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This paper reports a pilot protocol study that examines how designers construct 

function models as they develop and explore solution architectures for novel de-

sign problems.  The purpose of this pilot project is to establish the experiment 

method and analysis protocol so that a repeatable and statistically large pool of 

participants can be used to draw significant conclusions about function model 

construction.  In the study, voluntary participants with varied levels of experience 

in product design and function modeling are given a novel design problem and 

asked to develop functional architectures as part of concept development, using 

function structures as the modeling tool/language.  The modeling actions are vide-

otaped and the designers are interviewed using a predesigned questionnaire after 

the experiment.  The data is analyzed using a predefined protocol that encodes the 

addition, deletion, and modification of model elements such as functions, flows, 

and text, and also actions such as reading the problem statement and pausing.  The 

protocol analysis reveals patterns of modeling activities, such as forward chaining 

(expanding the model by adding functions to the head of flows and flows outgoing 

of functions), backward chaining (adding functions to the tail of flows and adding 

flows incoming to functions), and nucleation (starting with a few disconnected 

functions and flows, and gradually connecting them to complete the model).  In 

aggregate, these observations provide insight into designers' thinking patterns 

while exploring solutions to unseen problems using function structures.  The pro-

tocol is demonstrated to be complete within the scope of the study.  The prelimi-

nary findings based on the two participants indicate that various parameters of so-

lution exploration may largely vary between designers.  The overall approach of 

model expansion also varies between forward chaining and nucleation. However, 

at a finer resolution of observing modeling actions, designers generally prefer nu-
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cleation or forward chaining of functions and forward or backward chaining of 

flows. 

Introduction 

The purpose of the reported experiment is to establish an experiment 

method and analysis protocol to examine how mechanical product design-

ers use function structure graphs to develop and explore solution architec-

tures to novel design problems.  This understanding can be useful in de-

veloping new design enablers, new approaches to early stage reasoning 

and analysis systems, and new methods for teaching students how to more 

effectively execute the design process.  Function models are a popularly 

discussed product model used in early design to decompose the problem 

[1, 2], explore the solutions space [2, 3], search solutions [4], generate 

concepts [5, 6], and to archive design knowledge [7].  Many representa-

tions of mechanical functions are proposed in previous research, both in 

artificial intelligence [8-12] and in engineering design [1, 2].  Typically, 

these models are designed to support specific reasoning tasks.  Specifical-

ly, function structure graphs and its extensions have been used to develop 

tools for concept generation [4-6], product similarity analysis [13], and 

failure modeling [14, 15] and failure propagation [16].  These graphs have 

also been used extensively to model the functionality of reverse engineered 

products [7] that are archived in a web-based data base named the Design 

Repository1.  However, how designers interact with these models to de-

velop and explore solutions to new, previously unaddressed problems 

has not been objectively examined.   
Objective observation of function modeling by designers could help 

identify modeling action patterns, such as forward chaining, backward 

chaining, or nucleation, the type of stimuli and their use by the designers, 

and the type of information they prefer to capture for exploring solutions 

to new problems.  This could in turn help identify important cognitive and 

behavioral trends about solution exploration.  It could also provide insight 

to the design of formal representations of functions to enable early com-

puter-aided design tools.  For example, if designers tend to identify func-

tions of a device before identifying the flows, a function-focused represen-

tation may be suitable, while if designers think of the device mainly in 

terms of its flows, then a flow-based representation may be more useful.  

Recent research proposed a formal representation of functions and showed 

that it could support early automated reasoning using the balance laws of 

                                                      
1 http://repository.designengineeringlab.org/, accessed on Feb 23, 2011 

http://repository.designengineeringlab.org/
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mass and energy [17].  This experiment could reveal patterns of user-

model interactions that could identify requirements for the user interface of 

such computer tools.  The protocol study, described next, is an exploratory 

experiment designed with these anticipations. 

