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A MODEL OF THE MECHANICAL DESIGN PROCESS
BASED ON EMPIRICAL DATA
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This paper describes the task/episode accumulation model (TEA model) of non-routine mechanical design, which was
developed after detailed analysis of the audio and video protocols of five mechanical designers. The model is able to explain the
behavior of designers at a much finer level of detail than previous models. The key features of the model are (a) the design is
constructed by incrementally refining and patching an initial conceptual design, (b) design alternatives are not considered outside
the boundaries of design episodes (which are short stretches of problem solving aimed at specific goals), (c) the design process is
controlled locally, primarily at the level of individual episodes. Among the implications of the model are the following: (a) CAD
tools should be extended to represent the state of the design at more abstract levels, (b) CAD tools should help the designer
manage constraints, and (c) CAD tools should be designed to give cognitive support to the designer.

1. Introduction

This paper presents a model of the mechanical design
process. The purpose of a design model is explanation
and prediction. A design model should explain how
the design process unfolds—why it succeeds in some
cases and why it fails in others. A model should also
be able to predict future successes and failures and
provide some estimate of the resources needed to
develop good designs.

The model described in this paper, which we call
the TEA model (task-episode accumulation model), is
still under development, and it does not provide as
much predictive power as we would like. It does,
however, explain many aspects of the design process,
and it provides significant insight into the way
mechanical designs are developed.

The major reason for developing design models is
to improve the design process—to raise the quality of
the designed products and improve the efficiency of
the designers. There are three major avenues to
pursue: development of design aids, improvement of
design education, and complete automation of some
design tasks.

Developers of design aids need to know what
proportion of the design process they are currently
assisting. They can benefit by identifying new aspects
of design where assistance could be provided.

Design educators are interested in understanding
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what kinds of knowledge designers need. Is there
knowledge about design, independent of a specific
technology, that can be taught? What forms of
expertise do successful designers have, and how can
this expertise be transmitted to students?

Researchers in artificial intelligence would like to
understand how designers reason about the evolving
design. What constraints are brought to bear to guide
the search for solutions? How are potential solutions
evaluated?

The research reported in this paper makes initial
contributions in each of these areas. The paper is
organized as follows. Section 2 describes the research
methods employed to gather and analyse data on the
design process. Section 3 gives an overview of the
model. This is followed by sections describing each of
the major components: the design state (Section 4),
the goal structure (Section 5), the operators (Section
6), and the constraints (Section 7). There are some
short, example episode traces presented in Section 8.
Sections 9 and 10 conclude with a discussion of the
implications of the model and the problems requiring
further research.

The results presented in this paper are based on a
two-year study of the mechanical design process based
on the evaluation of experienced mechanical designers
solving real design problems. Early results of this
study along with details on the methods used have
been previously published (Stauffer et al., 1987;
Ullman and Dietterich, 1987; Ullman etal., 1987a, b).
Other detailed results are reported in recent papers:

© 1988 Academic Press Limited



34 D. G. Ullman et al.

details on the development of mechanical design
operators (Stauffer, 1987; Stauffer et al., 1987), details
on the requirements of a state representation for
mechanical design (Tikerpuu and Ullman, 1988), and
a comparison of high level observations made in this
study compared to those from other studies (Stauffer
and Ullman, 1987).

2. Research methods

Five mechanical design engineers of varying back-
ground and experience were given the initial
specifications for one of two fairly simple, yet realistic,
industrial design problems. The engineers were
requested to think aloud as they solved the problems.
Their verbal reports, sketches, and gestures were
video- and audio-taped for a period of 6—10 hours.
The taped data were then transcribed to obtain a
'protocol' of the design session. This protocol was
then analysed in a variety of ways to provide the data
for this paper.

The two problems used in the study were the
'battery contacts' problem and the 'flipper-dipper'
problem. The battery contacts problem statement, in
abbreviated form, is the following:

Design a plastic envelope (dimensions provided)
and the electrical contacts to accept three batteries
to power the time clock in a new computer. The
batteries (detailed dimensions provided) must be
connected in series and to an adjacent printed
circuit board. The external dimensions of the
envelope are provided as are needed contact
pressures. The volume is 50,000 units/month for
three years and the assembly will use a robot.

Two subjects, SI and S2, solved this problem.
The flipper-dipper problem statement, in abbre-

viated form, is the following:

Design a mechanism that will accept a 10 x 10 x
0.063 in. aluminum plate from a worker, lower one
side so that it just touches the surface of a chemical
bath (to receive a chemical coating), lift the plate
off the bath surface, flip it over, lower and coat the
other side, and present it to the worker for removal.
There were only to be three of these built.

Three subjects, S4, S5, and S6, solved this problem.
More details on these problems can be found in
Stauffer (1987) and Ullman et al. (1987a,b).

Approximately 46 hours of data were taken. All of
the data was transcribed and analysed to determine
the general problem flow. Several detailed analysis
techniques were tried on selected parts of this data in

an attempt to develop an analysis method that
provided insight into the goal structure of the design.
It was found that an analysis based on tasks, episodes
and operators (defined below) was most revealing and
was reasonably repeatable by different researchers.
Four general types of tasks were identified: conceptual
design, layout design, detailed design, and catalog
selection. For each protocol, all instances of each of
these tasks were identified. Then one instance of each
was selected at random for detailed dissection. This
yielded 19 sections (one subject never performed a
catalog selection task) constituting 204 minutes of data
(8% of the total data taken). The TEA model has
been constructed from the detailed analysis of these
19 sections.

3. Overview of the model

The TEA model is a problem-space model in which
the fundamental components are the design state and
the design operators. The design state contains all
information about the evolving design including
problem specifications, additional constraints intro-
duced by the designer, proposed designs, drawings,
calculations, assembly plans, and so on. Design
operators are primitive information processes that
modify the design state by performing calculations and
simulations, creating new proposed designs, evaluat-
ing proposed designs, and making decisions to accept
or reject proposed designs. The TEA model contains
ten operators: select, create, simulate, calculate,
compare, accept, reject, suspend, patch and refine.
These are discussed in detail in Section 6.

The most important parts of the design state are the
proposals and constraints. Proposals are design
elements created by operators as alternative ways of
achieving some goal. For example, to fasten two
pieces of plastic together, the create operator might
create three proposals: adhesives, welds and snaps. In
mechanical design, proposals are normally forms,
although they can also be functions, plans and
constraints.

Constraints include specifications, requirements,
needs, performance measures, and objectives as these
terms are used by other authors. A design problem
normally begins with some rather abstract functional
constraints. The designer may introduce other
constraints based on past experience (e.g. 'don't use
adhesives with plastics'). Additional constraints enter
the design state whenever a proposal is accepted. For
example, once snaps are adopted for fastening the
plastic pieces, a new space constraint is derived: space
must be reserved for the snaps. Hence, each proposal
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can also be viewed as a constraint on the remainder of
the design—once it is accepted into the design. This
observation is the rationale for including constraint
propagation as an important component in AI de-
sign systems (Steinberg, 1987) and is discussed in
Section 7.

To accomplish a design, the design engineer applies
the primitive operators in meaningful sequences called
episodes (Stauffer, 1987). An episode is a sequence of
operator applications that addresses some primitive
goal. The nature and scope of primitive goals changes
as the design unfolds. Initially, a primitive goal might
be 'come up with a central concept for this design' or
'select a source of power for this machine'. Later, a
primitive goal might be 'find some way to mount the
flipping frame to the arm'. And still later, a primitive
goal could be 'determine the tolerance on the shaft
diameter'. At any level, an episode requires an
average of 56 sec (maximum 80 sec, minimum 32 sec).
The TEA model has six different types of episodes:
assimilate, document, plan, repair, specify and verify.
These are discussed in Section 5.

