Nikolaos Papakonstantinou
Seppo Sierla

e-mail: seppo.sierla@aalto fi

Department of Automation and Systems Technology,
School of Electrical Engineering,

Aalto University,

P.0. Box 15500,

Aalto, 00076 Finland

David C. Jensen

Irem Y. Tumer’
e-mail: irem.tumer@oregonstate.edu

Complex Engineered System Design Laboratory,
School of Mechanical, Industrial, and
Manufacturing Engineering,

Oregon State University,

204 Rogers Hall,

Corvallis, OR 97331

Simulation of Interactions
and Emergent Failure Behavior
During Complex System Design

Emergent behavior is a unique aspect of complex systems, where they exhibit behavior
that is more complex than the sum of the behavior of their constituent parts. This behav-
ior includes the propagation of faults between parts, and requires information on how the
parts are connected. These parts can include software, electronic and mechanical compo-
nents, hence requiring a capability to track emergent fault propagation paths as they
cross the boundaries of technical disciplines. Prior work has introduced the functional

failure identification and propagation (FFIP) simulation framework, which reveals the

propagation of abnormal flow states and can thus be used to infer emergent system-wide
behavior that may compromise the reliability of the system. An advantage of FFIP is that
it is used to model early phase designs, before high cost commitments are made and
before high fidelity models are available. This has also been a weakness in previous
research on FFIP, since results depend on arbitrary choices for the values of model pa-
rameters and timing of critical events. Previously, FFIP has used a discrete set of flow
state values and a simple behavioral logic; this has had the advantage of limiting the
range of possible parameter values, but it has not been possible to model continuous pro-
cess dynamics. In this paper, the FFIP framework has been extended to support continu-
ous flow levels and linear modeling of component behavior based on first principles.
Since this extension further expands the range of model parameter values, methods and
tools for studying the impact of parameter value changes are introduced. The result is an
evaluation of how the FFIP results are impacted by changes in the model parameters and
the timing of critical events. The method is demonstrated on a boiling water reactor
model (limited to the coolant recirculation and steam outlets) in order to focus the analy-
sis of emergent fault behavior that could not have been identified with previously pub-
lished versions of the FFIP framework. [DOI: 10.1115/1.4007309]

1 Introduction

1.1 Challenges for Complex System Design. The design of
large complex systems faces numerous challenges due to the com-
plexity of the design information content, unknown interactions
between subsystems, and the need to integrate expertise of design-
ers or teams of designers from different domains. Specifically, we
recognize three challenging tasks that arise in the design stage for
these systems: (1) Codesign of the multiple domains of technol-
ogy; (2) Determining the effects of emergent behavior; and, (3)
Determining risks across the system from fault propagation. The
method presented in this paper is aimed at addressing the chal-
lenges in these tasks.

The term codesign is most often used to refer to technologies
that require close integration of electrical hardware and software
systems as found in mechatronics and consumer electronics [1,2].
However, the technical challenges and the general solution
approach are also applicable to the integration of electromechani-
cal and human control systems. Specifically, it is challenging to
represent necessary system design information across technical
domains at a similar and relatable abstraction level. This represen-
tation is necessary for the development of interfaces and interac-
tion behavior. While it is advantageous to develop different
subsystems concurrently, often in the design stage different sub-
systems are at various levels of design refinement. Formal model
representation languages, such as Systems Modeling Language

ICorresponding author.

Contributed by the Design Engineering Division of ASME for publication in the
JoUrNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING. Manuscript received
October 25, 2011; final manuscript received July 19, 2012; published online August
21, 2012. Assoc. Editor: Shuming Gao.

Journal of Computing and Information Science in Engineering

(SysML) [3], serve to implement a model-based design approach
to address this challenge. That is, high-level system models may
be composed of multiple representations to capture design infor-
mation across domains even when subsystems are at different lev-
els of design refinement.

Emergent behavior is a unique aspect of systems where they ex-
hibit behavior that is more complex than the sum of the behavior
of their constituent parts. Along with the emergent behavior,
which is intended and is used to implement the desired functional-
ity of the system, unforeseen behavior may also occur. In this
work, focus in on emergent behavior that may compromise the
reliability or safety of the system. Emergent behavior is defined as
degradation or loss of functionality of a subsystem that is caused
by poorly chosen design parameters in other subsystems. Our goal
is to provide methods and tools for studying how changing several
such parameters impacts the occurrence of emergent behavior.

Finally, the third challenging task is concerned with evaluating
systems designs for risk and safety. Traditional approaches focus
on identifying faults and their probabilities of occurrence and con-
sequence. For large systems this can create certain statistical limi-
tations for risk analysis. For example, in complex systems faults
are rarely independent. Further, the consequence of a component
fault depends on the connection that the component has with the
rest of the system. This is evidenced by the increase in failures
that affect systems that deploy both computational and physical
elements. Therefore a risk assessment of complex systems should
be based on a failure analysis that accounts for fault propagation
across domains and subsystems.

1.2 Prior Work. A function failure analysis approach was
developed and presented in prior work to identify the functional

SEPTEMBER 2012, Vol. 12 / 031007-1

Copyright © 2012 by ASME

Downloaded From: http://computingengineering.asmedigital collection.asme.or g/ on 01/03/2014 Terms of Use: http://asme.org/terms

losses and determine their effects through downstream propaga-
tion. This method was developed to help address the three chal-
lenging designs tasks presented in Sec. 1.1. Specifically, the FFIP
framework was developed to capture the effects of complex sys-
tem interactions early in the design stage and presenting the
effects and propagation of faults in terms of functional losses
[4-7]. The FFIP design stage analysis framework was developed
to identify the system-wide functional effect of component fail-
ures, even when the fault propagation paths cross the boundaries
of electronic, mechanical, and software subsystems [8,9].

To facilitate the codesign challenge, the FFIP method uses a
functional model (FM) to represent multiple domain subsystems
at the same abstraction level. Further, these functions are linked to
generalized components configuration representation. The FFIP
method is a model-based simulation approach and behavior asso-
ciated to these components can be at differing levels of design
refinement. The state-based simulation of nominal and faulty
behavior also assists in identifying emergent behavior early in the
design stage. Finally, the FFIP analysis method consists of trigger-
ing a fault and recording the fault propagation and system impact.
These results can then be used to evaluate the risk of potential sys-
tem designs without independence assumptions and across the dif-
ferent technical domains of the system.

Thus, FFIP is applied at the early concept design phase using
an abstract system representation to eliminate unreliable designs
before costly design commitments are made. High fidelity system
models are not available at this phase, therefore the results of an
FFIP analysis are strongly affected by specific modeling choices
in the component model and the sequence and timing of critical
event scenarios.

1.3 Objectives and Contributions. In this paper, the FFIP
framework and supporting tools are extended significantly to bet-
ter address the challenges of emerging behavior. While high fidel-
ity simulation at an early phase is not possible, the results should
not be totally dependent on specific model parameter values. The
simulation approach presented in this paper permits varying the
values of key design parameters and the timing of critical events;
simulation results reveal the impact of the variations on the emer-
gent behavior. Previous research has expressed values for energy,
material, and signal (EMS) flows with an enumeration such as
[zero, low, nominal, high], so that component behavioral models
(BM) determine output flow values according to input flow values
and the current nominal or faulty state of the component. This
approach is not sufficiently fine-grained for capturing how several
parameter changes might either reinforce or weaken each other in
causing emergent behavior, so the framework needs to be modi-
fied to support continuous flow values in order to describe feed-
back loops. This extension of the FFIP approach to system
representation addresses the first challenge identified earlier by
allowing for more detailed subsystem behavior, while maintaining
the equal abstraction system-level representation necessary for
codesign.