Function Structures as an Early Design Representation 

Functionality of mechanical devices is modeled in many different repre-

sentations.  Notable representations include The Function-Behavior-

Structure model [18], the situated FBS model [19], the Function-Behavior-

State model [20], a design pattern-based view [21], the Structure-

Behavior-Function model [9, 22, 23], and the Functional Representation 

[10, 24].  This paper specifically focuses on user interaction with the 

graph-based Function Structure representation and this model is discussed 

in further detail.  The use of function structures to model to support early 

design tasks is popularly recommended in design texts [1-3] and also wide-

ly explored in design research [4, 6, 13, 15, 25].  A function structure is a 

graph-based model of a product, where the nodes are transformative ac-

tions and the edges are the flows of material, energy, and signal undergo-

ing transformations.  Fig1 shows the function structure for a hairdryer ob-

tained from a web-based archive of reverse engineered product design 

information, called the Design Repository
1
 [7, 26].  The flow name abbre-

viations are clarified in the legend.   

 

Fig1.  Function structure graph for a hairdryer product stored in the Design Repos-

itory 

This representation is described as a means to decompose a design 

problem [1, 2], search solutions [4], generate concepts [5, 6], and to ar-

chive design knowledge [7].  In order to enforce consistency of terms used 

in these models, many controlled vocabularies of function verbs and flow 

nouns are developed [27-30].  A notable example is the Functional Basis, 

developed by examining consumer products through systematic reverse 
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engineering [2] and cataloging their functions and flows in a three-level 

hierarchical vocabulary.  The Design Repository is an archive of these re-

verse engineered products and is currently expanding to support other re-

search needs.  The information stored in the repository, especially those re-

lated to function and failure of a product are used to develop early design 

tools for concept generation [4-6], product similarity analysis [13], failure 

modeling [14, 15], and failure propagation [16].  While function structures 

are widely used, especially to model reverse engineered products, the actu-

al process of how these models are constructed and can be used by a de-

signer to solve novel design problems (forward design) has not been objec-

tively and systematically studied through experiments.  The experiment 

described next is only a first step in this direction and describes results for 

only two participants.  In recent future, this approach will be applied to run 

more experiments of this type through collaborative research. 

Design of the Experiment 

In the experiment, voluntary participants with a variety of experiences in 

product design and function modeling are given a new product design 

problem and asked to develop and explore solution architectures using the 

function structure graphs.  Each modeling session is videotaped and the 

designer interviewed subsequently.  The video data is encoded using a 

predefined protocol that captures the addition, deletion, and modification 

of model elements such as functions, flows, and texts, and also actions 

such as reading the problem statement and pausing.   

Three basic types of model expansion sequences are examined in this 

experiment:  nucleation, forward chaining, and backward chaining.  Nu-

cleation of a function is an action when a function is inserted into the mod-

el without attaching it to an existing flow, indicating that the designers has 

identified a need for a function by its purpose or its name, but has not yet 

determined its transformative actions.  Similarly, nucleation of a flow indi-

cates that the designer identified the need for the flow’s presence in the 

model, but has not indicated how it is going to be used.   

Forward chaining is a sequence when the model is expanded by adding 

outgoing flows to functions and adding recipient functions to the head of 

those flows, indicating that the designer has already identified the func-

tional transformation process steps leading to a means (eventually modeled 

at the head of the chain).   

Backward chaining is a sequence, where the model is expanded by add-

ing input flows to a function and producer functions to the tail of those 
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flows, indicating that the designer has first determined the outcome (the 

head function or flow of the chain) and is exploring how that outcome can 

be obtained through transformations.   

A given modeling session is not expected to be governed by one strate-

gy alone, rather, an appropriate mix and variation between these three se-

quences is expected. Typically, nucleated sub-functions can be joined by 

both forward and backward chaining, until neighboring nuclei are connect-

ed through flows to complete the function structure.    

Participant Selection 

The participants are volunteer graduate students of a design research lab 

with comparable educational background and training in design theory and 

methodology.  Prior to selection, they are given a survey to collect data 

about their familiarity with function modeling and product design.  For the 

first, the number of years of using and constructing function models in 

forward design and reverse engineering are collected, along with the num-

ber of unique products modeled or designed and the number of design pro-

jects done in different capacities (e.g., designer, leader, advisor).  For the 

second, the volunteer is asked to list products under five categories—

consumer appliances, shop tools, machinery and mechanisms, electronics, 

and toys—that he or she has used, studied (taken apart), or designed.  