An episode ends in one of three ways: (a) a solution
has been accepted that satisfies the goal; (b) no
acceptable solution has been found (all have been
rejected) thus the goal itself has been rejected (usually
replaced by a reformulated goal); or (c) the goal is
suspended to be reconsidered at a later time. An
episode may also be temporarily interrupted by a
sub-episode. The sub-episode addresses some goal
whose solution is required by the original episode.
After the sub-episode is completed, the episode is
immediately resumed.

Within an episode, the decision about what
operator to apply next is guided by a set of heuristic
rules. Many of these rules are presented in this paper,
but a complete set of such rules has not been
developed. In future research, we plan to extend the
set of rules and test them in a computer simulation of
the model.

When an episode is completed, the designer usually
tackles another, closely related primitive goal. A
collection of related primitive goals is called a task.
Generally, a task can be described as a goal of larger
scope, for example, 'layout the left battery contact' or
'dimension the flipping frame'. Within this larger goal,
there will be several primitive goals: 'determine the
length', 'determine the width', 'determine the shaft
diameter', and so on. There are four major types of
tasks in the TEA model: conceptual design, layout
design, detail design, and catalog selection.

This completes the description of the basic
components of the TEA model. The model has four
important (and interrelated) features that should be

noted. First, the TEA model addresses non-routine
design tasks. None of the subjects in our study
normally design the kinds of devices and products
required by our two problems. However, the subjects
did all have some understanding of the required
technologies (e.g. simple electrical-mechanical de-
vices, injection-molded plastics, adhesives, etc.).
Second, in the TEA model, the design is accumulated
gradually by the incremental contributions of each
operator, hence the name 'task/episode
ACCUMULATION model'. Non-routine design,
covered in this study, it not conducted by instantiating
a prototype or filling in some skeletal framework.
Third, alternative designs are only considered
WITHIN episodes. By the time an episode is
completed, one of the alternatives will have been

TABLE 1. Mechanical design model terminology

1. Levels of abstraction (see Section 4.2)
A. Level 1, Abstract
B. Level 2, Intermediate
C. Level 3, Concrete

2. Constraints (see Section 4.3)
A. Given
B. Introduced
C. Derived

3. Goal structure (see Section 5)
A. Tasks

1. Conceptual Design
2. Layout Design
3. Detail Design
4. Catalog Selection

B. Episodes
1. Assimilate
2. Plan
3. Specify
4. Repair
5. Verify
6. Document

4. Operators (see Section 6)
A. Generate

1. Select
a. State Select
b. Memory Select

2. Create
B. Evaluate

1. Calculate
2. Simulate
3. Compare

C. Decide
1. Accept
2. Reject
3. Suspend
4. Patch
5. Refine
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selected and accepted into the design state. Fourth,
the design process is controlled locally, at the episode
and task level. The designer does not formulate and
then execute a global design plan. Instead, a central
concept is developed and gradually extended to
accomplish the design goals.

The terms used in the overview above are refined
throughout the rest of this paper. In Table 1 this
terminology is listed along with references given to the
sections of the paper where each term is discussed.

Now that the general components of the model
have been reviewed, the sections that follow describe
each of these in more detail.

4. The design state

As mentioned above, the design state is the sum of all
information about the design that has been processed
by the designer. In particular, the state includes the
functional and geometric constraints on the design,
descriptions of the geometry, configuration, and
materials for all forms involved in the design,
functionality of the design, manufacturing informa-
tion, and so on. All of this information must be
represented in some way and stored in some location.

4.1 WHERE THE DESIGN STATE IS STORED

Figure 1 depicts the environment in which the
design takes place. It is based on the models of
information processing psychology developed by
Newell and Simon (1972) and Stauffer (1987). The figure
can be viewed as a 'map' of the locations in which
information may be stored. It is divided into internal
locations (i.e. inside the mind of the designer) and

' DESIGN
STATE

Accepted design
proposals

Constraints
Strategic

\

EXTERNAL
ENVIRONMENT

INTERNAL
ENVIRONMENT

FIGURE 1. The design environment

external locations (i.e. outside the mind of the
designer). Within the designer, there are two locations
corresponding to the two different kinds of memory:
short-term memory (STM) and long-term memory
(LTM). There is also a 'processor' that is responsible
for applying operators and controlling the design
process. It is the goal of this study to identify the
operators and the heuristics that control their
application. External to the designer there are many
'design state storage locations' including pieces of
paper, CAD tools, handbooks and colleagues.

The design state can only be represented in three
locations: short-term memory, long-term memory,
and the so-called, external memory (which includes
drawings and notes on pieces of paper or stored in
CAD tools). During the design process, other
information is brought into the design state from the
environment through a process called assimilation. It
is by assimilation that such information as the problem
specification, handbook information, or general
knowledge about design is brought into the design
state. Information can be assimilated from various
external sources or from knowledge and experiences
stored in long-term memory.

Each 'location' has certain properties that affect
how it can be used in design. Short-term memory is
very fast and powerful. Design operators can only
operate on information that is brought into short-term
memory. Unfortunately, STM has limited capacity.
Studies have shown that it is limited to approximately
seven 'chunks' of information (Miller, 1956). (A
chunk is a meaningful unit of information the size of
which varies with experience. Experts generally have
larger chunks than novices.)

Long-term memory has essentially infinite capacity,
but access is slow (from 2 to 10 sec per chunk). Access
to long-term memory is also not direct. Instead,
memories must be triggered by some cue or retrieval
strategy based on information in short-term memory.
During design, parts of the design state are stored in
long-term memory and these are relatively easy to
cue, because, at any time, currently important parts of
the design state are in short-term memory and can act
as pointers for the knowledge in the long-term
memory.

Other information is also kept in long-term memory
(e.g., knowledge about adhesives), but it does not
enter the design state unless it is specifically generated
and assimilated.

All operations on the design and all information
passing to or from long-term memory must pass
through short-term memory, so short-term memory
forms a critical bottleneck for human designers.
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4.2 LEVELS OF ABSTRACTION IN MECHANICAL
DESIGN

The exact form in which the design state is
represented in STM and LTM is the subject of
continuing research (Tikerpuu and Ullman, 1988).
One critical property of this representation that has
been identified is its level of abstraction (Sacerdoti,
1974; Adelson, 1985). A design problem typically
begins with a set of functional constraints expressed
very abstractly. During the design process, the level of
abstraction of the design state is progressively reduced
until it is detailed enough to be manufactured.

The degree or level of abstraction of any element of
the design state can be characterized by what it
explicitly describes and by what it omits. There is a
continuum of degree of abstraction ranging from the
most abstract to the most concrete. For the purposes
of describing the TEA model, we have arbitrarily
divided this continuum into three levels: Abstract,
Intermediate and Concrete.

Each of these levels is defined below in operational
terms. Separate definitions have been given for the
different kinds of 'media' in which the state
information may be represented: verbal/texture,
visual, and physical. Where necessary, distinctions
have been made between form representations and
function representations.

Level 1. Abstract
Verbal /Textual

Both form and function represented in terms
of qualitative descriptors (e.g. in the
flipper-dipper problem statement, the ma-
chine must 'lift the plate. . . , flip it over,
lower and coat the other side')

Visual
Forms represented as a rough sketch (back-
of-the-envelope). These sketches may con-
tain the basic geometry and topology of the

FIGURE 2. First sketch of battery contact

object. Major features and interfaces are
contained in the sketch. Functions are
represented in block diagrams showing the
flow of material, energy, and signals as
identified textually (defined above) or with
symbols such as arrows (e.g. one subject
solving the battery contacts problem drew
the first representation of a contact as in
Figure 2).

