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ABSTRACT 

This study focuses on better understanding the impact of 
design process behavior on project outcomes, as demonstrated 
by mechanical engineering students at Montana State 
University. Using process data gathered from student design 
journals, and quantitative measures of project results, we 
examine the relationship between student designer activities 
and project outcomes through a multivariate linear regression 
analysis.  Results indicate that significant differences exist 
between customer satisfaction, and design quality as measured 
by professional engineers.   Further, this study finds that client 
satisfaction increases with time spent on problem definition 
activities and decreases with concept-level engineering 
analysis.  In contrast, system-level idea generation and 
refinement activities are the most strongly positively associated 
activities for design quality, while design refinement at the 
concept level is a strong detractor. 

 
INTRODUCTION 

Design is recognized as an important part of the 
engineering profession, and is thus a major topic in research 
regarding both engineering education and commercial practice. 
One fundamental objective many researchers in either arena 
pursue is that of improving the process of design to achieve 
more effective designs efficiently. Whether this improvement 
manifests along a dimension of cost, quality, or time, the 
common goal is to optimize design. Many authors have 
proposed models for a superior design process, but they are 
usually based on either very small sample sizes, leading to 
highly specialized recommendations, or on personal 
experience, which may lead to general models difficult for 
inexperienced designers to apply. Further, the assertion some 
authors make that design can only be learned by practice, while 

likely valid, needs expanding upon, particularly in the area of 
recommendations for how to learn good design techniques. 
 

If designers are to improve their processes, they need not 
only measures of that process and its outcomes, but also an 
understanding of the relationship between the two. This study 
attempts to develop some of that knowledge by looking at three 
specific questions: 
 

1. What behaviors significantly influence the quality of 
design process outcomes? 

2. Given that different measures of outcome quality exist, 
do different activities contribute to different quality 
“types”, or is there significant overlap? 

3. What are the relative impacts of any significant 
variables on design outcome quality? 

 
In answering these questions, we hope to develop a model that 
will help designers prioritize their efforts into specific types of 
activities in order to achieve specific objectives. 

BACKGROUND 
In recent decades, researchers have taken a number of 

paths while attempting to describe the design process [1-5]. In 
particular, the recognition that design may be described as a 
sequence of specific tasks or behaviors is central to how we 
commonly define it. Despite this basic agreement, various 
models delineate the components of the design process 
differently, emphasizing certain points over others. These 
specializations represent tradeoffs between generality and ease 
of application for models, or similarly between the descriptive 
and prescriptive usefulness of different models. For researchers 
of design, this means that selecting an appropriate 
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representation of the design process is critical both to 
developing an accurate representation of designer behavior and 
to translating any analysis of that data into useful results. 
 

The key issue here may be the focus of a given 
representation for the design method. Drawing upon 
Birmingham, et al’s [1] comparison of design process models, 
and examples presented by Haik [2], it appears that some 
models have attempted to represent the entire process with only 
cognitive activities (behaviors), as illustrated by Darke’s cycle 
of Generator->Conjecture->Analysis or Lawson’s alternative 
Analysis->Synthesis->Evaluation. Similarly, Otto and Wood’s 
redesign methodology [3] uses a series of high-level phases to 
outline the design process. These maps of creative activity 
describe basic patterns that designers experience in their work, 
and tend to be powerful, if abstract, descriptive tools. 
Unfortunately, such a fundamental approach can be difficult to 
apply prescriptively, as each phase in these lists encompasses 
an enormous range of activities. 
 

Other attempts to define the design process have 
focused heavily on tasks or objectives that designers must 
complete. These models typically have the advantage of easily 
mapping onto a project timeline for purposes of planning or 
tracking, but encounter difficulties in the case of iterative loops 
or rework within the design process. As maps of the activity 
sequence in design develop these branches and cycles, they 
may gain accuracy in representing designer behavior, but then 
lose capacity to clearly advise designers or their managers. 