In order to systematically investigate the effects of different pa-
rameter values and different timing of critical events, it will be
necessary to run the FFIP simulation for each combination of pa-
rameter values, so the number of simulation runs grows exponen-
tially as more parameters are brought into the scope of the study.
In order for this to be feasible, a user interface is needed for speci-
fying the parameters and the ranges in which they are varied. The
second goal of this paper is then to propose a generic and scalable
algorithm for automatically running the complete set of simula-
tion runs implied by the user’s choices. The algorithm and user
interface are implemented and interfaced to the Matlab/Simulink
based FFIP framework, producing Excel output for each run,
which can be further sorted or filtered according to the health sta-
tus of a function of interest specified by the user. The paper dem-
onstrates the use of these tools for identifying the most relevant
parameters for hazards and for focusing their values to the

031007-2 / Vol. 12, SEPTEMBER 2012

interesting range in subsequent series of automatic simulation
runs. With these changes, the failure analysis can provide better
results for risk assessment early in the design stage.

2 Background

The method presented in this paper uses an early design stage
system representation and behavioral simulation to evaluate risk
in functional terms. A variety of methods and techniques have
been developed for risk assessment, system information sharing,
and simulating expected system performance, discussed next.

2.1 Risk Assessment in Complex System Design. This
research fundamentally aims to reduce or eliminate the risks of
malfunctions and failures. Many methods exist in practice and in
research literature to enable risk mitigation. Failure modes and
effects analysis (FMEA) is used in safety critical industries for
safety analysis. It is based on past experience and defines the
effects of a single failure at a time for a number of component
failure modes. These effects can be identified by using the fault
tree analysis (FTA) method [10]. Some research has used FMEA
for multiple failures but if detailed design documents are used the
combinations of failures grow beyond a manageable size in com-
plex systems [11]. Functional models can be used with FMEA to
describe more clearly the effects upon the functions of complex
systems [12]. The functional failure analysis (FFA) is a method
similar to FMEA but at a functional level of the system design
[13]. Although attempts of partially automating this process have
been made, FMEA still remains a manual and laborious process
[14]. HAZard and OPerability (HAZOP) is a qualitative method
that can be performed on the functional model of a complex sys-
tem. System functions are combined with a set of keywords with
the aim to identify all possible failure modes [15]. This method
also requires significant manual effort, although there are attempts
to automate parts of it by using knowledge databases [16]. Proba-
bilistic risk assessment (PRA) [17] is a quantitative method that
can identify weaknesses and vulnerabilities in complex systems. It
requires a detailed design and the failure rate information of the
components used. Therefore, it can only be applied in the latter
phase of the system design process [18].

In general, a high level of system behavioral and interaction
knowledge is required to perform these assessment methods.
Therefore these methods are most advantageous for verifying the
safety of a well-refined design. The goal of this work is to utilize
risk assessment early in the design stage to help designers make
design decisions, before a refined design has to be completed.

2.2 Complex System Design Representation. The primary
method for conveying the relationship between elements in the
design stage of complex systems is through abstract engineering
design models of functionality and interface requirements. These
models range from detailed function and behavior information to
loose hierarchical artifact relationships. These approaches aim at
capturing the complexity of the system through a single (or set) of
static representations. Examples include: block diagrams based on
“function logic” [19], a historical design repository approach pro-
posed as a framework to store component information and relate
the elements of information to each other [20], and other function-
based representations that support search and modeling processes
of conceptual design [21]. These approaches utilize the concept of
function to connect multiple domain system elements at the same
abstraction level. Other research has explored languages for
describing product functionality and relating it to product behav-
ior [22] and using these languages to reason about designs [23].
SysML is a formalism for representing many different aspects of
system design including function, behavior and structure. Several
recent works have focused on extending the static system repre-
sentation of SysML for dynamic system simulation in other tools
[24]. Finally, several researchers have introduced representation

Transactions of the ASME

Downloaded From: http://computingengineering.asmedigital collection.asme.or g/ on 01/03/2014 Terms of Use: http://asme.org/terms

White Liquor Tank
I

Input liquid Flow

Output Liquid Flow

Leak Liquid Flow

Digester Tank

Fig. 1
process

Piping and instrumentation diagram of the example

%

Fig.2 Functional model of the example process

Supply Liquid
Material (White —3»
Liquor)

Convert Thermal
Energy to Chemical

Transmit Thermal
Energy

Transfer Liquid
Material

Supply Liquid
Material (Digester)

— —>

as part of methods of tackling design time failure analysis. Exam-
ples include: a function failure design method [25] which uses
functional models and historical failure data to map the function-
ality of a system, a Bayesian network analysis tool for evaluating
properties of function structures using dependencies between
flows and functions [26], and a risk based decision-making and
cost-benefit analysis method [27] to assess the risk of integrating
health management capabilities in aerospace systems at the
system-level design stage.

This research builds on the functional modeling approach to
design representation. These functional representations are also
mapped to generic component and behavioral representations.
The presented approach leverages the above modular approach to
design, where system functions, structure and behavior are created
from combining lower-level models.

2.3 Simulation-Based Design. This research utilizes behav-
ioral simulation of models at multiple abstraction levels with
increasingly higher fidelity, including models that do not require
component geometry details to be implemented at the architecture
level. Simulation-based design methods require the capability of
specifying detailed input design parameters and using them to
obtain a model response. This simulation process is called a for-
ward model, which system designers use to account for the effects
of variability in the input and design parameters on the model
response, thereby incorporating uncertainty into the design pro-
cess. Common techniques for forward model analysis include
sampling techniques (e.g., Monte Carlo simulation), response sur-
face models and metamodeling [28,29]. These methods support

reliability-based and robust design optimization techniques.
Reliability-based methods [30] estimate the probability of system
response based upon specified probability distributions but no
effort is made to minimize variation, whereas robust design [31]
strives to minimize the effects of variation.

Simulation-based techniques have also been used to assess risk
factors in a design and analyzing the effects of faults in a system.
For example, directed graphs and Multi-Signal Flow Graphs [32]
are used in many domains to analyze dependencies and fault prop-
agation and model cause-effect dependencies.

At the early design stage, the detailed specifications of compo-
nent geometry and system topology required by some methods are
usually not available. To address this problem, we expand our
prior work to address simulation and reasoning in early design
[8,33-35].

3 Methodology

The FFIP framework was developed to capture the effect of
complex system interactions early in the design stage and present-
ing the effect and propagation of faults in terms of functional
losses [4—7]. The simulation and reasoning approach in FFIP has
its roots in qualitative physics [36] and qualitative reasoning
[35,37,38]. FFIP utilizes a finite state representation of system
behavior, and performs reasoning based on qualitative relation-
ships between functional and behavioral models of system compo-
nents. Prior to this research, FFIP has been demonstrated on
relatively simple example systems to demonstrate different
aspects of the methodology. This paper presents how the FFIP
simulation and analysis can be improved to better meet some of
the challenges found in the design of large complex systems [8,9].