Based on this survey, two participants are chosen for the study.  The first 

participant, P1, has approximately ten years of experience with mechanical 

product design as both designer and team leader and four years of experi-

ence in function modeling, while the second participant, P2, has approxi-

mately two years of experience in both areas.  As a next step, this experi-

ment will be repeated using more participants from collaborating research 

labs, in order to increase the replication and credibility of the data.  How-

ever, this extension is out of scope for this current paper.   

Design Problem and Task 

In order to ensure that the designers actually face a novel design problem 

and could still develop models for the solution, the design product must be 

new to the designer, yet one whose principles are familiar in real life.  Ac-

cordingly, the following problem is developed. 

“Design an automatic clothes-ironing machine for use in hotels.  The 

purpose of the device is to press wrinkled clothes as obtained from clothes 

dryers and fold them suitably for the garment type.  You are free to choose 

the degree of automation.  At this stage of the project, there is no re-
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striction on the types and quantity of resources consumed or emitted.  

However, an estimated 5 minutes per garment is desirable”. 

While an ironing machine is unfamiliar to the participants, ironing is a 

fairly well-understood activity, which enables the participants to intelli-

gently ideate the functions.  The design instructions ask the participant to 

develop and explore functional architectures for the design concept using 

function structure graphs as the medium of expression.  The participants 

are given a marked area of a dry-erase board in the research lab—their fa-

miliar work environment—on which to construct their models. 

The Protocol Coding Scheme 

Before collecting data through the experiments, a scheme to encode the 

collected data is developed.  This coding scheme ensures that (1) all per-

sonal information such as handwriting are not accessible during data anal-

ysis, (2) the methods and algorithms for analyzing the data are committed 

to before data collection, so that the analysis is not biased by observations 

made at run-time of the experiments, and (3) all information used in analy-

sis, such that the model itself and its construction process, could be com-

pletely re-enacted entirely based on the encoded information, without re-

ferring to the raw data.  These requirements are imposed on the coding 

scheme in order to ensure objective, unbiased analysis.  As the purpose of 

the experiment is to study designers’ modeling actions, a list of atomic 

model elements and modeling actions are identified for monitoring through 

the code.  Objective instructions for coding the raw data are also devel-

oped, as discussed next. 

Atomic Model Elements 

A pilot study was conducted to identify a set of modeling elements a de-

signer may use when modeling the ironing machine (Table 1).  For objec-

tive identification of these elements, their definitions are also developed. 

The code column indicates abbreviations to be entered during encoding the 

data. 

Table 1  List of element types and their codes 

Element Code Definition 

Block B 
A rectangle typically used to represent a mechanical function in the 

model.  Incomplete definitions such as rounded edges or open cor-

ners will be included. 

Block 

Text 
BT 

Text written within a block, indicating the name or descrip-

tion of the block (typically mechanical function) 
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Element Code Definition 

Edge E 
An arrow, including its stem and its head, attached to a block 

or not, typically use to represent flows in the model 

Edge Text ET 
Text written above, below, or beside an edge, indicating a name or 

description of the flow 

Source SC 
A circle or other shape, indicating the source of a flow or flows that 

are not originating from a rectangle (function) 

Sink SK 
A circle or other shape, indicating the terminus of a flow or flows 

that are not terminating to a rectangle (function) 

Note N A textual or symbolic expression that is not an ET or a BT 

Symbol S 
A graphical expression (such as an arrow, a highlighting on existing 

text (e.g., underlines, encircling, or a punctuation mark)  

Symbol 

Text 
ST 

Text used to annotate a symbol, such as text written beside an arrow 

that is not an E 

Diamond D 
Diamond-shaped boxes in the graph-based part of the model, typi-

cally used to represent a decision point 

Diamond 

Text 
DT Text written inside a diamond 

Edge Head EH 
The head of an edge, drawn at least one pregnant pause or more time 

lapse after drawing the stem 

Atomic Modeling Actions 

Based on the pilot study, five different activities and their definitions are 

identified (Table 2). 