 
Perhaps in recognition of the advantages offered by each 

type of model emphasis, some researchers have attempted to 
capture both of these dimensions in one model. Hall’s early 7x7 
matrix represented “fine” and “coarse” structures of the process 
against each other, corresponding to logical sequence and 
project phases respectively [1]. Similarly, Ullman [5] presents a 
flowchart-style breakdown detailing several phases of the 
design project and specific tasks within each. This use of 
project phases maps closely to a division of design process by 
cognitive focus; following the intuitive scheme of top-down 
design. While facing some of the same difficulties that task or 
behavior-focused models do, combined maps of the design 
process offer a special advantage for both descriptive and 
prescriptive use in their ability to capture the interaction 
between tasks and project phases or cognitive activity. 
 

In terms of defining “good” design, other issues arise. 
Most models in literature seem to be the work of expert 
designers or design educators, based primarily on experience. 
While exceptions exist [6], few models are empirically 
validated, and those often rely on either small samples and/or 
contrived design problems of limited scope. It remains a 
challenge for researchers to define “good” design and how to 
measure it, especially against the objective of an analytical 
model relating the quality of a design process to its measurable 
characteristics. 

DATA COLLECTION 
Towards this end, we collected process and outcome 

data from capstone mechanical engineering design projects 
completed between Spring 2001 and Fall 2002 semesters at 

Montana State University. ME 404, the mechanical engineering 
capstone design class, is a four credit one-semester course. 
Students divide into teams of two to four with a faculty member 
as advisor. The projects are industry sponsored, so each team 
must interact with their client/sponsor to define their needs, 
devise a solution to meet those needs, and deliver a product (set 
of engineering drawings and specifications, written report, oral 
report, and in many cases a hardware prototype) by semester’s 
end. 

 
Researchers have used a number of techniques to 

collect data on design processes, including interviews, 
retrospective and depositional methods, and protocol analysis 
[7-11]. However, for this study, a novel approach was needed 
to study design process in-situ, spread over 15 week time 
period (one semester), without a specified location or 
researcher intervention, while capturing exact details when and 
as they occur.  
 

Design journals kept by individual students provide an 
alternative approach to data collection that fit our desire to 
study actual student processes. This data collection technique 
overcomes many of the drawbacks of other research methods.  
Compared to interviews, retrospective, and depositional 
methods, the data is collected in real-time, but unlike 
observational approaches, this approach does not require 
specially trained professionals. Like protocol analysis, the data 
can be readily quantified using a suitable coding scheme, but it 
requires little researcher intervention during data collection and 
therefore is a potentially more accurate representation of the 
actual design process.  It is also more feasible to collect a 
relatively large sample size compared to videotaping or other 
approaches because the quantity of data captured, while still 
large, is more manageable.  

 
As with any data collection method, disadvantages to 

the technique exist. Particularly, journals may be susceptible to 
“backfilling”, the tendency for students to records events, not as 
they occur, but in retrospect. Backfilling can lead to journals 
that omit key details; as designers highlight details they view as 
important to the final results, but often skip over mistakes made 
and lessons learned along the way. This practice can be 
discouraged through training and feedback during the design 
process, but ultimately depends on the designer’s commitment 
to keeping a good journal. Similarly, journals may simply offer 
an incomplete record of the design process. Where designers 
either keep imperfect records or are unaware of important 
information, the journals may fail to capture critical details 
regarding the development of the design project. Again, 
training and feedback can help designers overcome at least the 
former issue, but journal quality ultimately depends upon the 
designer’s effort. Fortunately, multiple accounts from different 
members of the design team can serve to cover holes in 
individual records and to corroborate details of the record. 

Process Variables 
Students were asked to keep individual design journals 

(notebooks) to document their work over the semester as a part 
of this project [12]. Journals were periodically evaluated using 
a rubric to help encourage good record keeping, and students 
were given specific feedback on the expectations and quality of 
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their journals. The journals constituted 15 % of the final course 
grade. At project completion, journals were collected and coded 
according to the scheme in Table 1, with times assigned 
according to the start / end times recorded.  