Physical
There are no physical representations at this
level of abstraction.

Level 2. Intermediate
Verbal/Textual

Both form and function are represented in
terms of specific variable names or values for
the overall measures of the design. This
includes information on the manufacturing
process and the material families for the
forms (e.g. one subject solving the flipper-
dipper problem defined an 'arm' that had a
'width' of '28.25 in.' early in the design).

Visual
Forms represented as a sketch of drawing
that is near scale or to scale. These sketches
or drawings may contain all the basic
dimensions. All major features are complete
(e.g. the 'arm' was represented at the time as
in Figure 3).
Functions represented in block diagrams
have the variables identified textually (de-
fined above). Results of analysis represented
in graphs or plots.

Physical
Both form and function can be represented
in crude models such as clay, paper, wood
block and rough functional analogs (e.g. one
subject solving the flipper-dipper problem
made a paper model of a part of his
mechanism to confirm its operation).

Level 3. Concrete
Verbal/Textual

Both form and function represented in terms
of specific variable names and values for all
measures of the design and their tolerances.
Bill of materials complete with specific
materials and processes (e.g. many subjects
made bills of materials and all wrote
tolerances).

Visual
Forms represented as detailed drawings with
tolerances. Functions represented in anima-
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FIGURE 3. Intermediate drawing of arm

FIGURE 4. Final drawing of battery contact

tions or demonstrations of the actual hard-
ware or prototypes of it (e.g. the 'battery
contact' contact was finalized as in Figure 4).

Physical

Both form and function can be represented
in final hardware or in static and working
models of the hardware. (Note: none of the
designs were reduced to final hardware.)

These 'levels of abstraction' will be incorporated
into the heuristic rules in Section 5 of this paper.

4.3 CONSTRAINTS

Constraints play a central role in the TEA model.
They can usually be viewed as limits on the form or

function of the device. Constraints are developed in
one of three ways: (a) they are GIVEN external to the
solution of the design being considered, (b) they are
INTRODUCED by the designer based on his/her
domain knowledge, or (c) they are DERIVED during
the solution of the design problem.

'Given' constraints appear in the initial statement of
the problem, or they are imposed on the design
problem by the solution of other components not
under the control of the designer responsible for the
problem under consideration. The given constraints
for the protocol experiments were summarized above
in Section 2.

'Introduced' constraints are those constraints
imposed on the problem by the designer based on
specific domain knowledge. For example, subject S2
(working on the battery contacts problem) early in his
conceptual design imposed a constraint that he would
not use adhesives, because they are messy and hard to
deat with. This is considered an 'introduced'
constraint, because it was not imposed by the problem
statement and it was not derived from decisions made
during the design process. Introduced constraints can
be universal in nature. For example, our subjects
often verbalized a preference for 'round' numbers
over more precise quantities. Introduced constraints
can also be quite domain specific such as the adhesive
knowledge above.

'Derived' constraints arise as a consequence of
design decisions. In the battery contacts problem, for
example, the decision to place the contacts on the
sides of the batteries resulted in a derived constraint
concerning the amount of space available for the
contacts. This constraint is derived from the constraint
on the total available space and the previous design
decision.

These constraint definitions complete the descrip-
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tion of the design state. The next section presents the
goal structure of the design process.

5. The goal structure of mechanical design

According to the TEA model, the goal structure of
the design process has three main levels. At the
highest level is the main goal comprising the
satisfaction of the given constraints. This top-level
goal is decomposed into finer goals, each of which is
solved by a single task. These task-level goals are
further decomposed into the primitive goals that are
each addressed by an episode. The remainder of this
section describes the structure of task-level and
episode-level goals and design processes. Section 6
describes the individual operators that are used to
satisfy the goals.

The top level goal is to design a machine which is
subject to many stated restrictions on its function and
its form. These given constraints are usually
dominated by some abstract functional requirements
on the operation of the device along with some less
abstract, possibly very concrete spatial and manufac-
turing demands. Additionally, these given constraints
may be represented in different ways: verbal, textual,
visual or physical. Lastly these given constraints may
not all be satisfiable; they may conflict with each other
or with what is achievable. As an example, in one of
the problems solved by three of our subjects, a given
constraint was that the machine needed to 'flip' an
aluminum plate. In the TEA model this requirement
is classified as a textually represented, abstract, given
constraint on the function. Another part of the
description for the same problem was a sketch (with
dimensions) of the table top on which the device was
to be mounted. These dimensions (textual) and the
drawing (visual) combined to describe spatial,
concrete, given form constraints.

Other constraints on this problem were left
unstated, of course. Every design is constrained by the
laws of physics and by the desire to minimize costs
and part count. The TEA model considers these to be
given constraints as well.

Below the top-level goal, there are three general
kinds of task-level goals each addressed by a task:
conceptual design, layout design, and detail design.
Details on these tasks are given in Sections 5.1-5.4. In
the protocol study, these tasks required from 8 to 20
min to be performed with an average duration of
10.8 min. Each of these task-level goals focuses on the
function of the device, some assembly, some specific
part, or a feature of a part. The task of catalog
selection (mentioned previously) usually addresses a

subgoal that arises during a layout or detail design
task.

In the protocol data, contrary to many design
models, the design process is not broken into separate
conceptual, layout, and detail design phases (there are
conceptual, layout and detail design tasks throughout
the design). Efforts were made to reduce the protocol
data into separate phases and develop a goal tree for
the design. This was found not to be possible as the
'phases' are a management artifice and are not
deriveable from the protocol data. For example, there
were several occasions in which problems identified
during layout design of some component triggered the
conceptual design of a new component or a new
feature of an existing component. Hence, tasks of
different kinds are interleaved in the protocol analysis.
It appears that the best level to develop a goal tree is
at the episode level as is demonstrated in Section 8.

Each task is composed of a sequence of episodes
addressing primitive goals. Six types of episodes that
make up the tasks have been identified from the
protocols. These are Assimilate, Document, Plan,
Repair, Specify and Verify. They are defined as
follows

'Assimilate' episodes have the goal of bringing
information from the external environment or the
long term memory into the design state. Usually the
information being assimilated is constraint informa-
tion, but designers also bring into the design space
specific design proposals or strategies from their
long-term memory, colleagues and handbooks.

'Specify' episodes have the goal of clarifying or
developing a design proposal into a more specific
description (lowering its level of abstraction). This
is the workhorse of the episodes. If the constraints
were all known and the plan fully defined, the
design process would reduce to a sequence of
specification episodes followed by the need to
document the design.

'Planning' episodes have the goal of developing
strategies for how to proceed. Planning episodes do
not help in solving the goal of designing a machine,
but are a part of establishing the goal structure
necessary for the solution. In the protocol data,
little planning was observed.

'Document' episodes have the goal of recording
information textually or graphically in the external
environment with the purpose of communicating to
others. In other words the goal of the document
episodes is not to specify any more information
about the design but to record previous results.
However, it must be noted that often, even though
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the goal might be to document information, new
design decisions must be made because the designer
discovers that the information to be documented is
incomplete.
'Repair' episodes have the goal of altering
previously specified information to repair a conflict
between a previously accepted design proposal and
a constraint or a conflict between two or more
constraints. In other words, repair episodes take
information accepted into the design state and
reconsider it in the light of conflicting constraints.

'Verify' episodes have the goal of repeating an
episode to ensure that its results are still acceptable.
In the protocol data there were several instances of
the designer going back and reperforming the
operations in an episode to verify decisions before
the investment in them is too great.

In the 204 min of data analysed, the subjects
performed 208 episodes. The distribution over all the
tasks is shown in Table 2. Note that this paper
describes specify, document, assimilate and plan
episodes. Additional information on verify and repair
episodes is in Stauffer (1987).