Table 2  List of activities and their codes 

Activity Code Definition 

Add Element A 

To insert an element in the model.   

Incomplete construction will be counted in when other el-

ements are added to the model subsequent to inserting the 

partial element, since it constitutes “using” the partial ele-

ment in the model.  If the partial element is deleted after 

construction without any other activity other than a preg-

nant pause, its insertion will not be counted.   

Delete Ele-

ment 
D 

To remove an element from the model by erasing its 

graphics.   

Partial deletion will be considered a full deletion when the 

remainder of the element is subsequently not used in the 

model.    

Deletion of multiple elements without a pregnant pause 

(see below) is considered one deletion activity.   
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Activity Code Definition 

Edit Element E 

To make changes to an existing element. 

For blocks, sources and sinks it includes resizing.  For ar-

rows, it includes changing origin or destination, rerouting, 

and resizing.  Edit operations performed by first erasing 

and then adding a redefined geometry will be counted as 

an edit only when there is no pregnant pause in between 

the two actions.  Otherwise, count them as D and A.  If a 

source is converted into a sink, or vice-versa, by redirect-

ing the arrows, the operation will be counted as the dele-

tion of the source followed by the insertion of the sink.  

Overwriting and strikethrough count as editing.   

Editing multiple elements without a pregnant pause (see 

below) is considered one editing activity.   

Read Prob-

lem Stmt. 
PS 

To interact with the given design problem and instructions, 

while not doing A, D, or E.  All actions such as pointing, 

emphasizing (underlining, highlighting), writing on the 

document, erasing from the document, or soliloquies dur-

ing reading the document count as PS.   

Pregnant 

pause 
blank 

To take a pause in between A, D, E, or PS for one second 

or longer.   

Step-by-step Instruction for Encoding of Video Data 

Encoding is completed in three steps:  activity encoding, element encod-

ing, and topology encoding.  The first step is a time study of the sequence 

of different activities through the modelling session.  The second is a cata-

loging of the model elements created through the sessions, while the last is 

an accounting of the modeling process, which accounts for how each ele-

ment was connected to the surrounding elements at creation-time.  Collec-

tively, these three steps encode the entire modeling process, such that both 

the model and the modeling process can be re-enacted purely from the en-

coded information.  These three steps are explained next. 

STEP 1:  Activity Encoding 

Needed: 

1. The video file and a video-player software 

2. The “Activity Encoding” spreadsheet (Fig2) 

3. The final resulting concept model from the experiment, redrawn 

using software (Fig3) 

Instructions: Start the video.  Look for the starting instant of each activity.  

Pause at the start of each activity, and enter the following data in the 

spreadsheet. 

1. TmStmp: the start time stamp (mm:ss) from the video  

2. Act: the activity code performed from Table 2. 
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Element IDs: a unique numeric ID (serial number) for the element operat-

ed on in that activity.  In the printed photo, assign this unique ID to the el-

ement in the same order of their addition, deletion, or edition, using bub-

bles.  An example data entry operation is shown in Fig2.  The element IDs 

represent the order of adding the elements in the model. 

 

Fig2.  Activity encoding for participant P1 

In this case, the designer started reading the problem statement thirty 

seconds into the experiment, as indicated by 0:30 in the first column.  At 

1:21, he started adding elements and added six elements (1 through 6).  

This took him up to 1:48 on the clock, at which point he started a pregnant 

pause.  At 2:10, he started reading the problem statement again.  At 2:18, 

he stopped reading the problem statement, yet was not doing A, D, or E, 

and therefore, the activity starting at 2:18 is recorded as a pregnant pause.  

After entering the activity codes 1-6 into the columns, the redrawn image 

of the final model is annotated by assigning these IDs to the elements by 

bubbles, in the same order of their addition, as seen in Fig3. 