 
Table 1: Coding Matrix 

Design Activities 
 Concept 

(C) 
System 

(S) 
Detail 

(D) 
Problem Definition (PD) C/PD S/PD D/PD 
Idea Generation (IG) C/IG S/IG D/IG 
Engineering Analysis 
(EA) 

C/EA S/EA D/EA 

Design Refinement (DR) C/DR S/DR D/DR 
 
Non-Design Activities 
Project Management PM  
Report Writing RW  
Presentation Preparation PP  

 
Each design related activity received two codes.  The first 

is level of abstraction where we identify three levels.  Concept 
design addresses a problem or sub-problem with preliminary 
ideas, strategies, and/or approaches.  Common concept design 
activities are identifying customer needs, establishing the 
design specifications, and generating and selecting concepts. 
System-level design defines the needed subsystems, their 
configuration and their interfaces. Detail design activities focus 
on quantifying specific features required to realize a particular 
concept, for example defining part geometry, choosing 
materials, or assigning tolerances. 

 
The coding scheme also delineates four categories of 

design activity. Problem definition (PD) implies gathering and 
synthesizing information to better understand a problem or 
design idea through activities such as: defining customer 
requirements, identifying deliverables, and researching existing 
technologies. Activities in idea generation (IG) are those in 
which teams explore qualitatively different approaches to 
recognized problems, as with brainstorming activities. 
Engineering analysis (EA) involves formal and informal 
evaluation of existing design/idea(s), e.g., mathematical 
modeling and decision matrices. Finally, design refinement 
(DR) activities include modifying or adding detail to existing 
designs or ideas, examples being deciding parameter values, 
and creating engineering drawings using computer-aided design 
(CAD) software. 
 

Finally, the coding scheme designates symbols for non-
design activities associated with project management and 
project delivery so that every entry could be assigned a code.  
Project management (PM) covers project planning and progress 
evaluation, including: scheduling, class meetings to discuss 
logistics and deadlines, and reporting project status. The 
delivery category is for activities associated with interim and 
final report writing (RW) and final presentation preparation 
(PP).  
 

The process of journal coding proceeded in two stages. 
First, research assistants familiarized themselves with the 
projects by reading the final written reports, then coded the data 

and captured times by walking through team members’ journals 
in parallel, reviewing all the members’ entries for a given day 
before moving to the next day. Simple rules were devised for 
allocating time, and resolving discrepancies among the 
different journal accounts.  The principal investigator then 
reviewed the coding as a crosscheck on accuracy and 
consistency. The disagreements were solved through discussion 
and the process continued until mutual agreement was reached. 
The time data on the various process variables was then 
aggregated for the project by combining individual journal data. 
(See [13] for more details on journal coding.) 
 

The current sample includes 14 design projects, 
documented in 50 design journals.  Collectively, the some 
5,000 pages of journal entries record over 9,000 person-hours 
of student work. 

Outcomes Data 
It seems fair to define a “good” design process as one 

that leads to a good outcome. Thus, to determine the quality of 
a design process we need a way to measure the value of the end 
product. For this study we developed two outcomes measures, 
client satisfaction and the quality of the final designed product. 
Consequently, two separate instruments, the Client Satisfaction 
Questionnaire (CSQ) and the Design Quality Rubric (DQR), 
were developed, validated and deployed for measuring the 
client satisfaction and the design quality index quantitatively 
[6].  
 

The CSQ was developed based partly on 
brainstorming and partly on previously developed surveys [14-
16]. The final version had 20 questions divided across six 
metrics. The survey was validated prior to implementation 
using content and face validation techniques. Analytical 
hierarchy process [17] was used to determine weights for the 
metrics and the questions in each metric. The respondents 
received a copy of the survey by fax, then a research assistant 
walked them through the questions by telephone and filled in 
the responses by hand.  
 