This section introduces the FFIP methodology by a simple
example, so that the reader may understand how the results in
Sec. 6 were obtained. The example is a simplified subprocess
from the pulp and paper industry (Fig. 1). White liquor is heated
and supplied to a digester in order to enable a chemical reaction
necessary to pulp production. The white liquor tank has a continu-
ous flow of incoming and outgoing liquor, and the tank serves the
purpose of intermediate storage and heating of the liquor. The
desired functionality is expressed as a functional model, according
to the functional basis defined in Ref. [39] (Fig. 2). Failure propa-
gation analyses with FFIP use the functional model to identity
loss of functions that are not necessarily associated with failed
components.

The functional model is not simulated, since simulation
requires information about components, their connections and in-
ternal behavior. This information is captured in a configuration
flow graph (CFG), which has been implemented in the Simulink
tool (Fig. 3). The CFG and functional model have the same flows
between functions and components, following the taxonomy
defined in Ref. [39]. This makes it possible for a function failure
logic (FFL) to passively observe how abnormal flow levels propa-
gate in the simulated CFG, and to use this information to

{giobal)

OutputLiquidFlow

InputLiquidFlow LeakLiqui

ReflnputLiquidFlow

low

Scope

— InputLiquidFlow

OutputLiquidFlow

InputLiquidTemp

Data Store N
Read OutputLiquidTemp
White Liquor Tank
(global)
TestNumber TestNumber %
Data Store
Read TestSetup

Digester Tank

Fig.3 Configuration flow graph of the example process

Journal of Computing and Information Science in Engineering

SEPTEMBER 2012, Vol. 12 / 031007-3

Downloaded From: http://computingengineering.asmedigital collection.asme.or g/ on 01/03/2014 Terms of Use: http://asme.org/terms

Healthy
*—= entry:SupplyLiquidMaterialHealth=HealthEnum.healthy;

[OutputLiquidFlow<0.85*InputLiquidFlow] [[Outputbquidﬂowo 85%InputLiquidFlow]

1
[OutputLiquidFlow>0.6*InputLiquidFlow]

LostRecoverable
entry:SupplyLiquidMaterialHealth=HealthEnum.lostRecoverable;

Degraded
entry:SupplyLiquidMaterialHealth=HealthEnum.degraded;

2
J[OutputLiquxdFlow<O 6*InputLiquidFlow]

Fig. 4 Function failure logic for the supply liquid material
(white liquor) function

determine if a function defined in the functional model (Fig. 2)
has been degraded or lost. The FFL for the supply liquid material
(white liquor) function is shown in Fig. 4; it compares the input
and output flows of the white liquor tank shown in Fig. 3.

The relationship between input and output flows of a compo-
nent in a CFG is defined by a BM. The BM for the white liquor
tank is shown in Fig. 5. Statecharts are used in behavioral model-
ing, and a state is defined for each nominal and failed mode of the
component. In this case there is one failed mode: the tank is leak-
ing. Critical events may be injected to the simulation at any time,
and these cause mode changes (e.g., the leakFailure event triggers
a transition to the TankLeaking state.)

In earlier versions of the FFIP framework, flow levels were
described with an enumeration (zero, low, nominal, high), but this
approach is insufficient for our boiling water reactor (BWR) case
study, in which several positive and negative feedback loops
affect a single flow. Would two feedback loops simply cancel

each other out, if one of them increases a flow and the other
decreases it? How can the effect of varying design parameters be
captured in the simulation? In order to describe feedback loops in
early phase designs, flow levels may be any value in the range
[0-10] in this simulation. First order linear difference equations
are used to relate input and output flows to each other. Consider
the state Nominal in Fig. 5. Since the behavioral model is exe-
cuted by a fixed-step solver, the tank level is a sequence, with one
value for each simulation step. The first line of code in the nomi-
nal state is a linear difference equation that relates the current and
previous elements in the sequence. The behavioral model is thus a
system of first order linear difference equations relating the input
flows, output flow and components internal variables (such as the
tank level). The coefficients may either be fixed numbers or pa-
rameters that may be changed between successive simulation
runs; an example of the latter is “leakSize” in the Leaking state.

Since during early phase design detailed component dimensions
are not known and the range [0-10] is used for flow levels, the
results obviously depend on how the model is parameterized. One
objective in this article is to observe how parameter changes in
the behavioral models affect the emergent behavior. These param-
eters may either be design parameters, timing of critical event sce-
narios or parameters of faults. Changes in values of two
parameters are studied in this example. ReflnputLiquidFlow in
Fig. 3 is the reference liquid flow that should go through the white
liquor tank and the digester in normal operation of the process; it
is a design parameter. In Fig. 5, Leaking state, leakSize is a pa-
rameter of a fault.

The methodology used in this paper is to define a number of val-
ues of interest for the parameters to be varied and to systematically
perform FFIP simulation to identify those combinations of param-
eter values that result in degradation or loss of functions. The
choice of values is done by an analyst who understands the appli-
cation domain. The flowchart in Fig. 6 illustrates the methodology

" TankLevel

InitLevel
entry:TankLiquidLevelPrev=5.0;
entry:TankLiquidLevel=5.0;
entry:OutputLiquidFlow=(InputLiquidFlow/5.0)*TankLiquidLevelPrev;
entry:LeakLiquidFlow=leakSize*TankLiquidLevel;
Y
Nominal

during:TankLiquidLevelPrev=TankLiquidLevel;

during:TankLiquidLevel=TankLiquidLevelPrev+0.002*InputLiquidFlow-0.002*OutputLiquidFlow;
during:OutputLiquidFlow=(InputLiquidFlow/5.0)*TankLiquidLevel

\| leakFailure]
Vv

Leaking

during:LeakLiquidFlow=leakSize*TankLiquidLevel;
during:TankLiquidLevelPrev=TankLiquidLevel;

during:TankLiquidLevel=TankLiquidLevelPrev+0.002*InputLiquidFlow-0.002*QutputLiquidFlow-0.002*LeakLiquidFlow;
during:OutputLiquidFlow=(InputLiquidFlow/5.0)*TankLiquidLevel,

/" TankTemp NormalTemp

_| entry:TankTemperature=60.0;

1
[TankLiquidLevel>2.0]

\[TankLiquidLeveI<2.0]

LowTemp
entry:TankTemperature=25.0;

Fig.5 Behavioral model of the white liquor tank component

031007-4 / Vol. 12, SEPTEMBER 2012

Transactions of the ASME

Downloaded From: http://computingengineering.asmedigital collection.asme.or g/ on 01/03/2014 Terms of Use: http://asme.org/terms

Concept phase
design alternatives
identified

Select parameters to
be studied.