In analysing the protocol data, it was much easier to
identify episode boundaries than it was to detect task
boundaries. The reason for this is that the subjects did
not solve the problems in a particularly orderly
fashion. A task focuses a series of episodes on a
general 'region' of the design, but subjects often
departed from this region to gather information or
make decisions regarding other, related, parts of the
device. One good example of this behavior arose
during the layout task selected from S6's protocol.
This task involved finding some method for mounting
the 'flipping frame' (the frame that held the plate
while it was flipped). This was a real sticking point in
the design. S6 would work on it for a while and then,
when an acceptable solution was not found, address
another task, and return to the mounting problem
later.

As a consequence of this interleaving and
interruption of tasks, the flow of the design process is
best mapped by following the individual episodes. In

the remainder of the paper, the tasks are used only as
a rough guide and the episodes are the primary focus.

The remainder of this section describes in detail the
episode structure in each of the task types. The
heuristic rules given are numbered in brackets. These
numbers are referred to in the example episode traces
in Section 8.

5.1 THE TASK OF CONCEPTUAL DESIGN

Conceptual design is primarily concerned with
assimilating the given constraints and specifying forms
to meet the functional given constraints. This
specification is accomplished to at least an abstract
level.

In the reduction of the protocol data, five
conceptual design tasks (totalling 68 min) were
selected at random—one from each subject's protocol.
Within these tasks, the episodes are distributed as
shown in Table 2. Clearly, the subjects are focused on
assimilating information (36%) and developing (speci-
fying) design proposals (39%) in this stage of the
design.

Some of the rules governing the sequence of
episodes in conceptual design are as follows:

If the design state is empty (Rl)
Then internalize the given constraints via

assimilate episodes.

The first task begins with a series of assimilate
episodes. Each episode has the sub-goal of the
designer reading or otherwise considering (looking at
samples or other hardware, talking to the experimen-
ter in the protocol recordings, talking to the client,
etc.) a constraint and understanding it. The design
state is said to be empty at the start of the design
process and these assimilation episodes form the first
conception of what the design is to become.

If assimilating given constraints
Then perform episodes with goals of

breaking the given constraints into
individual constraints and considering
each one at a time.

(R2)

TABLE 2. Episode distribution

Conceptual
Layout
Detailed
Catalog selection

Total

Assimilate

36
18
3

30

(%) Document

0
6

52
11

(%) Plan (

19
12
8

18

Repair (%) Specify (%) Verify (%)

19 21 13

39
49
23
26

34

3
6
6

16
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When the subjects were first given the problem
description, they usually read through it twice. The
first time was a direct word-for-word reading, but the
second contained many pauses to evaluate constraints,
relate the text to the figures, and assimilate other
information not in the problem statement. In general,
constraints were assimilated in the order they
appeared in the problem statement. Some subjects
compiled a written list of the major constraints. This
list frequently broke the given constraints into
individual constraints, which were then assimilated
one by one. This process of individualizing the
constraints must be based on the designer's domain
knowledge. Each constraint is evaluated before it is
incorporated into the design state (see Section 6.2 for
more on evaluation).

Assimilation does not occur only during this early
stage. Any time the designer brings information from
long-term memory or external sources into the design
state, assimilation is required (see Figure 1). Even the
problem statement is reconsidered as the design
unfolds. The subjects frequently went back and reread
the statement to assimilate details that had been
skipped during the initial task.

The following rule terminates this first period of
assimilation:

If the given constraints have been (R3)
assimilated to the point that (1) the
designer feels the problem is under-
stood or (2) the constraints cannot be
further understood without concepts
to consider

Then develop design proposals.

In the protocols, the subjects each spent between 5
and 32 min understanding the constraints. They then
paused and often announced that they were ready to
begin the design. This occurred in spite of the fact that
in many cases there were constraints that were
obviously not well understood or were wrongly
interpreted. In most cases these constraint problems
were resolved later in the problem, but misinterpreta-
tions here in establishing the early state of the design
were often built on throughout the remainder of the
design.

If a design proposal is to be developed (R4)
Then select the most important functional

constraint or group of related
constraints.

The primary goal of conceptual design is to specify
forms to meet the given constraints. This is
accomplished by selecting a few of the constraints and
generating a conceptual design to satisfy them. This

initial design is then elaborated to meet the remaining
constraints. This is what is meant by accumulation
design in the acronym 'TEA'.

It is not clear when or how the subjects determine
which constraints to pursue first. One hypothesis is
that each constraint is evaluated and ranked for
'importance' as it is assimilated. A reason for not
believing this hypothesis is that separate 'ranking'
episodes were not observed in the protocols. Another
hypothesis is that subjects prefer to begin with
functional rather than form constraints, since func-
tional constraints relate more directly to the purpose
for which the device is being designed. Most of the
constraints initially focused on were functional
constraints. A third hypothesis is that constraints are
considered 'important' if they appear to be difficult to
satisfy. The less experienced subject in the battery
contact problem (SI), for example, focused on the
constraint that the batteries must be connected in
series. Subsequent episodes showed that SI was not
sure exactly how to achieve a series connection, so for
her, this constraint was difficult. Subject S2, on the
other hand, focused on a constraint that specified the
contact pressure on the batteries. When S2 made an
initial drawing, he immediately drew a configuration
for connecting the batteries in series. Hence, for him,
the series connection constraint was considered easy
to satisfy. Clearly, the designer's prior experience is
important in helping him/her determine the degree of
difficulty of each constraint.

If a functional constraint(s) has been (R5)
selected

Then generate, evaluate, and accept a form
design proposal for that constraint(s).

It is interesting to note that in domains where form
and function can be aligned (e.g., so that a functional
decomposition corresponds directly to a form de-
composition), this rule could be applied repeatedly
to carry out the entire design. While it is rare to find a
domain where this occurs, software and circuit design
approach this ideal more closely than mechanical
design. Problems arise in all engineering fields when
individual forms are engineered to do many functions
simultaneously (Sussman and Steele, 1980; Ulrich and
Seering, 1988) and this can not be avoided in most
mechanical designs. Even static structures not only
carry load but must function as a stiffness, transfer
thermal energy, etc. In the flipper-dipper problem, for
example, the same mechanism that allows the plate to
be dipped may also assist in flipping the plate.

This has an important consequence for the design
process: each design decision can potentially affect
every subsequent decision. The reason is that all
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subsequent design tasks must consider the possibility
that their goal can be achieved by modifying a
previously specified form (i.e., to save space) rather
than by introducing some new form. Furthermore,
even if the previously specified forms are not
modified, new forms must coexist with them. The
constraints of space, weight, and so on may make this
impossible. In a functionally-decomposed design, by
contrast, each design decision on a given form only
affects subsequent decisions concerning subcom-
ponents of that form.

As an example, consider subject S5. He began the
flipper-dipper problem by focusing on the functional
constraint of dipping of the plate. His first form design
proposal that was generated, evaluated, and accepted
was a ferris-wheel-type machine. This decision carried
with it the derived, functional constraint that the
motion of the plate must be tangent to the water. This
in turn became a. very important constraint on the
development of the method to hold (another function)
and flip (yet another) the plate. This constraint
became so imbedded in the design that it was not later
relaxable without paying the price of virtually starting
all over again.

If forms have been accepted for the (R6)
most important functional constraints

Then the next goal is to develop forms for
the next most important con-
straints).

After each decision to update the design state by
accepting a design proposal, the constraints (given,
derived and introduced) still to be satisfied are
reconsidered to find the most important ones to use as
the focus for the next goal. This is not to say the
engineer keeps a long agenda of constraints to satisfy
but, when verbalized there were often three or four in
perceived order of importance. Of course this order
changes as new, derived constraints are developed.
Additionally if an episode was suspended due to a
lack of information, the new, most important goal
may be to assimilate or in some other way specify the
needed information to satisfy the suspended goal. This
behavior often gave rise to sub-episodes (within
episodes) to develop needed information. Twenty-one
per cent of all episodes were sub-episodes with the
nesting sometimes three levels deep.