 

Fig3.  Assigning IDs to elements for P1 

STEP 2:  Element Encoding 

Needed: 

1. Completion of activity encoding 

2. The Element Encoding spreadsheet (Fig4) 

TmStmp Act

0:30 PS

1:21 A 1 2 3 4 5 6

1:48

2:10 PS

2:18

Element IDs
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3. The redrawn final model, with element numbers  

Instructions: For each element, enter the following information as shown 

in Fig4. 

1. Elem ID: Write the unique numeric ID of the elements from the 

photo. 

2. Elem Typ: Write the element type code from Table 1. 

 

Fig4.  Element encoding for participant P1 

STEP 3:  Topology Encoding 

Needed: 

1. Completion of element encoding 

2. The video from the experiment 

3. The Element Encoding spreadsheet 

Instruction: For each element in the spreadsheet, enter the following in-

formation under Topology, as shown in Fig5. 

1. Left column:  enter the ID for the origin or input element.  For 

blocks, enter the ID of the already existing flow to whose head the 

block is added (zero if no input flow already existed).  For edges, 

enter the ID of the already existing block from where the edge 

originates (zero if the tail is not associated to an already existing 

block).  For BT and ET, enter the ID of the block or the edge to 

which the texts belong. 

2. Right column:  enter the ID for the destination or output element.  

For blocks, enter the ID of the already existing flow to whose tail the 

block is added (zero if no output flow existed).  For edges, enter the 

ID of the already existing block to where the edge terminates (zero if 

the head is not associated to an already existing block). 

Elem ID Elem Typ

1 B

2 BT

3 E

4 ET

5 E

6 ET

7 E
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Fig5.  Topology encoding for participant P1 

In Fig5, block 1 is the first element added to the model and hence has 

zeros for both input and output.  Block text 2 is added to block 1.  Edge 3 

has a dangling tail, but terminates on to block 1, which already existed.  

Edge text 4 is added to edge 3.  Edge 5 originates from existing block 1, 

but has a dangling head.  Edge text 6 is added to edge 5.  Finally, edge 7 

has a dangling tail, but terminates on to block 1.   

The pre-defined set of model elements, modeling actions, and the steps 

of activity-, element-, and topology-encoding constitute the coding 

scheme.  For illustration, the results from an actual experiment run are 

used in Fig2 through Fig5.  As noted earlier, the coding scheme is devel-

oped without using specific data points, before conducting the experiment.   

Since element encoding captures each element’s type and topology en-

coding captures the connectivity between them, the model can be entirely 

reconstructed from the information captured in the Element Encoding 

spreadsheet, except that the exact literal strings in the texts (BT, ET, DT), 

notes, and symbols cannot be reproduced.  Further, since activity encoding 

captures the sequence of adding, editing, and deleting those elements, the 

clustering of those activities, and the pauses separating those clusters, the 

model construction process can also be fully re-enacted in due time from 

the information in the spreadsheet.  This completeness gives the confi-

dence that all information produced by the designer during the experiment, 

except the exact texts, notes, and symbols, are encoded in this coding 

scheme.  Notably, since the analysis focuses only on how designers con-

struct concept models rather than what those concepts specifically are, this 

missing information is not necessary for the analysis.  Thus, all infor-

mation necessary for analysis this study are captured in this coding 

scheme. 

Elem ID Elem Typ

1 B 0 0

2 BT 1

3 E 0 1

4 ET 3

5 E 2 0

6 ET 5

7 E 0 1

Topology
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Sample Raw Data for Illustration 

Fig6 shows the final model produced by participant P2 during the experi-

ment.  For legibility, the smaller of the two models (eleven functions) is 

shown.  The model produced by P1 has seventeen functions.  Both models 

include blocks (B), block texts (BT), edges (E), edge texts (ET), and notes 

(N), although P1 made more use of notes than P1.  Only P1 used sources 

(SC), sinks (SK), diamonds (D), and diamond texts (DT), while P2 left the 

edge ends coming from or going to the environment dangling, as seen in 

Fig6.  The total number of nodes (function, sources, sinks, and diamonds) 

in P2’s model was 58. 