For each parameter,
define Spn

A

Choose a new
element from Sp4

bi

Choose a new
value from Sp,

Symbols
Spn: Set of values
for parameter n

Run simulation
with current
parameter values

Export
results to

Generate graph
from Excel

very
value in Sp;

value in Sp
used

Fig. 6 A flowchart describing how every combination of pa-
rameter values is simulated systematically to determine those
combinations of parameter values that result in degradation or
loss of functions

in the case of two parameters, and additional parameters can be
handled by adding a nested loop for each new parameter. Figure 7
displays the graph that is obtained in the flowchart when parame-
ter 1 is RefInputLiquidFlow, S, is [5.0, 10.0, 20.0], parameter 2
is leakSize and Sy, is [0.5, 2.0, 3.5]; each curve in the graph is the
trend for the tank level in one simulation run. The output of func-
tion failure logic for the simulation in Fig. 7 is shown in Table 1.
The Transmit Thermal Energy function is lost when the tank level
drops below the level of the heating element. The status is lost
recoverable, since the function can return to healthy when the
level rises above the heating element. The Convert Thermal
Energy to Chemical function, which is associated with the di-

~ -RefFlow=5.0,
LeakSize=0.5
— RefFlow=5.0,
LeakSize=2.0
----- RefFlow=5.0,
LeakSize=3.5
~ = -RefFlow=10.0,
LeakSize=0.5
—— RefFlow=10.0,
LeakSize=2.0
~——RefFlow=10.0,
LeakSize=3.5
RefFlow=20.0,
LeakSize=0.5
~ - RefFlow=20.0,
LeakSize=2.0
— RefFlow=20.0,
LeakSize=3.5

WhiteLiquor TankLevel (m)

1
1 51

101 151 201 251 301 351 401 451 501 551 601
Simulation time

Fig. 7 The result of performing the procedure in Fig. 6 when
parameter 1 is ReflnputLiquidFlow and parameter 2 is leakSize.

Journal of Computing and Information Science in Engineering

gester component, may fail due to fault propagation from another
component, in this case a leak in the white liquor tank.

The purpose of this simple example is not to demonstrate the
paper’s contribution; the more complex boiling water reactor case
study is used for this purpose. The aim of this section has been to
describe how the results in Sec. 6 were obtained.

4 Case Study: Analysis of a Boiling Water
Reactor Design

The proposed approach is applied to a BWR, focusing on its
steam outlets. The BWR uses the thermal energy from nuclear fis-
sion inside the reactor core to produce high-pressure steam. The
steam is guided via pipes and valves to steam turbines to provide
motion to electrical generators. The steam flow to the turbine is
controlled by a pressure control valve, such that the pressure
inside the reactor vessel is kept steady. Fuel rods are arranged into
assemblies, which are submerged under water. The space between
the fuel rods forms flow channels through which the coolant
pumps circulate water, which acts as both coolant and moderator.
As a coolant, it removes thermal energy from the core, and a
greater flow rate reduces the void fraction, which is the proportion
of steam in the coolant. As a moderator, water slows neutrons,
and the number of thermal neutrons is increased when the void
fraction is decreased.

Several feedback loops affect the energy production at the core.
An increase of pressure in the reactor vessel decreases the void
fraction and increases power output. A decrease of coolant flow
rate has the opposite effect, but insufficient flow can cause a heat
transfer crisis from fuel rods to coolant due to steam buildup; this
can lead to fuel damage due to overheating of the rods. The Dopp-
ler Effect can also reduce the neutron flux. This is a physical phe-
nomenon in which neutron absorption (without fission) by the
238U and 240Pu isotopes increases when the fuel temperature
increases [40].

A reactor protection system is present which can initiate an
emergency shutdown of the reactor, referred to as a “scram”.
Some conditions that can trigger a scram are related to the neutron
flux exceeding a threshold value, the coolant flow rate being
below a threshold value or the external electrical power coming
from the power grid being lost. Maintaining coolant flow at all
times is necessary to prevent steam buildup at the core, since this
may cause a heat transfer crisis and damage to the fuel rods due to
overheating. However, a BWR has positive feedback between re-
actor power and coolant flow, so a controlled decrease of flow in
emergency situations is necessary. During scram, a common
design in a BWR is to drive coolant pumps down to minimum
rotations per minute gradually by a ramp. The slope of this ramp
and the need for emergency power for the pumps are design pa-
rameters of interest in this case study.

There are some known hazards to maintaining acceptable pres-
sure and flow in the reactor vessel that a BWR design must miti-
gate. The pressure control valve in the steam outlet pipe is driven
by a sophisticated controller that must react rapidly to changes. If
the pressure control subsystem closes the valve, it notifies the tur-
bine protection subsystem, which relieves the pressure by opening
the dumper valve. However, due to the sophisticated nature of the
pressure control subsystem, unintentional closure of the valve due
to software malfunction is possible, resulting in no notification
and a pressure shockwave back to the reactor vessel.

4.1 Abstractions: Functional Model and Configuration
Flow Graph. The first step in analyzing the early design of the
BWR is identification of desired functionality. The processes
inside a BWR are expressed through functions. These functions
are aggregated and connected to create a structure based on the
flows of EMS affected by each function. This function structure is
known as a FM. The Functional Basis [39] is used as a taxonomy
for naming the functions and the flows. The scope of the case

SEPTEMBER 2012, Vol. 12 / 031007-5

Downloaded From: http://computingengineering.asmedigital collection.asme.or g/ on 01/03/2014 Terms of Use: http://asme.org/terms

Table 1 The output of function failure logic for the simulation in Fig. 7

Supply liquid material health

Transmit thermal energy health

Convert thermal energy to chemical health

RefFlow =5.0, Degraded (1232)

LeakSize =0.5

RefFlow = 5.0, Degraded (t76)

LeakSize =2.0

RefFlow =5.0, Degraded (t57), lost recoverable (t113)
LeakSize =3.5

RefFlow =10.0, Degraded (t310)

LeakSize =0.5

RefFlow = 10.0, Degraded (t78), lost recoverable (t234)
LeakSize =2.0

RefFlow = 10.0, Degraded (t58), lost recoverable (t123)
LeakSize =3.5

RefFlow = 20.0, Healthy

LeakSize =0.5

RefFlow =20.0, Degraded (t83)

LeakSize =2.0

RefFlow =20.0, Degraded (t59), lost recoverable (t162)
LeakSize =3.5

Lost recoverable (t416)

Lost recoverable (t197)

Lost recoverable (1292)

Healthy Degraded (t232)

Degraded (t76), lost recoverable (t416)
Degraded (t57), lost recoverable (t197)
Healthy Degraded (t310)
Healthy Degraded (t78)

Degraded (t58), lost recoverable (t292)

Healthy Healthy
Healthy Degraded (t83)
Healthy Degraded (t59)

Table 2 Mapping of system functions to components

Function Component

Flow channels and fuel rods
Flow channels
Power supply rail
Coolant pumps
Reactor protection
Control rods
Pressure control valve
Pressure control

Transmit thermal energy
Condition radioactive energy
Supply electrical energy
Transport liquid material
Process status signals

Inhibit radioactive energy
Regulate and guide gas material
Process status signals

study is restricted to acute situations that might require emergency
shutdown of the reactor. The model is not intended for studying
residual heat removal, which is a process that can take months,
involving additional physical phenomena and technical systems
that are not included in this model.

A CFG is produced by selecting components to implement the
functions, and connecting them with the same EMS flows as in
the functional model. Table 2 contains the direct mapping
between some of the functions and components for a BWR design
used in the FFIP analysis. The components include mechanical,
electrical and software parts and can contain components hier-
archically to obtain the level of granularity needed to support
mapping between the CFG and FM. In Fig. 8, the top level CFG is
provided, and the internals of the reactor component are shown in
Fig. 9.