5.2 THE TASK OF LAYOUT DESIGN

Once the major forms have been conceptualized
to satisfy the 'important' (primarily functional)
constraints, the focus changes to specifying the
components (assemblies and individual parts) at

decreasing levels of abstraction. There was generally a
clear verbal demarcation at this point. The subjects
reported that they now understood what their solution
would look like and that only the 'details' remained to
be worked out.

In the reduction of the protocol data, five layout
tasks (totalling 63 minutes) were selected at
random—one from each subject's protocol. Within
these tasks, the episodes were distributed as shown in
Table 2. Notice that about half the effort is on
specifying the design (49%). Assimilation is much less
common than it was during conceptual design (down
from 36 to 18%), and documentation is still playing
only a minor role.

Only one rule controls the selection of episodes
during layout tasks:

If performing a layout design task
Then specify the design proposals to

intermediate or concrete abstraction.

Layout is simply concerned with moving the design
state to refined levels of abstraction. Most of the
interesting problem-solving behavior during layout
design arises because of the need to repair problems
that arise during this process (see the discussion of
evaluation and repair operators in Section 6.2 and 6.3)

5.3 THE TASK OF DETAIL DESIGN

As the design becomes more finalized, the
designer's attention gradually shifts to focus primarily
on documentation and continued refinement as
needed. In the protocol analysis, detailed design tasks
were assumed to begin when the subject started
making scale drawings rather than sketches. However,
long before this point the subject would usually have
begun specifying particular dimensions (and even
tolerances) for some components. Unlike the clear
demarcation between the conceptual and layout tasks,
where the subjects virtually announced they had a
concept defined, there was no observable transition
between layout and detail design in the protocol data.

Based on the definition of the levels of abstraction
and with a desire to be consistent with traditional
terminology, the detail design task has been defined in
the TEA model as focusing on the complete
refinement and the complete documentation of the
design. This is captured by the following rule:

If performing a detail design task (R8)
Then reduce all the form design proposals

to concrete forms and document
them.
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As with the conceptual and layout tasks, five detail
design tasks (totalling 61 min) were chosen at random
(one per subject). Within these tasks, the episode
breakdown was as shown in Table 2. The breakdown
shows the importance of documentation at this point
(52%). In contrast to earlier tasks, assimilation is
virtually absent.

5.4 THE TASK OF CATALOG SELECTION

In addition to the three kinds of tasks discussed
above, there was one other task that involved
significantly different kinds of problem solving:
catalog selection design. The goal of a catalog
selection task is to select some part or assembly from
a catalog. Four particular catalog selection tasks were
chosen for protocol analysis (one subject did not
perform any catalog selection). The episode break-
down was as shown in Table 2. This breakdown shows
that during catalog selection, the designer interacts
with the catalog to assimilate new information as well
as to specify and document particular components.
Catalogs play a significant role in suggesting new
design possibilities to the designer, as well as in
providing the information the designer is seeking.

The fact that catalog selection was different enough
to constitute a new kind of task reveals two important
facts. First, it shows that the traditional sequential
model of design involving three phases (conceptual,
layout, and detail) is incomplete. Second, it suggests
that other kinds of design tools (aside from catalogs)
may also have a significant impact on the way
designers organize their design processes (e.g.
intelligent CAD tools such as parametric design tools
and expert systems).

the strategy they intended to use to locate the desired
information. Such a plan may provide a kind of
defense against the possible distracting effects of the
catalog or handbook. There is so much information in
such books that it is important to focus on finding the
desired information in a fairly directed way.

This completes the description of the task and
episode types. The next section describes the
individual operators that make up these episodes and
tasks.

6. The mechanical design operators

The building blocks of the design process are the
operators. Once selected by the controller (under the
guidance of heuristic rules), the operators are applied
to change the state of the design.

To analyse the protocols, each utterance was
considered separately (see Stauffer (1987) for details
of what constitutes an utterance). These utterances
averaged 11 sec in duration each. The average episode
contained 5.4 utterances, and the average task 60
utterances. Generally, each utterance reflects a
change in the state of the design, so each is considered
the result of the application of an operator. In
studying the protocol data, it was found that by
defining ten kinds of operators, all episodes and tasks
could be analyzed to a more detailed and more useful
level.

The following sections define each of these ten
operators and present several heuristic rules for
applying the operators during design. The operators
are broken into three groups: generation operators,
evaluation operators, and decision operators.

5.5 PLANNING EPISODES

Although control of the design process is primarily
carried out at the operator level, there were occasions
in which the subjects formed plans and verbalized
them. These plans were usually rather short-range,
near-term plans. Their main purpose seems to be to
evaluate whether a proposed task is worth performing
at the current time. One point of evidence in favor of
this hypothesis is that the plans, once formulated,
were not followed very exactly.

Another hypothesis about planning is that plans are
formed prior to tasks in which many distractions are
possible. For example, before picking up a catalog or
handbook, subjects often verbalized their plan for the
catalog selection task. They would explicitly mention

6.1 THE GENERATION OPERATORS

The generation operators bring design proposals,
constraints, or strategies into consideration. There are
two such operators: Select and Create.

The 'Select Operator' causes information to be
brought into consideration in the short term
memory. The information is either old information
obtained from the design state or new information
obtained from longer term memory or some
external source.

The 'Create Operator' introduces new information
into short term memory, but the source of the
generated information is unknown. Many unverbal-
ized steps may have occurred to generate the
information from long term memory.
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During protocol analysis, the Select operator is used
when it is possible to infer where the information
came from. Otherwise, the Create operator is used.
These two operators are most commonly used to
introduce new constraints and new design proposals
into the design state. New constraints may be derived
by combining previous design decisions with unver-
balized domain knowledge. They may also arise from
mental simulations and visualizations, which are also
unlikely to be verbalized (Kant and Newell, 1982;
Kant, 1985; Adelson and Soloway, 1984). Similarly,
new design concepts, especially during conceptual
design, may arise from a memory retrieval or via some
visualization process. An important unsolved problem
in design research is to develop some technique for
determining where these new ideas originate.

6.2 THE EVALUATION OPERATORS

The evaluation operators serve to relate or compare
information (especially a proposal and a set of
constraints) from the design state in order to make a
decision. Three operators are used in evaluation:
simulate, calculate and compare.

The 'Simulate Operator' has the role of adjusting
the representation of its arguments to the same
level of abstraction. This operation can range
anywhere from 'hand waving' to building paper
models, to performing formal mathematical simula-
tions. Whatever the method, the purpose is the
same: to reduce the arguments to be used in a
comparison to the same representation and level of
abstraction (Adelson and Soloway, 1984).

In order to compare two items, it is necessary to
have them expressed at the same level of abstraction
and represented in the same language. For example, if
there is a constraint that says a part must fit in a
2.00 ±0.005 in. slot and the abstract design proposal
for the part just says that it is 'small', then it is
impossible to compare the proposal to the constraint.
The comparison can be performed if either (a) the
constraint dimension is translated into a verbal
language (perhaps 'large' in this case), (b) the
proposal dimension is given a precise numerical value
(with associated tolerance), or (c) both the constraint
and the proposal are transformed to some intermedi-
ate common level. The Simulate operator performs
this transformation. In this example, the constraint
dimension of 2.00 ±0.005 in. might be translated into
a verbal description by performing a mental
simulation.