Post-Experiment Interview 

 

Fig6.  Sample final model produced by participant P2 (photo recolored for better 

legibility in print) 

After each experiment, both participants are interviewed using a question-

naire.  It asks about the participants’ familiarity with ironing and folding 

configurations of different garments, and also whether they were able to 

ideate the design purely in terms of its functions, or if they needed to think 

about the form of the device before translating it into a functional descrip-

tion.  Both designers expressed that in the first few minutes they had diffi-

culties separating form from function, although later they could think pure-

ly in terms of the device’s required functions and flows.  The duration of 

the modeling sessions between the participants were comparable (P1 = 

20:20, P2 = 23:57 mm:ss). 
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Observation, Analysis, and Implications 

Once the video data is encoded using the coding scheme, it is presented in 

two views for analysis: activity encoding sheet and activity graph, which 

are discussed next.  The pattern of modeling actions emerging from the 

experimental data indicates that the various parameters of solution explora-

tion, such as modeling rate, number of edits, distribution of add, delete, 

and edit operations, and the duration and distribution of pauses between 

modeling actions may largely vary between designers.  The overall ap-

proach of model expansion also varies between forward chaining and nu-

cleation. However, at a finer resolution of observing modeling actions, de-

signers generally show preference to nucleation or forward chaining of 

functions and forward or backward chaining of flows. 

Activity Encoding Sheet Analysis 

A portion of the activity encoding sheet for P1 is shown in Fig7.  The first 

column indicates the time stamp (mm:ss), the second column indicates ac-

tions (A = add, blank = pause), the next nine columns are element IDs, and 

finally, the last six columns show the element type for each element ID 

added.   

 

Fig7.  A portion of the activity encoding sheet for P1 

An inspection of this activity sheet reveals that for 46 of the 48 flows in 

the resulting model made by P1, the designer added the flow name (ET) 

immediately after adding the flow (E).  Yet, for thirteen of the seventeen 

functions, the function name was added only after adding their attached 

flows, or at least after a pregnant pause.  This trend is visible from the suc-

cession of the symbols “E” and “ET” in the shown portion, while the sym-

bols “B” and “BT” are separated by the addition of other elements of paus-

es.  This trend was also strongly visible in P2’s activity sheet, although for 

brevity, that diagram is not presented.  Thus, the flow type or name was 

known to the designers as soon as a flow was conceived, indicating that 

9:57 A 70 71 72 73 B E ET BT

10:03 74

10:11 A 74 B

10:14 75 76 77 78

10:15 A 75 76 77 78 BT E ET B

10:22 79 80 81

10:23 A 79 80 81 BT E B

10:28 82 83 84 85 86 87

10:30 A 82 83 84 85 86 87 BT ET E ET SC SC
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these designers conceived the device in terms of the flows it would pro-

cess, rather than in terms of functions it would perform.  The function 

names were later retro-fitted to describe the resulting transformative ac-

tions indicated by the flows. 

In terms of modeling sequence, P1’s overall approach was nucleation, 

as he started the decomposed model with a few sub-functions on each end 

of the board, indicating the clearly identified sub-actions involved in iron-

ing, and eventually finished the model by connecting those functions and 

others through edges in the middle of the board.  P2, however, followed a 

generally forward chaining approach.  The first function drawn was a sub-

function on the left end of the board and the last function was the final ac-

tion that produced folded pressed clothes.   

However, when the modeling actions are observed at a finer time-

resolution, booth designers seem to use nucleation and forward chaining 

when adding functions, and forward and backward chaining when adding 

flows.  For example, P2 added six functions by nucleation, seven functions 

by forward chaining on the head of an existing flow, but only one function 

by backward chaining, on the tail of a flow.  However, for the flows, P2 

added sixteen and eleven flows by forward and backward chaining, and 

only two through nucleation, which were later appended with functions 

through forward chaining.  These data are collected by analyzing the to-

pology encoding.  For example, in Fig5, edge 3 is added through backward 

chaining, as it originates in the environment (zero in left column under to-

pology) and ends on a function (1).  Edge 5 is added through forward 

chaining, as it originates in block 2 and is not attached at head at creation-

time.  Block 1 is added through nucleation, as it has no existing edges at 

input or output at creation-time.    