The reason for having separate a FM and CFG is that, due to
fault propagation, a component failure may result in degradation
or loss of functionality mapped to another component. For exam-
ple, a leak in a pipe (a faulty component state) can cause a
degraded functional state for a “store liquid” function, even
though the tank component mapped to this function is in a nomi-
nal state. In the analysis, the CFG is simulated, critical events are
inserted as faulty component states, and a logic relating function

‘ C28peedSetPointFlowy {PressureEnergyOut PressureEnergylni«
Power Control P Fuclyysaulr\r:uw:u < 5
PressureEnergyBackFlowOut AnalogControlSignalinle NominalPressureEnergyBackFlow
CRDutVoltageFlow}y
DumperValve
Power Supply
r{ValveControlSignal PressureEnergy 4_|
— ValveControlSignal PressureControlStatusSignalf« PressureControlStatusSignal TargetPressure
PressureControl TargetPressure
TurbineProtectionSystem
J PressureEnergyln PressureEnergyOut
N “1¥ PressureEnergyBackFlowIn1 PressureEnergyBackFlowOut
PressureBaCkHowmPressureEnergyOut— PressureEnergyBackFlowIn
RodsControlActuationSignal r{PressureEnergyin PressureEnergyOut1
AnaloaControlSi Fi[essureEnergyBackFIowOut
— EmergencySignal NeutronFluxOut— “¥{PressureEnergyBackFlowIn2 PressureEnergyOut2 »|AnalogControlSignalin
ElectricalEnergy Vel YPipe PressureControlValve
s SpeedSetPoint oumetricrlow
Reactor - —
rlCaaulCLIIBIQ)’DHLI\I’IUVVIII
RodsControlActuationSignal NeutronFluxinf«
EmergencySignal VolumetricFlowIn|« AnalogControlSignalin

ReactorProtection

Tests

Fig. 8 Top level CFG model for boiling water reactor core and its steam outlets

031007-6 / Vol. 12, SEPTEMBER 2012

Transactions of the ASME

Downloaded From: http://computingengineering.asmedigital collection.asme.or g/ on 01/03/2014 Terms of Use: http://asme.org/terms

¥ ThermalEnergyln PressureEnergyOut »(D)
PressureEnergyOut
P PressureBackFlowin PressureBackFlowOut
PressureBackFlowIn
SteamSeparator
NeutronFluxin j[4—
HeUEIENOOU ActuationSignal
RodsControl RodsControlActuationSignal
N » (2D
StbemCorientn NeutronFluxOut »| NeutronFluxin NeutronFluxOut—— NeutronFluxOut
NeutronFluxin ThermalEnergyln ThermalEnergyOut
VolumetricFlowin ThermalEnergyOut VolumetricFlowin ~ SteamContentOut
FuelRods PressureBackFlowln VolumetricFlowOut »(3)
T r—— VolumetricFlow
EmergencySignal
VolumetricFlowin j«
) EmergencySignal [«
VolumetricFlowOut EIecirical)IIEngrgy ElectricalEnergy
SpeedSetPoint [« D)
CoolantPumps SpeedSetPoint
Fig. 9 Internals of the reactor component in Fig. 8
Nominal

entry: PressureEnergyOut=2.5;
entry: PressureEnergyBackFlowGenerated=5;

during: ValveControlFlows(); _
VIATLAB Funciion [ValveFailedClosed]
ValveControlFlows
.
\ \
I 0 7 ['ValveFailedClosed] ‘17

['ValveFgiledOpen] FailClosed \
entry: PressureEnergyBackFlowGenerated=5+AnalogControlSignalin*0.5;
during: PressureEnergyOut=0;

during: PressureEnergyBackFlowGenerated=5+PressureEnergyln*0.3;

during: PressureEnergyBackFlowTransported=0;

[ValveFailedOpen]

%

Y

FailOpen
during: PressureEnergyOut=PressureEnergyln;

during: PressureEnergyBackFlowTransported=PressureEnergyBackFlowln;

during: PressureEnergyBackFlowGenerated=0;

Fig. 10 Behavioral logic for the PressureControlValve component in Fig. 8

to failures, namely, the FFL, is used to observe component input
and output flows and determine the health of the related function.
This is possible because the FM and CFG use the same EMS
flows.

4.2 Behavior and Function Failure Logic Reasoning. The
behavior of the components is implemented using the Simulink
environment and the Stateflow package, which are part of the
Matlab tool. Stateflow models are used to represent hybrid behav-
ior. There is a state for each nominal and faulty component mode,
and within these states there can be continuous behavior. An
example of behavior logic for the pressure control valve compo-
nent is demonstrated in Fig. 10. State transitions are triggered by
critical events that are inserted into the simulation. The behavioral
models should be constructed by experts familiar with the applica-
tion domain, the physical phenomena and the impact of various pa-
rameter value changes on these phenomena and design alternatives.

The FFL reasoner code for the “transmit thermal energy” func-
tion, which is partly implemented by the fuel rods, is presented in

Journal of Computing and Information Science in Engineering

Fig. 11. The FFL reasoner determines the health of this function
by the value of the temperature parameter during the simulation.
The values of 5.5, 6, and 7 for entering the health status
“degraded”, “lost recoverable” and “lost,” respectively, are based
on qualitative descriptions for the Temperature levels. The value
of 5 is defined as nominal.

5 Automation Framework and User Interface

Figure 12 shows a screenshot the user interface for specitying a
set of FFIP simulation scenarios to be generated and run automati-
cally. After specifying the Simulink.m file containing the parame-
ter, the user can select any of these parameters and then specify
the limits of its range and the interval between samples. From the
selections in the “choices made” box, the heat transfer coefficient
(HTC) will be given values [1,3,5] in separate simulations. Simi-
larly, the time delay between the injected pressure control valve
closure malfunction and the injected power rail failure (Delay)
will be one of the following [0, 40, 80]. The slope of the ramp for

SEPTEMBER 2012, Vol. 12 / 031007-7

Downloaded From: http://computingengineering.asmedigital collection.asme.or g/ on 01/03/2014 Terms of Use: http://asme.org/terms

/ TransmitThermalEnergyFFL ;

Healthy
entry: TransmitThermalEnergyHealth=HealthEnum.healthy;

L[Temperature>5.5]

A
I[Temperature<5.5]
1 1!

Degraded
during: TransmitThermalEnergyHealth=HealthEnum.degraded;

[T
2
T[Tempera’(ure<6.0] L [Temperature>6.0]

r
L

LostRecoverable
during: TransmitThermalEnergyHealth=HealthEnum.lostRecoverable;

i [Temperature>7.0]

{

Lost
Guring:TransmitThermalEnerngealth=HeaIthEnum.Iost]

Fig. 11 Stateflow chart of the FFL reasoner for the “transmit
thermal energy” function in Table 2

File Help
i
|

Available parameters:

[HeatTransferCoefficent
imeBetweenValveAndPowerRailFailure
[EmergencyCoolantFlowRampSlope l

Import Matlab parameter signals file...] I Import Matlab health signals file... I

Start value: End value:

-0.02

Increment:

-0.01 -0.005

Add to scenario I

Description:
Slope of Emergency Coolant Flow Ramp, data type: double, initial value: -0.01

Choices made:
HeatTransferCoefficient, start value: 1, increment: 2, end value: 5

ailure, start value: 0, increment: 40, end value: 80
EmergencyCoolantFlowRampSlope, start value: -0.01, increment: -0.005, end value: -0.02

Test number: |10 Health signal: |RegulateAndGuideGasMaterialHealth v
RegulateAndGuideGasMaterialHealth
[Create Matisb script...] (GuideGasMaterialHealth

Fig. 12 User interface for specifying a set of FFIP simulation
scenarios

driving the coolant pumps to minimum rotations per minute
(Slope) is one of: [—0.01, —0.015, —0.02]. The simulation will be
run with each combination of parameter values, resulting in 27
simulation runs. For each of these runs, the value of one signal is
logged for each step of the discrete time simulation; in Fig. 12,
the function health of “transmit thermal energy” from fuel rods to
coolant is selected. The process is repeated so that the Tempera-
ture of the fuel rods is logged, resulting in 27 temperature curves
and information of the worst case health status of each curve; in
Sec. 6, the health status is used to group the curves onto separate
charts for readability.