The 'Calculate Operator' combines constraints or
design proposals to derive new information. The
new information is in the same representation and
at the same level of abstraction as the initial
information.

The calculate operator's purpose is to derive new
information at the same level of abstraction. Calculate
operations employ logic, mathematics and inference
rather than search. Often calculation is driven by the
fact that there is a proposal for which no constraints
directly apply for comparison, but a calculation using
existing constraints yields a constraint directly
comparable to the proposal. An example of this is
where subject S5 is trying to evaluate a variable-speed
(3.2 to 89rpm) gear motor for use in his design. He
knows that he must dip 40 plates per min, that his
design will handle three plates per revolution, and
that he can have a 3:1 chain drive reduction. A quick
mental calculation using the plate rate, plates per
revolution, and the ratio gives a new constraint
(40/3 x 1/3 = 4.44 rpm) which is directly comparable
to the proposed motor. Note that calculate usually is
applied to develop new constraints whereas simulate
transforms constraints and/or proposals to a common
level of abstraction prior to comparison.

The 'Compare Operator' has three functions: (a)
to relate a set of design proposals to a set of
constraints to determine whether the proposals
satisfy the constraints, (b) to compare two
constraints to determine whether they are com-
patible, and (c) to compare two strategies to
determine which one is better.

In the 208 analysed episodes, there were 141
compare and 75 calculate operators. In most cases,
each of these was preceded by a simulate operator so
that evaluation usually appears as a simulate-compare
or simulate-calculate pair. This makes sense, since
information must be at the same level of abstraction
and in the same representation in order to apply the
compare and calculate operators.

The following rules are some of those identified in
the protocol data used by the subjects to control the
application of these operators:

If the goal is to compare a design (R9)
proposal(s) to a constraint(s), and
the proposal(s) and constraint(s)
cannot be directly compared,

Then perform a simulate operation to put
all the information in the same
representation- at the same level of
abstraction and then do the compare
operation.
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In about one-third of the evaluation operations
(75/216), the need was for new information rather
than a comparison of existing information:

If the currently selected information (RIO)
does not convey the desired
information

Then attempt to calculate new constraints
from the existing ones in the same
representation and at the same level
of abstraction otherwise select or
create new information.

If a design proposal satisfies the (Rll)
constraints and if there is another
proposal(s) that was generated at
the same time as the first one and at
a similar level of abstraction.

Then compare it to the constraints and
against the previous proposal(s).

This last rule mentions the comparison of multiple
proposals. Previous work (Ullman etal, I987a,b) has
observed that designers typically pursue only a single
design proposal. One hypothesis explaining this
observation is that multiple proposals (especially
detailed proposals) are too complex to be handled
well by human designers. The detailed analysis of the
protocols supports this hypothesis. Multiple proposals
were compared in only 13% of the comparison
operations. Of these, the great majority were
comparisons involving abstract proposals during
conceptual design. Only 25% of the multiple-proposal
comparisons involved layout or detail tasks.

To further limit the complexity of multiple-proposal
comparisons, the designers usually (75% of the time)
focused the comparison on only a few constraints
(e.g., comparing two proposals for their cost, ease of
assembly, etc.). When three proposals were to be
compared, one was taken as the focus, and the other
two proposals were only compared to it rather than to
each other.

Evaluation operators arise particularly often during
catalog selection tasks. The designer typically has a set
of constraints in mind before picking up the catalog.
The catalog can be viewed as providing several
alternative design proposals and constraints, all at the
same level of abstraction and in the same repre-
sentation. As the designer assimilates each of these
catalog proposals and constraints, he must compare
each of them to his design constraints.

If searching a catalog or handbook
Then every new proposal examined in the

catalog must be compared to the
existing constraints.

(R12)

Another place where compare operators are
frequently applied is during the assimilation of
constraint information from outside sources.

If assimilating a constraint (R13)
Then use the compare operator to evalu-

ate it relative to existing constraints,
analogous designs from memory,
and other existing design in-
formation.

Even during the reading of the initial problem
specification, each constraint is evaluated by the
designer to see if it 'makes sense'. This includes
comparing it to previously assimilated constraints to
determine which constraints conflict and comparing it
to analogous designs from memory in order to
understand what the constraint means and how it
might be achieved. An important example concerned
subject S5 (flipper-dipper problem). As he was
assimilating the constraint concerning the way the
plate must touch the chemical bath, he compared it to
the motion of a microtome (a device for cutting thin
samples for microscopic analysis). This helped him
understand the constraint. Unfortunately, the analogy
led him to focus incorrectly on the idea that the plate
must move tangent to the surface of the bath, and this
greatly complicated his design.

6.3 THE DECISION OPERATORS

Once an evaluation is made, the decision operators
can be invoked. There are five decision operators:
Accept, Reject, Suspend, Patch and Refine.

The 'Accept Operator' is used if the comparison
results are satisfactory. Then the design proposal,
constraint, or strategy under consideration is
accepted as a part of the design state. An
acceptance is not permanent, however, as there are
repeated cases of an accepted decision later being
reconsidered and rejected.

The 'Reject Operator' is invoked if the comparison
results are not satisfactory. As above, a rejection
may not be permanent, as subsequent recomparisons
are possible (e.g., with new constraints or with a
redefinition of what constitutes satisfaction).

It is not evident from the protocol data what
constitutes satisfaction. One hypothesis is that
designers are able to make an estimate, based on the
given constraints, of how good a solution is attainable
for the problem. Proposals that approach this estimate
are considered satisfactory, while proposals that fall
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short are not. According to this hypothesis, the
designer may need to revise this estimate in the light
of repeated failure to find a satisfactory solution.

Not all evaluations result in an accept or reject
decision. Two other things can occur. First, the
evaluation can be suspended while additional
information is gathered. Second, the results of the
evaluation can be used to guide further development
of the proposal, and then another evaluation can be
made.

In the first case, the Suspend Operator is applied:

The 'Suspend Operator' discontinues work on the
current episode and establishes a new goal to
generate and evaluate the information needed to
complete the suspended episode.

Twenty-five per cent of all episodes are suspended to
gather more information or work on some other
aspect of the design.

In the second case, either the Refine or the Patch
Operator is applied:

The 'Refine Operator' continues to develop the
design proposals, constraints, and strategies in the
episode to a more refined state, guided by the result
of the preceding evaluation.

The 'Patch Operator' keeps the design proposal,
constraint, or strategy at the same level of
abstraction but alters it in some way guided by the
result of the preceding evaluation.

The distinction between Refine and Patch is that
information patched remains at the same level of
abstraction and only changes some aspect of the
design proposal. Refine does not change the proposal,
but elaborates it, to more detailed levels of
abstraction.

There is some question about whether Refine and
Patch should be considered decision operators or
generation operators. Clearly they are both. We have
placed them here because they are invoked as the
direct result of an evaluation, like other decision
operators. But they can be viewed as closing the loop
between decision-making and generation of additional
information.

Some of the heuristics that control the application
of the decision operators are:

If the design proposal compares satis- (R14)
factorily with the constraints

Then accept it.

to accept information into the design state. In other
words, there are approximately 550 changes in the
design state that led from the given constraints to the
completed design in the protocol data.

If a design proposal, constraint, or (R15)
strategy is common knowledge or is
very abstract

Then accept without evaluation.

In 33% of the uses of the Accept Operator,
information is accepted into the design state without
any observable evaluation. There are three hypoth-
eses that explain this observation: (a) an evaluation
occurred but it was not verbalized, (b) the information
being considered was so familiar to the designer that
no evaluation was needed, or (c) the information
being considered was so abstract that little was risked
by accepting it. The third hypothesis is particularly
applicable early in the design process.