Once responses were obtained from the project 
sponsors, the survey data was analyzed for statistical reliability 
using Cronbach’s alpha coefficient [18]. The test illustrated that 
only two of the six metrics (quality and overall satisfaction) 
displayed adequate internal consistency and inter-metric 
consistency.  As a result, the satisfaction index was obtained by 
summing the weighted averages of the two metrics. The final 
satisfaction scores were on a scale of 1-10 with 10 being the 
highest.  Table 2 displays the actual measures used in the client 
satisfaction score. 
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Table 2: Client Satisfaction Metrics 

Metric Measures Cronbach’s � 

Quality 

The percentage of the design 
objectives the client thought 
the team achieved 

The closeness of the final 
outcome to client’s initial 
expectations. 

0.78 

Overall 

Design’s feasibility in its 
application and fabrication 

Client’s opinion on 
implementing the design 

Client’s opinion on students’ 
knowledge of math, science 
and engineering in 
developing solutions 

Overall satisfaction with the 
design outcome 

0.70 

 
 Since clients do not always have the background to 
objectively assess the engineering validity of design 
recommendations, and since “satisfaction” is relative to initial 
expectations, we also obtained a third party assessment of 
design quality on each project. A design quality rubric (DQR) 
was developed to address this issue with an objective to 
quantify the final “quality” of the designed projects.   
 
To develop this rubric, we obtained evaluation schemes from 
mechanical engineering capstone course instructors at 30 top 
ranking schools, and from several design contests including the 
Formula SAE (2002), ASAE Design Competition (2002), 
ASME Student Design Competition (2002), and the MHEFI 
Material Handling Design Contest (2002).  We extracted 23 
metrics that were common across the evaluation schemes 
collected.  These 23 metrics were aggregated into six measures: 
requirements, feasibility, creativity, simplicity, aesthetics and 
professionalism. Since aesthetics is not a requirement in many 
of our projects and professionalism deals with things like report 
quality that do not necessarily directly reflect the engineering 
validity of the students’ work, we further reduced the above to 
five measures.  We replaced aesthetics and professionalism 
with an “overall impression” question to capture the reviewer’s 
overall assessment, including professionalism and aesthetics as 
appropriate for each project. The metrics and their definitions 
are presented in Table 3. A seven-point scale was used for each 
question/metric with three anchors provided (1: Poor, 4: 
Acceptable, 7: Outstanding). A brief rationale was requested 
from each evaluator on each response for the purpose of inter-
reviewer comparisons to evaluate consistency among the 
evaluators. 
 

Table 3: Design Quality Metrics 
 Metric Definition 

Requirements 
The design meets the technical 
criteria and the customer 
requirements B

as
ic

 

Feasibility 
The design is feasible in its 
application and fabrication / 
assembly 

Creativity 
The design incorporates original 
and novel ideas, non-intuitive 
approaches or innovative solutions 

A
dv

an
ce

d 

Simplicity 

The design is simple, avoiding any 
unnecessary sophistication and 
complexity, and hence is: 

Practical 

Reliable 

Serviceable 

Usable 

Ergonomic 

Safe  

 Overall Overall impression of the design 
solution 

 
Four engineering professionals were hired to evaluate 

the design projects from the final reports submitted at the 
completion of each project. Three of the evaluators were 
licensed professional engineers, each with over 10 years of 
experience in design and manufacturing. The fourth had 5 years 
of experience and was not professionally licensed at the time.  
These evaluators were asked to evaluate the project outcomes 
as if they were evaluating actual industry designs while taking 
into consideration the project duration and budget constraints.  
Specific instructions were provided to assess the design 
projects on their outcomes, not on the process. Each evaluator 
was assigned a number of reports in such a way that each report 
was evaluated twice to provide redundancy in the measurement.  
All four evaluators looked at two reports in order to determine 
inter-evaluator consistency.  The quality index for each project 
was calculated by averaging the scores of the individual 
metrics, then averaging across evaluators, making the final 
quality score for each project on a scale of 1-7. 
 