The algorithm for generating the set of parameterized FFIP sim-
ulations is shown in Fig. 13. The information entered through the
user interface is stored into a list, with one element for each pa-
rameter; in this case the parameters are HTC, Delay, and Slope. A
CreateLoop function is called, which iterates through the list in
such a way that every combination of parameters is covered. This
is accomplished by a recursive function call shown with a bold
dashed arrow. This design ensures that the no-branch of decision
1 is taken exactly once for each combination of parameter values,
resulting in an entry in the Matlab script for running the FFIP sim-
ulation with those values. Recursion was used to improve read-
ability and compactness of code [41,42].

6 Simulation Results

In the initial critical event scenario, emergency power for cool-
ant pumps was cut off before the pressure shockwave occurred. In
the user interface, three different values are selected for HTC, the
slope for driving coolant pumps to minimum rotations per minute
(Slope) and the time delay between the unintentional pressure
control valve closure and power rail failure (Delay). The medium
value is the designer’s best estimation of a realistic design param-
eter, while the low and high limits are given the most extreme val-
ues that are estimated to be feasible. This first phase of the
simulation will result in 27 fuel rod temperature curves, one for
running the simulation with each combination of parameter val-
ues. The selected function of interest is thermal energy transfer
from fuel rods, so the Excel output for each simulation run
includes the lowest functional health status of this function during
the simulation. Accordingly, the curves for fuel rod temperature
are grouped in three graphs: the simulation runs during which this
function’s health was always healthy (Fig. 14), the runs during
which the health was never worse than degraded (Fig. 15) and the
runs during which this function was lost (Fig. 16). When several
curves were overlapping and visually indistinguishable on the

v I
) . CreateLoop function Set the initial |
< Start) parameter |
v value as the I
Create parameter current value Decision 2 |
vall:.lsetzs‘?/il:::rlgrl:::\ts it,ii/ Yes Is current parameter value ves, Return from |
and end values ~"_Decision 1 ~_past end value?v/ ~ _Createloop I
according to user’s P Are there more~ ‘ o -) i . |
choices < parametersinthe - No _ End | Write matrix
l e st write current —~> with results
parameter value to to
Call CreateLoop No script | spreadsheet
with the list as —> - X ¥ i |
an argument Write commands for Call CreateLoop | l
the Matlab to run the function for the next — — — — — — — —|— End)
4

simulation, log results

parameter in the list

to matrix and return
from CreateLoop

i

Add increment to

parameter’s
current value

Fig. 13 Algorithm for generating the set of parameterized FFIP simulations

031007-8 / Vol. 12, SEPTEMBER 2012

Transactions of the ASME

Downloaded From: http://computingengineering.asmedigitalcollection.asme.or g/ on 01/03/2014 Terms of Use: http://asme.or g/terms

- — HTC=5.0, Delay=140.0,
Slope=-0.0050

--- HTC=5.0, Delay=140.0,
Slope=-0.01
HTC=5.0, Delay=140.0,
Slope=-0.015

——HTC=8.0, Delay=70.0,
Slope=[-0.01, -0.005, -0.015]

— ‘HTC=8.0, Delay=140.0,
Slope=-0.0050

— -HTC=8.0, Delay=140.0,
Slope=-0.01

25 HTC=8.0, Delay=140.0,

N Slope=-0.015

Qualitative flow level [0...10]

2 L

1 51 101 151 201 251 301 351 401 451 501 551 601

Simulation time

Fig. 14 Temperature of fuel rods in first phase FFIP simulation
scenarios with parameter values resulting in healthy FFL
verdicts

— “HTC=2.0, Delay=140.0,
Slope=-0.0050

~ - “HTC=2.0, Delay=140.0,
Slope=-0.01

HTC=5.0, Delay=70.0,
Slope=[-0.01, -0.005, -0.015]

Qualitative flow level [0...10]

——HTC=8.0, Delay=0.0,
Slope=[-0.01, -0.005, -0.015]

3
151 101 151 201 251 301 351 401 451 501 551 601
Simulation time

Fig. 15 Temperature of fuel rods in first phase FFIP simulation
scenarios with parameter values resulting in degraded FFL
verdicts

——HTC=2.0, Delay=0.0, Slope=[-0.01, -
0.005,-0.015]

- = HTC=2.0, Delay=70.0, Slope[-0.01, -
0.005,-0.015]

Qualitative flow level [0...10]

— HTC=2.0, Delay=140.0, Slope=-0.015

A HTC=5.0, Delay=0.0, Slope=[-0.01, -
0.005,-0.015]

1 51 101 151 201 251 301 351 401 451 501 551 601

Simulation time

Fig. 16 Temperature of fuel rods in first phase FFIP simulation
scenarios with parameter values resulting in lost FFL verdicts

— -HTC=1.0, Slope=-0.01
----- HTC=1.0, Slope=-0.015
“" ——HTC=1.0, Slope=-0.02
— “HTC=3.0, Slope=-0.01
_.-7 = -HTC=30,5lope=-0.015
Z 7 HTC=30,Slope=0.02
~—HTC=5.0, Slope=-0.01

«

IS

Qualitative flow level [0...10]
w

— “HTC=5.0, Slope=-0.015
HTC=5.0, Slope=-0.02

1

1 51 101 151 201 251 301 351 401 451 501 551 601

Simulation time

Fig. 17 Temperature of fuel rods in second phase FFIP simula-
tion: emergency power present

Journal of Computing and Information Science in Engineering

— -Sim. Run 1: HTC=4.5,
55 Slope=-0.012
=== Sim.Run 2: HTC=4.5,
Slope=-0.015
——Sim. Run 3: HTC=4.5,
Slope=-0.018
— -Sim. Run 4: HTC=5.0,
Slope=-0.012
=+ -Sim. Run 5: HTC=5.0,
Slope=-0.015
Sim. Run 6: HTC=5.0,
Slope=-0.018
~—Sim. Run 7: HTC=5.5,
Slope=-0.012
— -Sim. Run 8: HTC=5.5,
15 Slope=-0.015
Sim. Run 9: HTC=5.5,
1 Slope=-0.018
1 101 201 301 401 501 601 701 801 901 1001
Simulation time

g
~

Qualitative flow level [0...10]

Fig. 18 Temperature of fuel rods in third phase FFIP simula-
tion scenarios with narrowed ranges for parameter values

graph, the parameter values corresponding to them are shown in
square brackets in the legend; for example, in Fig. 16, the temper-
ature curves for HTC =2 and Delay = 0 were identical for all val-
ues of Slope.