From the function structures produced, it was visible that both design-

ers started with defining the overall functionality in a black box function, 

as seen in the top-left corner of Fig6.  However, P1 finished drawing all 

the flows attached to the black box, including the energy and water input 

required for ironing and the emissions (Fig3), before starting the decom-

posed model.  By contrast, P2 repeatedly returned to add the two H2O 

flows to the black box (Fig6) after starting to decompose the model.  This 

could indicate that P2 was using the model to actually explore a solution 

more than P1, who committed an idea to the drawing only after developing 

it mentally.  However, in the entire observed period, P1 read the problem 

statement only during black box construction and decomposed the model 

by referring back to the black box.  By contrast, P2 repeatedly referred to 

both the problem statement and the black box while constructing the de-

composed model.  This indicates that P1 was more successful in translat-

ing the problem from natural language to the functional language before 
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beginnings to explore solutions for it.  However, since the quality of the 

model or the solution is not observed in this experiment, no conclusions 

should be drawn to whether such translation is conducive for better design.  

For the design of a future function-modeling tool, this observation shows 

that the software should allow saving and viewing other models such as 

the black box during constructing or decomposing a model. 

Activity Graph Analysis 

One other view of the data is the activity graph, which tracks the rate of 

modeling activities against time.  Fig8 and Fig9 show the activity graphs 

for P1 and P2.  The horizontal axis denotes time in hh:mm:ss format, while 

the vertical axis denotes the count of model elements added, deleted, and 

edited.  The black bars above the axis are addition, the ones below the axis 

are deletion, and the grey bars above the axis denote edition of model ele-

ments.  These graphs are used to make the following observations.   

 

Fig8.  Activity graph for participant P1 

P1 used function lists in form of notes (N) extensively at the beginning 

of decomposition (observed in the activity encoding sheet), immediately 

after developing the black-box model.  During making these notes, P1 iter-

ated thrice before settling with a decomposition approach, indicated by the 

frequent adding and deleting actions between the third and the sixth 

minutes on P1’s activity graph (Fig8).  However, once he settled with an 

approach, his activity graph does not show any deletion until the later part 

of the process, which again indicates that this designer develops an idea 

mentally or using the list view, before including it to the model.  For the 

software design, this may indicate that function listing can be useful for 

high-level architecture design, while for detailing each atomic action, a 

graph-based model is more suitable. 

By contrast, P2 edited the elements more uniformly through the design 

session and frequently deleted large number of elements together, even on-

ly three minutes prior to finishing the design.  The video, as well as the ac-
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tivity encoding sheet reveals that many of P2’s edits were for renaming 

functions or rerouting flows to and from the functions.  For example, the 

function “Add H2O to garment” was assigned four names, at steps no. 52, 

61, 68, and 74, while four flows—wrinkled garment, H2O(L), ThE, and 

ME—were rerouted multiple times through the model.  This indicates that 

the concept exploration approach may vary between designers largely and 

for some designers the software should allow simultaneous viewing and 

comparison of multiple model options.  

The difference between the two designers’ thinking patterns also ap-

pears through a few other observations.  First, with one exception, P1 be-

gins to edit the model only after significantly developing it up to the tenth 

minute.  From then until the end of modeling, edits were frequent, and of-

ten lumped between the pauses. This indicates that P1 prefers to first mod-

el raw ideas without concern for their compatibility, and considers that on-

ly later.  By contrast, P2 edited the model more uniformly in time.  

Fourteen out of the 22 edit operations by P2 are done on elements immedi-

ately after adding them, separated only by a pause.  This indicates that P2 

considered model options as they were being included and revised.  Also, 

the pauses, indicated by the blank spaces between the bars in Fig8 and 

Fig9, are more uniformly distributed between the actions in the case of P1, 

while P2 has displayed repeated long pauses.   