The CSQ and DQR measures demonstrate a weak 
correlation (0.52) implying they measure different things and 
could not be combined. Therefore, to study the design 
processes, two models were constructed with satisfaction and 
quality as their respective responses. A complete description of 
the techniques used to code the responses, missing values 
analysis, descriptive question analysis, and other issues on 
these instruments can be obtained from Sobek and Jain [19].  

ANALYSIS & RESULTS 
While the complexity of design suggests that an 

analytical description relating design process to results might 
be nonlinear, two possibilities encouraged a linear analysis of 
the data sample. First, if suitable, a linear model can be easier 
to interpret and apply. Secondly, the limited ranges and 
clustering seen in some variables suggested that a linear model 
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might be able to accurately describe the fairly localized region 
that our data covers.  
 

A multiple linear regression analysis was performed 
on the sample of 14 coded projects.  First, we ran a model with 
only the “non-design” variables (project management, report 
writing, and presentation preparation) as the independent 
variables.  None showed a statistically significant relationship 
with either client satisfaction or design quality.   These 
variables were eliminated from further consideration.  
 

Two additional models were then developed with 
customer satisfaction and design quality respectively as the 
response variables, and the twelve design process variables as 
the independent variables (i.e., the 3 x 4 matrix in the top half 
of Table 1).  Each independent variable represents the number 
of person hours spent by a project team on each activity at a 
given design level.  We used a step-wise reverse elimination 
procedure [20] to develop the final models, starting with the 
full slate of predictor variables and eliminating one variable at a 
time until all remaining coefficients had p-values ≤ 0.05.  At 
each step, the variable with the highest p-value was chosen for 
elimination until the stop criterion was met. While not 
eliminating the difficulties inherent in the relatively small 
sample size and high dimensionality of the data, this regression 
procedure allowed the stability of the model to improve with 
the removal of suspect variables. These procedures concluded 
with the two models summarized in Table 4. 

 
Table 4. Final Regression Models 

 
Independent 
Variables 

Client 
Satisfaction 

Model 

Design 
Quality 
Model 

Intercept 4.203 ** 1.899 ** 
C/PD 0.085 **  
C/IG   
C/EA -0.110 **  
C/DR  -0.159 ** 
S/PD   
S/IG  0.060 * 
S/EA   
S/DR  0.117 ** 
D/PD 0.027 **  
D/IG   
D/EA 0.020 ** 0.018 ** 
D/DR -0.006 **  
R2 0.957 0.908 
Standard Error 0.377 0.369 
Degrees of Freedom 8 9 
n 14 14 
* p ≤ .05,   ** p ≤ .01   

 
Five design process variables are significantly 

associated with client satisfaction, explaining nearly 96% of the 
variation in client satisfaction scores.  Problem definition 
activities at both concept and detailed levels, and detailed 
engineering analysis have positive associations, while 
engineering analysis at the concept level and design refinement 
at the detailed level are negatively associated with client 
satisfaction.  The remaining variables are not statistically 

significant.  The model achieves excellent fit, as shown by the 
R2 value of better than 0.95, with a standard error of about 0.38 
on the response scale of 1-10.  The residual plot is reasonable 
for the sample size. 
  

The regression of design quality against activity hours 
terminated with four significant variables, with detailed 
engineering analysis again showing up as a positive factor, 
along with system-level idea generation and design refinement. 
Concept level design refinement, however, is negatively 
associated with the design quality measure. All other variables 
are not statistically significant.  The model of design quality 
also shows an excellent fit with an R2 better than 0.90 and a 
standard error of approximately 0.37 on the response scale of 1-
7. Again, the residual plot shows no cause for concern. 

 
Regressions of both quality measures including 

possible control variables such as semester, year, advisor, team 
size, hours allocated to non-design activities, and total design 
hours yielded inferior models to those relying on process 
variables alone. 