Another case where there is no evaluation before
an Accept Operator arises with patches and
refinements:

If

With 1 episode per min or an estimated 600
episodes per 10 hour protocol and with an average of
0.91 acceptances per episode there were 550 decisions

a patch or refinement (performed in (R16)
response to a comparison) is guar-
anteed to satisfy the relevant
constraints

Then accomplish the patch or refinement
and accept without re-executing the
comparison.

In 74% of the patches and refinements, the designer
was evidently confident that the change made was
guaranteed to satisfy the constraint(s) in the
comparison, so no re-comparison was needed. In the
remaining 26% of the cases where the comparison was
repeated, it appears that another constraint was
brought into the evaluation of the improved proposal.
These observations support the hypothesis that
designers have a form of 'patching' expertise. This
expertise relates different failures or constraint
violations to appropriate patches or refinements.

Of course proposals are sometimes rejected. This
was relatively rare: only 12% of the 257 proposals
considered were rejected. The rules governing
rejection (versus patching) are

If a proposal is unsatisfactory (when (R17)
compared to the relevant con-
straints) and little has been invested
in it

Then reject it or (if a simple fix is evident)
patch it.

If a proposal is unsatisfactory (when (R18)
compared to the relevant con-
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straints) and there has been heavy
investment in it

Then patch the proposal or reject it if no
patch can be found.

These rules explain another observation reported in
Ullman et al. (1987a,b): there were many cases where
major problems had been identified in a proposal and
yet the designer preferred to apply patches rather than
to reject the proposal outright and develop a better
one. One possible explanation is that all design
activity takes place under limited resources of time,
money, and personal pride and energy. Once
significant resource investment has been made in a
proposal (even a moderately unsatisfactory one), it is
more cost-effective to patch the proposal than to start
over.

Some additional observations support this hypothe-
sis. Most of the rejections (65%) were found during
conceptual design and catalog selection tasks, where
substantial resources have not yet been invested in
any one proposal. Rejection was much rarer in layout
and detail design tasks. Even there, a proposal was
more likely to be rejected if it was a proposed
refinement. If a proposal had been previously
accepted and incorporated into the design state, it was
very unlikely to be rejected.

These rules led one designer, S6, who had his
conceptual design finished in less than one-half hour,
to spend about 2 hours in layout design patching a
poor, early design decision. It would have been to his
advantage to abandon the original decisions much
earlier. However, the more time he spent patching,
the more he had invested and less likely he was to
abandon the design.

Here is one of the most important controlling rules:

If there is not enough information to (R19)
execute a comparison

Then suspend the comparison and either
specify additional proposals or as-
similate more constraint informa-
tion.

The comparison operator not only needs all the
information at the same level of abstraction, but it is

also sensitive to the amount of information available.
If there is insufficient information to execute a
compare operator, then a decision to suspend the
comparison is made and either the control remains in
the same episode (the focus is still on the same goal)
or control is given to a new, assimilate episode with a
goal of bringing more information into the problem.

7. Constraint management

Because constraints play an important role in the
design process, this section describes them in more
detail and presents some control rules for constraint
management.

In the 208 episodes, 246 constraints were used. The
distribution of these constraints is shown in Table 3.
As can be seen, although the given constraints drive
the conceptual design, the derived and introduced
constraints play major roles. Also, the derived
constraints, those based on design commitments,
dominate the design process after the conceptual
design.

Another statistic that clarifies the use of constraints
is the ratio of number of constraints to number of
proposals as shown in Table 3. In conceptual design
there are more proposals than constraints but, by the
time the detail tasks are reached, the design is quite
constrained as would be expected.

Some of the heuristics that govern the use of
constraints are given below.

If a design proposal(s) is to be (R20)
compared to some constraint(s)

Then only include constraint(s) that have
a direct influence on the pro-
posals).

This rule raises the question of how the designer
determines that some constraints have a 'direct
influence' on the proposal. One hypothesis, common
to most information-processing psychology models, is
that constraints are recalled through a process of
'spreading activation'. This is a technique whereby the
proposal itself is 'activated' and it spreads this

Conceptual
Layout
Detail

TABLE 3.

Given (%)

39
8

11

Constraint distribution

Derived (%)

32
50
53

Introduced (%)

28
42
36

Ratio'

0.82
1.29
1.39

' Ratio = number of constraints/proposal
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activation to items in memory that are 'nearby' in
some sense. For proposals that are represented
geometrically, the activation would spread to topolog-
ically adjacent objects. This would tend to identify
constraints relating one object to its geometrical
neighbors. Activation could also spread to the
'function' or 'purpose' of the proposal, and from
there, to related functions.

Spreading activation is not guaranteed to find all
relevant constraints. Indeed, part of the exploratory
nature of design involves discovering that some of the
given constraints Interact in ways not immediately
foreseen. In the protocol data, there were a number
of cases in which relevant constraints were missed.
For example, during the layout design of the battery
contacts, S2 forgot to address the constraint that the
contacts must be graspable by a 0.25 in. suction-type
robot end-effector. Eventually, during detail design,
he noticed this violated constraint and patched the
design.

Sometimes the acceptance of a proposal occurred in
two stages within an episode: initial acceptance
followed by closer scrutiny using the less critical
constraints (see R6).

Another reason why all constraints are not retrieved
and evaluated simultaneously may be the capacity
limits of short-term memory. Since the proposal and
the constraints must all simultaneously reside in STM,
it is unlikely that more than three or four constraints
can be processed simultaneously. This is summarized
in the following rule:

If evaluating a design proposal
Then simulate/compare the proposal rela-

tive to no more than three or four
constraints at a time.

(R21)

There were three cases where more than four
constraints were simultaneously considered. These
exceptions occurred when the constraints were very
abstract or when the subject referred to a handbook
or catalog. It is not clear whether these were instances
in which the constraints were actually considered
simultaneously or whether that was just the way they
were verbalized.

One way to overcome the limits of short-term
memory is to exploit external memory. This appears
to be one of the many important roles that drawing
plays in the design process. Preliminary reduction of
the protocols shows that over 60% of the episodes had
drawing activity (sketching, note taking, or mechani-
cal drawing) in them. One of the purposes of these
drawings, especially early in the process, was to
develop a visual image of the geometrical constraints
affecting the design. Other purpose of drawings

include recording of accepted proposals and sum-
marizing the state of the design to identify points
where further work is needed. Work on understanding
the role of drawing in the protocols is still under way.

8. Example episode traces

To give the reader a feel for the flow of the design
process and to illustrate the decentralized nature of
the episode-level control, two example episode traces
are given below. It must be re-emphasized that the 21
rules are not complete. However, the TEA model
does make explaining the flow of the design a
possibility in spite of this limitation. Rule numbers are
given in traces where they apply.

The first example is taken from the conceptual
design task for subject SI. The goal is the conceptual
design of the overall assembly for the battery contacts
problem. The result of this sequence is a sketch of the
locations and orientations of the batteries and contacts
(Figure 2):

episode 1: plan how to generate a design proposal.
This includes selecting the constraints on
the batteries (R19) and developing a plan
to 'connect the batteries in series and also
how to connect them to the printed circuit
board' (RIO).

episode 2: specify the arrangement of the batteries.
She only generates one idea with the two
outer batteries 'right side up' and 'the
middle one up side down' and with
contacts from top to bottom (R5). In
effect she has met the goal of the task but
this configuration has resulted in a derived
constraint on the space available for the
contacts and the plastic envelope.

episode 3: plan to check out the amount of space.
Although the battery arrangement was
accepted, there is concern that the
proposal may violate some of the
unassimilated constraints.

episode 4: assimilate information on the space.
She has selected the envelope and battery
height from the problem statement (R2)
and calculated (RIO) the remaining space
for the contacts and the envelope
thickness. This space (0.046 in) is a new
constraint on the problem and as it seems
small 'that's not going to leave me much
room at all in there' it is the next focus of
attention (R18).

episode 5: specify ideas for the envelope wall.
After considering three ideas (R3) (each
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of which she has no way to evaluate,
because she is not sure of the given
constraints) she suspends the episode
(R19).

episode 6: assimilate more information.
Because she is unsure of the constraints,
she asks the examiner taking the protocol
(an experienced design engineer) to
clarify the envelope dimensions (R2).

episode 7: verify the space calculation.
With the space constraint clarified, she
still has the same reaction as in episode 4
and thus recalculates the space constraint
on the contacts and envelope (RIO).

episode 8: specify the location of the contacts.
She accepts this space constraint now that
she is sure of it, and proceeds to refine the
contacts to be on the bottom of the
batteries (RIO). She mentions putting
them on the side but never verbalizes any
pursuit of this idea.