It is clear that better performance was obtained when the power
rail failure occurred later, since coolant flow was maintained for a
longer time. This indicates that from the perspective of fuel rod
health, steam removal from the core is more important than an
acute drop in reactor power, which could be achieved by stopping
the pumps. A very low value for the HTC indicated stability prob-
lems regardless of the other values, and this is a physical design
constraint for this reactor type. A very high value for HTC
provided consistently stable behavior, although a temporary over-
heating of fuel rods is possible; however, it might be physically
impossible to realize this design. With medium values of HTC,
fuel rod cooling depends primarily on the availability of power for
the coolant pumps and secondarily on having a smaller slope for
the ramp that drives down the rotations per minute of the coolant
pumps. Based on this analysis, it is concluded that the availability
of power for coolant pumps must be ensured with emergency
power, so a different critical event scenario, in which the emer-
gency power is not cut off, is selected as the basis for the next set
of simulation runs. In this case, the time delay between the shock-
wave and power rail failure does not significantly influence the
results, so this parameter is excluded from further study.

The second phase of FFIP simulation focuses on the combina-
tions of HTC and ramp slope, resulting in nine automatically exe-
cuted simulations. From Fig. 17, it is clear that when emergency
power is present, stable performance can be achieved even with
lower HTC values when a gentler slope is used for the ramp.
However, a longer ramp implies a slower decrease of reactor
power during emergency shutdown, so a third simulation run is
performed by narrowing the parameter values to the range in
which these two parameters are likely to be optimized. The results
in Fig. 18 are given as a starting point for detailed design, which
will refine the conceptual design through specific decisions on
component types, subsystem design and control algorithm design.
One decision that emerges already from the simulation of the
BWR system design is that availability of electric power for cool-
ant pumps must be ensured by emergency power supplies even
when the power rail is lost.

In every scenario on Fig. 18, the fuel rod cooling is performed
satisfactorily during the acute situation requiring emergency shut-
down of the reactor. The simulation time is set to a value that is of
interest for the emergency shutdown safety function. It is unclear
if the temperature would remain below nominal if the simulation
time were to be increased. In the case study, it was stated that the
model covers only emergency shutdown functionality and is not
aimed at studying residual heat removal, which has a much longer
time constant; this would require additional detail to the system
model and a different set of simulation runs. The emergency shut-
down of the reactor is used in this paper to demonstrate the appli-
cation of FFIP automation framework.

SEPTEMBER 2012, Vol. 12 / 031007-9

Downloaded From: http://computingengineering.asmedigital collection.asme.or g/ on 01/03/2014 Terms of Use: http://asme.org/terms

7 Conclusions and Future Work

The design and failure analysis of large complex systems
presents numerous challenges. While the FFIP framework devel-
oped previously was intended to meet some of these challenges,
the extensions presented in this paper greatly increase the ability
of this analysis approach to be used as a tool in the early concur-
rent design and risk assessment processes. The extensions to the
FFIP framework presented here enable the study of the reliability
of a range of design alternatives for achieving the specified func-
tionality. For alternatives that can be expressed in terms of param-
eters of component behavior or timing of critical events, the
scalability of the approach and supporting tools to a larger number
of simulation runs is only limited by computing power and human
capability of understanding large data sets. The latter problem is
mitigated by the possibility of filtering and sorting the simulation
runs in terms of the health status of a specific function, but further
research on user interface design will improve the feasibility of
the approach for complex industrial-scale systems. The behavior
of electromechanical components is described with first order lin-
ear approximations in this case study, but they are implemented as
Simulink blocks, so the approach permits more sophisticated mod-
eling if it is deemed appropriate in the early concept design phase.

The investigation of a range of designs under a range of critical
event scenarios is restricted to alternatives that can be expressed
by varying values of parameters. The availability of emergency
power could be controlled manually by selecting different simula-
tion scenarios, but currently it is not possible to cover more funda-
mental differences such as different types or placement of sensors
or entirely different software algorithms. This can be achieved
with further work on integrating a feature modeling capacity to
the configuration flow graph, so that every valid configuration of
the feature model will undergo FFIP simulation in order to filter
out unreliable alternatives. The automated FFIP simulation pre-
sented in this paper solves many algorithmic and technical chal-
lenges related to the generation and simulation of every valid
configuration.

References

[1] Thramboulidis, K., 2005, “Model-Integrated Mechatronics—Toward a New
Paradigm in the Development of Manufacturing Systems,” IEEE Trans. Ind.
Inf., 1(1), pp. 54-61.

[2] Amerongen, J. V., 2003, “Mechatronic Design,” Mechatronics, 13, pp. 1045-1066.

[3] Weilkiens, T., 2007, Systems Engineering With SysML/IUML: Modeling, Analy-
sis, Design, Morgan Kaufmann, San Francisco, CA.

[4] Kurtoglu, T., and Tumer, I. Y., 2008, “A Graph-Based Fault Identification and
Propagation Framework for Functional Design of Complex Systems,” J. Mech.
Des. 130(5), p. 051401.

[5] Kurtoglu T., Tumer, I. Y., and J. D., 2010, “A Functional Failure Reasoning
Methodology for Evaluation of Conceptual System Architectures,” Res. Eng.
Des., 21(4), pp. 209-234.

[6] Jensen D., Tumer, I. Y., and Kurtoglu, T., 2008, “Modeling the Propagation of
Failures in Software-Driven Hardware Systems to Enable Risk-Informed
Design,” ASME IMECE.

[7] Jensen D., Tumer, I. Y., and Kurtoglu, T., 2009, “Design of an Electrical Power
System Using a Functional Failure and Flow State Logic Reasoning Method-
ology,” Prognostics and Health Management Society.

[8] Tumer, I. Y., and Smidts, C. S., 2010, “Integrated Design and Analysis of
Software-Driven Hardware Systems,” IEEE Trans. Comput., Special Issue on
Science of Design of Safety-Critical Systems, 60(8), pp. 1072-1084.

[9] Papkonstantinou, N., Sierla, S., Jensen, D. C., and Tumer, I. Y., 2011,
“Capturing Interactions and Emergent Failure Behavior in Complex Engineered
Systems at Multiple Scales,” International Design Engineering Technical Con-
ferences and Computers and Information in Engineering Conference, ASME,
Washington, DC.

[10] Vesely, W. E., Goldberg, F. F., Roberts, N. H., and Haasi, D. F., 1981, The
Fault Tree Handbook, U.S. Nuclear Regulatory Commission.

[11] Price, C. J., and Taylor, N. S., 1998, “FMEA for Multiple Failures,” Reliability
and Maintainability Symposium, Anaheim, CA.

[12] Hu, T., Yu, J., and Wang, S., 2009, “Research on Complex System FMEA
Method Based on Functional Modeling,” Reliability, Maintainability and
Safety, Chengdu.

031007-10 / Vol. 12, SEPTEMBER 2012

[13] Mauri, G., McDermid, J. A., and Papadopoulos, Y., 1998, “Extension of Hazard
and Safety Snalysis Techniques to Address Problems of Hierarchical Scale,”
IEE Colloquium on Systems Engineering of Aerospace Projects, Digest No.
1998/249.

[14] Papadopoulos, Y., Parker, D., and Grante, C., 2004, “Automating the Failure
Modes and Effects Analysis of Safety Critical Systems,” High Assurance Sys-
tems Engineering, Tampa, FL.

[15] Pasquale, T., Rosaria, E., Pietro, M., and Antonio, O., 2003, “Hazard Analysis
of Complex Distributed Railway Systems,” Reliable Distributed Systems, Flor-
ence, Italy.

[16] Schreiber, S., Schmidberger, T., Fay, A., May, J., Drewes, J., and Schnieder, E.,
2007, “UML-Based Safety Analysis of Distributed Automation Systems,”
Emerging Technologies and Factory Automation, Patras, Greece.