DISCUSSION 
While this analysis does not demonstrate causality, it 

does show an apparently strong relation between increased 
levels of effort in certain activity-design level combinations and 
improved (or worsened) outcome qualities. Further, there 
appears to be little overlap in the activities supporting the two 
measures of quality used. Only in the area of detailed 
engineering analysis does increased effort show a significant 
impact on both customer satisfaction and design quality. Table 
5 summarizes the significant effects seen in both models. 

 
Table 5. Directions of Significant Factors 

Customer Satisfaction  Design Quality 
  PD IG EA DR    PD IG EA DR 
C +  −    C    − 
S       S  +  + 
D +   + −  D     +   
 
 Taken together, the results suggest that problem 
definition (PD) has a positive impact on customer satisfaction 
at both the concept and detail levels, but that system-level PD 
has no direct effect on either measure. In contrast, and 
somewhat surprisingly, idea generation (IG) appears to be 
significant only with regard to design quality and only when 
conducted at the system level, perhaps because new ideas are of 
limited value unless they are generated “in place” as it were, 
taking into account the existing framework of the design.  
 

This last condition may be specific to novice 
designers, where inexperience limits their ability to separate 
good ideas from bad unless the representation used to generate 
ideas contains sufficient information on the surrounding 
system. Where expert designers might simply know how to “fill 
in the blanks” in the design, novices might need a hint, and the 
inclusion of references to the adjacent design elements may act 
as a solution-implying mechanism. By contrast, at the 
conceptual or detailed level, new ideas are generated in 
isolation from their neighbors in the design, suggesting that 
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these levels of abstraction may be less suited to IG where the 
integration of design elements is a key issue. 
 
 Not surprisingly, more hours poured into detail level 
engineering analysis (EA) contributes significantly to both the 
engineering validity of the final solution and to happier clients.  
In contrast, the negative response seen in the C/EA cell 
suggests a clear preference for engineering analysis at lower 
levels of abstraction, possibly because students are better 
trained in detailed analyses than abstract ones. Another possible 
explanation is that early analyses may be ineffective or even 
harmful when much of the design is subject to uncertainty or 
outright change. 
 

Effort spent on design refinement activities (DR) 
shows a clear preference as well: with customer satisfaction 
responding negatively to D/DR, and design quality negatively 
associated with C/DR.  To improve quality, it seems that design 
refinement should be focused on the level of abstraction 
involving interfaces within the design, as indicated by the S/DR 
cell. 
 

Viewed separately, it appears that customer 
satisfaction is strongly dependent upon problem definition 
activities. This relationship suggests that customer satisfaction 
may involve the issue of answering the “right” problem, or 
developing a thorough understanding of the real problem 
involved. Design quality, by contrast, seems to rely more on 
ideation and refinement of the system-level issues involving the 
configuration of sub-systems and their interactions. 
 

Table 6 shows the model coefficients in relative 
magnitude: all coefficients are shown as the ratio of their value 
in the regression model divided by the magnitude of the 
smallest effect (D/DR), with the design quality coefficients 
scaled to reflect the difference in the two measurement scales. 
This illustrates the relative importance of each factor to the two 
outcomes measures. As evident here, not only is D/DR the least 
important influence on customer satisfaction, but in 
comparison, D/PD is 4.5 times as beneficial on a per-hour 
basis, while C/PD is fourteen times as important as D/DR in 
influencing the customer satisfaction results. Surprisingly, the 
largest factor is negative, with C/EA having eighteen times the 
impact on quality that D/DR does. Design quality appears more 
sensitive to its fewer variables, with C/DR demonstrating a 
massively negative impact, and system level design refinement 
showing a positive impact almost as large. Within the limits of 
the data, Table 6 demonstrates a means of prioritizing design 
activities, given weights for the relative importance of client 
satisfaction and design quality from an engineering perspective. 

