 n* + Zrur2 n? + Zrur0)

Cuie (1) = 756 s +ZD4n* + ZD2 n* + ZD0 ~™¢
(Zrut3 n® + Zrut1 n)
Cu0re(M) = 756 6 + ZDa ¥ + ZD2 2 + ZD0 2™
3
Cyo(n) = _ 6(Zr¢3 n 4+ Zrgl nz Qe
n® + ZD4 n* + ZD2 n* + ZDO
(Zrurd n* + Zrur2 n? + Zrur0)

Cutis (1) = 16 w6 + ZDA nt + ZD2 12 % ZD0°™

(Zrut3 n3 + Zrut1 n)
Cubrs(n) = = 7566 + ZDA nd 5 ZD2 1P + ZD0 ™

Zrgp3 n3 + Zrgpln
Crs(n)= - ZD6 n6(+ ZD4n* + ZD2 nZ +ZD0 %™ A1)

Coefficients for solutions of tangential direction components

(Zour3 n® + Zour1 n)

C -
Wie(N) = 516 + DA ¥ + 2D2 12 + ZD0 2
cuo (Zout4 n* + Zout2 n? + Zout0) 0
Ubhe(N) = b6 16+ ZDa n® + 2Dz 12 + ZD0 2™
(Zop4a n* + Zog2 n? + Z040)
C¢6,c(n) = 6 1 2 Qon,c
ZD6 n® + ZD4 n* + ZD2 n* + ZDO
c (Z@ur3 n3 + Zourl n) 0
uns(n)= -
is(1) ZD6 b + ZDAn* + ZD2 n? + ZDO
Cutys(n) (Zout4 n* + Zout2 n? + Zout0) N
u n)=
bis( ZD6 16 + ZD4 n® + ZD2 n? + ZD0 ~"*
(Zoutd n* + Zout2 n? + Zout0)
C‘/’G.s(n) = 6 2 2 Qen,s
ZD6 n% + ZD4 n* + ZD2 n? + ZDO (A2)
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where

ZD6 = 4 GA EA El,
ZD4 = GA RW?EAy K, + 4 GA REly Ky + 4 K; REA, El, — 8 GA EAEl
ZD2 = K, R*?EA, Ky + 4 GA K; R°EA, + 4 GA R?hEA, K,
— 2 GARW?EAy K, + 4 K, R*El, K, + 4 GA K; REI
+ 4 REAy Ely Ky + 4 GA EA El,
ZDO = (4 K. R* — 4K, R*h + K, R°h? + 4 R’EA, — 4 R*hEA, + RR2EA,),
Zrur4 = 4 REA, El
Zrur2 = R(Rh?EAy K, + 4 GA R*EAy + 4 REly Ky + 4 GA El)
Zrur0 = R’GA Ky(4 R? — 4 Rh + h?)
Zrut3 = ( — 4 GA — 4 EA,)REl
Zrut1 = (2 GA R*hK, — GA Rh?K, — Rh*EA, K, — 4 GA R*EA¢)R
Zrp3 = 4 GA R’FA,
Zrjp1 = 2 R?(2 GA RK, — GA hK, — hEA, K,y — 2 GA EA)
Zour3 = — 2 R(GA RhEA, — 2 GA Ely — 2 EA, El)
Zourl = — 4 GA R*hK, + 2 GA R?h?K, + 2 R®h%EA, K, + 4 GA R*EA,
+ 2 GA R?hEA,
Zout4 = 4 GAEl, R
Zout2 = 2(GA Rh?Ky — GA RhEA, + 2 K REl, + 2 EA, Ely)R
Zout0 = 2 K, R*h?K, + 4 GA K; R* + 2 GA K; R*h + 2 R?h?EA, K,
+ 4 GA R’EA, + 2 GA R?hEA,
Z0¢4 = 2 GA RhEA,
Z0¢2 = 2(2 GA RhK, + K, RhEA, — 2 GA REA; — 2 GA hEA,)R
7640 = 4 K; R3hK, + 4 GAK; R® + 2 GA K, R*h + 4 R’hEA, K,
+ 4 GA R’EA + 2 GA RhEA, (A3)
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