[17] Stamatelatos, M., and Apostolakis, G., 2002, “Probabilistic Risk Assessment
Procedures Guide for NASA Managers and Practitioners,” NASA, Safety and
Mission Assurance.

[18] Perera, J., and Holsomback, J., 2004, “Use of Probabilistic Risk Assessments
for the Space Station Program,” Aerospace Conference.

[19] Sturges, R. H., Kilani, M., and OShaughnessy, K., 1996, “Computational Model
for Conceptual Design Based on Extended Function Logic,” Artif. Intell. Eng.
Des. Manuf. J., 10, pp. 255-274.

[20] Szykman, S., Sriram, R. D., Bochenek, C., and Racz, J., 1998, “The NIST
Design Repository Project,” Advances in Soft Computing—FEngineering Design
and Manufacturing, Springer-Verlag, London.

[21] Terpenny, J., and Mathew, D., 2004, “Modeling Environment for Function-
Based Conceptual Design,” Design Automation Conference/IDETC/CIE 2004,
Salt Lake City, UT.

[22] Sasajima, M., Kitamura, Y., Ikeda, M., and Mizoguchi, R., 1996, “A Representa-
tion Language for Behavior and Function: FBRL,” Expert Syst. Appl., 10(3/4),
pp. 471-479.

[23] Qian, L., and Gero, J. S., 1996, “Function-Behaviour-Structure and Their Roles
in Analogy-Based Design,” Artif. Intell. Eng. Des. Anal. Manuf., 10, pp.
289-312.

[24] Huang, E., Ramamurthy, R., and McGinnis, L., 2007, “System and Simulation
Modeling Using SysML,” Conference on Winter simulation, IEEE Press, Wash-
ington, DC.

[25] Tumer, I. Y., and Stone, R. B., 2003, “Mapping Function to Failure During
High-Risk Component Development,” Res. Eng. Des., 14(1), pp. 25-33.

[26] Wang, K.-L., and Jin, Y., 2002, “An Analytical Approach to Functional
Design,” International Design Engineering Technical Conferences and Com-
puters and Information in Engineering Conference, Montreal, Canada.

[27] Hoyle, C., Tumer, L. Y., Mehr, A. F., and Wei, C., 2009, “Health Management
Allocation During Conceptual System Design,” J. Comput. Inf. Sci. Eng., 9(2),
p. 021002.

[28] Simpson, T. W, Peplinski, J., Koch, P. N., and Allen, J. K., 2001, “Metamodels
for Computer-Based Engineering Design: Survey and Recommendations,” Eng.
Comput., 17(2), pp. 129-150.

[29] Box, G. E. P., and Wilson, K. B., 1951, “On the Experimental Attainment of
Optimum Conditions,” J. R. Stat. Soc. Ser. B (Methodol.), 13(1), pp. 1-45.

[30] Guo, J., and Du, X., 2010, “Reliability Analysis for Multidisciplinary Systems
With Random and Interval Variables,” AIAA J., 48(1), pp. 82-91.

[31] Zang, C., Friswell, M. 1., and Mottershead, J. E., 2005, “A Review of Robust
Optimal Design and Its Application in Dynamics,” Comput. Struct., 83(4-5),
pp. 315-326.

[32] Deb, S., Pattipati, K. R., Raghavan, V., Shakeri, M., and Shrestha, R., 1995,

“Multisignal Flow Graphs: A Novel Approach for System Testability Analysis

and Fault Diagnosis,” IEEE Aerospace and Electronics Systems Magazine, pp.

14-25.

Kurtoglu, T., and Tumer, I. Y., 2008, “A Risk-Informed Decision Making

Methodology for Evaluating Failure Impact of Early System Designs,” 2008

International Design Theory and Methodology Conference, IDETC/CIE2008,

Brooklyn, NY.

[34] de Kleer, J. K., Lukas, K., Liu, J., Price, B., Do, M., and Zhou, R., 2009,
“Continuously Estimating Persistent and Intermittent Failure Probabilities,”
SafeProcess 2009.

[35] Forbus, K., 1984, “Qualitative Process Theory,” Artif. Intell., 24, pp. 85-168.

[36] Weld, D., and de Kleer, J., 1987, Readings in Qualitative Physics, Morgan
Kauffman, San Francisco, CA.

[37] Struss, P., 1988, “Mathematical Aspects of Qualitative Reasoning,” Int. J. Artif.
Intell. Eng., 3(3), pp. 156-169.

[38] Kuipers, B. J., 1986, “Qualitative Simulation,” Artif. Intell., 29(3), pp. 289-338.

[39] Stone, R., and Wood, K., 2000, “Development of a Functional Basis for
Design,” J. Mech. Des., 122(4), pp. 359-370.

[40] Abagyan, L. P., Golubev, V. I., Golyaev, N. D., Zvonarev, A. V., Koleganov,
Y. F., Nikolaev, M. N., and Orlov, M. Yu., 1968, “Propagation of Neutrons in
Uranium dioxide II. Doppler Effect in U238,” At. Energy, 25(4), pp.
1090-1094.

[41] Davis, M., Sigal, R., and Weyuker, E. J., 1994, Computability, Complexity, and
Languages, Morgan Kaufmann, San Francisco, CA.

[42] Gaffney, J. E., and Davis, C. F., 1988, “An Approach to Estimating Software Errors
and Availability,” Eleventh Minnowbrook Workshop on Software Reliability.

[33

Transactions of the ASME

Downloaded From: http://computingengineering.asmedigital collection.asme.or g/ on 01/03/2014 Terms of Use: http://asme.org/terms

http://dx.doi.org/10.1109/TII.2005.844427
http://dx.doi.org/10.1109/TII.2005.844427
http://dx.doi.org/10.1016/S0957-4158(03)00042-4
http://dx.doi.org/10.1115/1.2885181
http://dx.doi.org/10.1115/1.2885181
http://dx.doi.org/10.1007/s00163-010-0086-1
http://dx.doi.org/10.1007/s00163-010-0086-1
http://dx.doi.org/10.1017/S089006040000161X
http://dx.doi.org/10.1017/S089006040000161X
http://dx.doi.org/10.1016/0957-4174(96)00027-9
http://dx.doi.org/10.1017/S0890060400001633
http://dx.doi.org/10.1115/1.3130775
http://dx.doi.org/10.1007/PL00007198
http://dx.doi.org/10.1007/PL00007198
http://dx.doi.org/10.2514/1.39696
http://dx.doi.org/10.1016/j.compstruc.2004.10.007
http://dx.doi.org/10.1016/0004-3702(84)90038-9
http://dx.doi.org/10.1016/0954-1810(88)90032-5
http://dx.doi.org/10.1016/0954-1810(88)90032-5
http://dx.doi.org/10.1016/0004-3702(86)90073-1
http://dx.doi.org/10.1115/1.1289637
http://dx.doi.org/10.1007/BF01163622

	s1
	s1A
	s1B
	cor1
	l
	s1C
	s2
	s2A
	s2B
	s2C
	s3
	F1
	F2
	F3
	F4
	F5
	s4
	s4A
	F6
	F7
	T1
	T2
	F8
	s4B
	s5
	F9
	F10
	s6
	F11
	F12
	F13
	F14
	F15
	F16
	F17
	F18
	s7
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32
	B33
	B34
	B35
	B36
	B37
	B38
	B39
	B40
	B41
	B42