Table 6. Scaled Model Coefficients  

  
Customer 

Satisfaction 
Design         
Quality 

C/PD 14.0  
C/IG   
C/EA -18.1  
C/DR  -39.5 
S/PD   
S/IG  14.9 
S/EA   
S/DR  29.1 
D/PD 4.5  
D/IG   
D/EA 3.4 4.5 
D/DR -1.0   

 
 However, in applying these results, the limitations and 
assumptions inherent to the study are also important. First, as 
mentioned earlier, this linear analysis is assumed to be a local 
description of what experience suggests is more generally a 
nonlinear phenomenon. For example, with regard to customer 
satisfaction, C/PD appears to be the most positive factor 
influencing outcome. A project that does only conceptual 
problem definition, however, will likely receive a very low 
score for customer satisfaction. Similarly, the fact that D/DR is 
negatively associated with CSQ score only suggests that we 
minimize its presence within the limits imposed by our design 
goals. Despite the straightforward meaning of the regression 
results, we must add a clause to each variable, allowing for the 
fact that there are upper and lower bounds on each activity-
abstraction pair, whose true value may be difficult to describe.  
In other words, the results are applicable only over the ranges 
of the variables in the sample.  What the results do say is that if 
we have a straight choice between detailed and conceptual 
problem definition, the latter is likely to be more beneficial to 
pursue. 
 
 Secondly, this study is based on data describing the 
activities of seniors in the mechanical engineering program at 
Montana State University: this means that the model presented 
here is a description of essentially novice design efforts in an 
educational setting. Without further investigation, it remains to 
be seen whether the conclusions developed here can be 
generalized to industrial settings, more experienced designers, 
or other academic environments or disciplines. 

CONCLUSIONS 
Perhaps the most compelling conclusion from the 

results of this analysis is, process matters.  In fact, it matters a 
great deal, perhaps more than we realize.  In the final models, 
we included no control variables such as ethnic or gender 
diversity, team cohesiveness (or lack thereof), personality 
types, learning styles, academic background of the students, 
how involved the client was, advising style of the faculty 
advisor, team effort, nor any other variable that might affect the 
team’s ability to achieve a successful outcome.  We had 
diversity in the sample along all of these dimensions, yet even 
without modeling these factors, we can explain over 90% of the 
variability in the outcomes measures strictly from design 
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process variables.  It appears that the impacts of team diversity, 
personality types, etc. are important only to the extent that they 
contribute to or detract from an optimal design process. 
 

A second conclusion is, how you measure the 
“goodness” of the design outcome also matters.  We had weak 
correlation between design quality as perceived by practicing 
professional engineers, and client satisfaction with the end 
product.  Further, the process variables that were significantly 
associated with the two outcomes measures overlapped in just 
one variable (detail level engineering analysis).  This suggests 
that design processes that lead to client satisfaction look 
different than processes that lead to strong engineering 
solutions.  Design processes can be tailored to achieve different 
outcomes, and a “good” design process depends heavily on 
what you use to measure the quality of the final outcome. 
 

Finally, the regression analysis suggests that all design 
activities are not equal.  Some contribute more heavily to client 
satisfaction or design quality, and can have positive or negative 
impacts.  Specifically, problem definition activity contributes 
strongly to client satisfaction whereas concept-level 
engineering analysis strongly detracts from it.  Also, system-
level idea generation and design refinement are strongly 
positive contributors to design quality, whereas design 
refinement at the concept-level is a strong negative contributor.  
Thus, these results suggest that design educators would be wise 
to encourage their design students to spend adequate time in 
activities associated with problem definition (understanding 
client requirements, defining constraints, information gathering 
on unfamiliar technology, etc.) and generating and refining 
system architectures associated with initial conceptual designs.  
They would also be wise to advise students to avoid too much 
time analyzing or refining conceptual ideas—it appears much 
better to spend that time fleshing out the ideas and analyzing 
them at higher levels of resolution. 
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