Additionally, there is a significant difference between the modeling 

rates of the designers.  During black-box modeling and the beginning of 

decomposition, P1’s modeling rate was marked by large lumps of addition 

(up to six elements at a time without pause), large lumps of deletion (up to 

nine elements without pause), and long pregnant pauses between them (up 

to 27 seconds). These lumps and pauses became significantly smaller after 

P1 identified the list of sub-functions.  Thus, for this designer, the listing 

indicates the point of commitment to design architecture.  However, for 

P2, the heights of the bar-clusters that indicate the number of elements 

added together without pausing were shorter in the beginning and gradual-

ly increased.  In fact, the tallest clusters for P1 are the first two, which 

were drawn during drawing the black box model, while for P2, the tallest 

clusters are close to the end of the design, in the eighteenth minute.  This 

once again indicates that P2 used the model to explore and develop the 

ideas in the initial minutes and sped up when those ideas came together 

toward the end.  P1, by contrast, first developed an idea and its possible 

decomposition mentally and using the lists, and then committed them to 

the model.   
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Fig9.  Activity graph for participant P2 

Finally, the maximum number of items added at a time (between preg-

nant pauses) is six for both designers.  This indicates that the number of el-

ements these designers could comfortably perceive is six and this may 

have a relation with the typical human cognitive chunk count of seven es-

tablished in psychology research [31].  However, delete operations are 

done on chunk sizes of up to nine elements at a time.  Between the two de-

signers, P1 used more large chunks than P2.  For example, P1 created five 

chunks of six elements, four chunks of five elements, and twelve chunks of 

four elements each, while P2 created one chunk of six elements and two 

chunks of four elements each.  This observation may indicate a trend that 

more experienced designers can, perhaps, process larger cognitive chunks 

than novice designers (P1 has more design experience than P2), as dis-

cussed in previous research [3].  However, since only one participant of 

each experience level was used in this study, this could be a random per-

sonal trait that is not generalizable, yet suggests new avenues of investiga-

tion. 

Discussion and Path Forward 

This paper reports an initial experiment that is a first step to study how de-

signers construct and reason with function structure graphs when develop-

ing and exploring functional architectures for novel design problems.  

However, since only two participants are used in this pilot version, some 

observations cannot be generalized.  A collaborative research effort is al-

ready underway between multiple design research labs to repeat this exper-

iment with more participants, thus giving the required replication of data.   

Nevertheless, this pilot experiment produced some interesting observa-

tions and hypotheses.  First, the study shows that modeling strategies may 

widely vary between designers and identifies the experiment parameters, 

such as modeling rate, duration and distribution of actions such as addi-
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tion, deletion, and edition of model elements can be used in the future 

studies to monitor them.  It also produced a finite list of model elements 

and modeling actions to be used in the future version of this experiment.   

Further, the experiment shows that flows are more concrete concepts in 

function modeling and functions are more abstract.  Designers identify 

flow names and types as soon as they add a flow, but function names are 

often identified much later than their addition, typically constructing all the 

flows attached to the block.  This observation agrees with previous theoret-

ical research that demonstrated that in function structure graphs, the topol-

ogy (flow connectivity) of the model carries much more information than 

the functions [32] and may guide the development of the user interface 

features of future CAD tools fir function-based early design.   

The experiment also demonstrates a means to monitor model expansion 

sequences, such as nucleation, forward chaining, and backward chaining.  

It shows that the one second resolution of time is adequately fine to cap-

ture these trends, which is a learning to be applied to the future experi-

ments.  The experiment also shows that while the overall modeling se-

quence varies between designers, at a finer resolution of observation, 

designers prefer to use only nucleation and forward chaining for functions 

and only forward and backward chaining for flows.  In terms of a future 

software design for function-based automated reasoning, this observation 

may guide the internal data structure of formal function representations 

and also modeling options available through the graphic user interfaces.   

Finally, this experiment shows evidences of the behavioral differences 

between designers, in terms of modeling rate, decomposition strategies, 

and the use of notes and plans.  It has also shown evidences that the mod-

eling actions may be related to the cognitive chunk sizes of designers that 

may vary with designer experience.  While these trends could not be veri-

fied due to small replication size, these trends can be used as hypotheses 

for extensions of this experiment in the future.  As indicated earlier, more 

detailed version of this experiment are already underway in a larger col-

laborative effort, the results of which will be published in due time. 
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