To this point, the subject has taken 9.0 min. It is
interesting to note that subject S2, after looking at the
batteries in his personal calculator, only considered
putting the contacts on the side of the battery. This
didn't turn out to be any easier than Si's approach.

In the protocol, another 5 min and 13 sec of data
were analysed for this conceptual design task.
However, the example above is sufficient to show how
each episode partially determines the goal for the
next.

The second example is taken from a detail design
task performed by subject S5. In this excerpt, S5 is
detailing part of one component of his flipper-dipper
design.
episode 1: document the hole for the shaft head.

In the design, he has already drawn the
overall outline of the part called the
'chair'. He now needs to document the
pivot hole (R8), since it is the next most
dominant feature on the part. Unfortun-
ately, he has not refined the shaft that fits
into this hole to any specific diameter.

episode 2: specify the shaft diameter.
He proposes a value of 5/8. Then he
compares this to the chair and the
interfacing part and patches it to 3/4
(R16). He accepts this and records it on
the drawing. However the interfacing part
has to fit on the shaft below the surface
thus requiring a counterbore (R6).

episode 3: specify the dimensions for the counter-
bore.

In specifying the counterbore, he con-
siders not only the constraints imposed by
the dimensions of the two parts (derived
constraints) but also brings in the
universal constraints of (a) using common
values on dimensions and (b) keeping the
manufacturing simple. He finishes the
episode (R16) by drawing the results.

To this point the subject has used 2 min and 42 sec.
This task continues through the other features of the
'chair' as the designer specifies and documents each of
them.

9. Discussion

The main contribution of the TEA model is its ability
to explain the design process to the level of individual
utterances in the protocol data. Beyond this
explanatory power, the model raises several issues and
implications for future research.

9.1 FORMS OF DESIGN EXPERTISE

The foremost question raised by the model is how the
task/episode accumulation approach to design can
succeed in creating good designs. This general
approach can be considered a 'greedy' approach
because it operates by selecting, at each episode, the
alternative that seems best. There is no global search
that constructs whole alternative proposals in detail
and evaluates them to select the best. Our designer
subjects are satisficers, not optimizers.

It would appear that three things must be true in
order for this overall problem-solving strategy to
succeed.

First, the designer must choose a good conceptual
design during the early episodes. This is because all
subsequent design effort involves refining and
patching this basic idea. Designers must have some
expertise that enables them to choose a good starting
concept.

Second, designers must be able to generate and
select good refinements throughout the design.
Although not as critical as the initial conceptual
design, it is important that the difficult subproblems
be resolved in a way that does not make other
subproblems unsolvable.

Third, designers must be able to identify constraint
violations and apply good patches to the design.

Three general forms of expertise are therefore
needed by our designer subjects: generative expertise,
evaluative expertise, and patching expertise.
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Generative expertise is the ability to analyse a set of
constraints and generate design concepts that are
likely to satisfy them. The protocol data, unfortun-
ately, did not provide much insight into the concept
generation process. This is probably because concept
generation is heavily based on long-term memory and
visual thinking, neither of which are revealed in verbal
protocols.

Evaluative expertise is the ability to evaluate
proposals for feasibility. This includes not only
comparing the proposals to the constraints but also
estimating the likelihood that the proposals can be
refined to yield a complete, satisfactory design.

Patching expertise is the ability to analyze a
constraint failure and generate a patch that repairs the
failure and does not introduce many new problems
into the design. In expert systems for routine design
tasks (Marcus et al., 1987), it has been found that
designers have this kind of expertise and can articulate
it in some situations.

In addition to these three basic forms of expertise,
designers must also have some ability to identify the
most important constraints governing a design and to
retrieve the constraints that directly affect a design
proposal.

Further study is needed to investigate these forms
of expertise.

9.2 IMPLICATIONS FOR CAD

One of the values of a design model is that it
provides some measure of the degree to which
computer-aided design tools support design. The TEA
model reveals that existing CAD tools are addressing
primarily the detail design tasks, because CAD tools
are only capable of representing the geometric design
state when it is refined to a concrete or near-concrete
level. An important direction for future work in CAD
is to raise the abstraction level at which computer-
tools can provide external memory aids for the
designer. This is beginning to occur in the parametric
design tools now appearing on the market (Cognition,
Wisdom, ICAD and Parametric Technology).

Another, related, way in which CAD tools might be
extended is to provide constraint management
assistance. The protocol analysis reveals that some
constraints are not retrieved in situations where they
are relevant. A constraint management tool might be
able to monitor the design as it evolves and signal the
designer when constraints might be violated.

Lastly, and somewhat embodied in constraint
management, there is a general need for CAD to
support the human designer's cognitive limitations.

With the ability to only deal with seven or so chunks
at a time, human designers have had to employ a
design process that fits within their limitations. It is
possible that a human/computer design system will be
able to overcome these limitations and greatly
increase the quality and efficiency of the process.

9.3 IMPLICATIONS FOR DESIGN EDUCATION

It is premature to make strong recommendations,
based on the TEA model, for design education. One
intriguing avenue to explore is whether the various
forms of expertise discussed above can be taught.
Most current design education focuses on evaluative
expertise. Even there, the focus is primarily on the
construction of mathematical models and techniques
for their solution. In the protocol problems, the
subjects constructed very few mathematical models.

9.4 IMPLICATIONS FOR ARTIFICIAL
INTELLIGENCE AND EXPERT SYSTEMS

The TEA model suggests that existing artificial
intelligence models of design are still rather simplistic
and inflexible. Control of reasoning in the protocols
was extremely flexible and dynamic. It is substantially
more complex than such methods as top-down
refinement with constraint propagation (Steinberg,
1987) and transformational development (Fickas,
1985). The model suggests that future Al design
systems incorporate the flexible control ideas de-
veloped in architectures such as BB1 (Hayes-Roth,
1985) and SOAR (Laird et al., 1987).

Before the TEA model can provide the basis for
automating parts of the design process, (at least) two
areas require further research. First, the expertise of
mechanical designers must be studied in much more
detail so that it can be captured in the computer.
Second, formal languages must be developed to
represent and reason about the state of the design at
all levels of abstraction.

10. Concluding remarks

The development of the task/episode accumulation
model of design has shown the usefulness of protocol
analysis as an exploratory tool for studying the design
process. There is still more that protocol analysis can
tell us about the design process, especially in the area
of identifying the ways designers represent and reason
about proposals and constraints.
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However, other research techniques will need to be

applied to explore many of the issues raised in this

paper. Studies of design expertise will probably

require careful comparisons of expert and novice

designers. Similar controlled experiments will be

needed to study detailed hypotheses such as the

hypothesis that the failure to reject inferior proposals

is a cost-benefit decision based on the amount of effort

already invested in the proposal. Further refinement

of the TEA model must await the completion of

studies of this kind.
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