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Types of studies
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Descriptive studies

Relational studies

Casual studies

Requires

Requires

Supports

Supports
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Phases of Experimental Research
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• Experimental or planning phase
• Design Phase
• Analysis Phase
• Interpretation Phase



Experimental Phase
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• Define problem statement
– Do a literature review
– Develop a hypothesis

• Define the variables of interest
– Dependent variables: measures performance

• Cannot be manipulated by experimenter (response variables)
• Determine how measures should be scaled (nominal, ordinal, 

interval, ratio)

– Independent variables (IV): controlled by experimenter
• Controlled experimentally
• Controlled statistically



Experimental Phase
Independent Variables (IV)

6

• Controlled by experimenter
• However, you need to determine whether the 

levels should be held constant or determined 
by a process of randomization
– Fixed effects: factors whose levels are set at 

specified values (e.g., System A, B, or C)
– Random effects: levels are chosen at random from 

among all possible levels (e.g., drivers)



Experimental Phase
Independent Variables (IV)
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• Rigidly controlled: variables remain fixed throughout 
the experiment
– e.g., The effects of 3 weight reducing programs (A, B, C) 

on weight loss.  
– The IV is the programs, the DV is weight loss

• Manipulated or set, at levels of interest: can be 
qualitative or quantitative; fixed or random
– e.g., temperature, age

• Randomized: Order of experimentation should be 
randomized to average out the effects of variables 
that cannot be controlled (extraneous variables)



Design Phase
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• Size of the sample
• How many observations for each person
• How large a difference to be detected
• What variables can you control?
• What variables can you not control (e.g., weather)
• Randomize order of experimentation
• Set up a mathematical model to describe experiment



Experiments
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• Types of experiments
– Completely randomized design (factorial experiment)
– Repeated measures (each subject goes through multiple 

days, trials, etc.)
– Restrictions on randomization
– Correlated dependent variables (lane deviation, steering 

wheel position)
– Unbalanced designs (each treatment group does not have 

an equal number of observations)
• Each situation requires the researcher to set up a 

different analysis (e.g., t-test, ANOVA (analysis of 
variance), regression model, or more complex models



Experimental Phase: Example
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• Interested in determining the effects of drivers and type of in-
vehicle system on driver speed.  Researcher considers 3 in-
vehicle devices and randomly chooses 5 drivers

• DV = average speed
• IV = in-vehicle device (fixed), drivers (random)

Driver
1 2 3 4 5

Device 1
2
3

Factorial Experiment: all levels are randomly assigned



Design Phase: Mathematical Model
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Hypothesis Testing

Problem or 
hypothesis

Collect 
relevant

data

Draw inferences or 
make judgments 
about the original 

problem

Analyze data
Decide if 
further 

investigation is 
necessary
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Hypothesis Testing
• Hypothesis testing is a procedure to test a theory 

(statement) about parameters of one or more populations
• Some examples uses of hypothesis testing:

– Does a new material have strength exceeding 200psi?
– Is the variability of parts produced by a new process 

significantly lower than when using the current process?
– Is the fraction of defective items from supplier 1 

significantly lower than from supplier 2?
– Is flu medicine 1 more effective than flu medicine 2?
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Hypothesis Testing Analogy
Court room Hypothesis testing
Court trial Hypothesis test
Evidence is presented Data is collected
Cannot know if  TRULY guilty 
Assumed innocent until proven guilty 
Defendant is guilty Alternative hypothesis
Defendant is not guilty 

(presumed innocence) Null Hypothesis 
Convict an innocent person Type I error (reject H0 when T)
Let guilty go free Type II error (fail to reject H0 when F) 
There are two situations in which a defendant will not be convicted (found not 
guilty)
1.The defendant is innocent (H0 is actually true)
2.The defendant is guilty (H0 is false, but we lack enough evidence to convict 

(reject H0) 14



Procedure for Hypothesis Testing

State Null and 
Alternative 
Hypothesis

Sample the 
population

Specify critical regions that would lead to 
rejection of null hypothesis and compare 
the test statistic with this region. Draw 
conclusion about the null hypothesis.

Specify and calculate 
appropriate test 

statisticMore Investigation?
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Decisions in hypothesis testing
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• If H0: 𝝻=50
• HA: 𝝻≠50

Fail	to	reject	H0

Reject	H0Reject	H0



Errors in Hypothesis testing

Fail to reject H0

H0 trueH0 false

Reject H0

State of the world

Type II error

Type I error

No error

No error

Beta=P(type II error)
Alpha=P(Type I error)
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Strong versus weak conclusions
• Rejecting H0 is a strong conclusion

– We can control alpha (probability of Type 1 error)
– We set it a priori to minimize the risk of Type 1 

errors

• Failing to reject H0 is a weak conclusion.
Why? 
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Setting up null and alternative hypotheses 
• One-sided hypothesis:

• Two-sided 

H0: µ = µ0 H0: µ = µ0
H1: µ < µ0 H1: µ > µ0

Reject H0 if Z0<-za Reject H0 if Z0>za

H0: µ = µ0
H1: µ ¹ µ0
Reject H0 if Z0<-za/2 or Z0>za/2
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P-value in a hypothesis test
• P-value is NOT the probability that the null 

hypothesis is false and 1-P is NOT the 
probability that the null hypothesis is true

• Interpreted as:  the risk associated with 
wrongly rejecting the null hypothesis.  

20



Example problem
• An engineer is considering a new nickel-chrome-iron 

alloy.  She has ordered 100 sample castings, which are 
to be tested at a materials lab for endurance under axial 
stress. 

• She wants a metal strong enough to meet customer 
specifications for parts in a new stamping machine.  
This requires that the mean number of cycles until 
failure obtained in vibration testing should exceed 
500,000. From specs, let σ=48,732.
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Procedure
1. Formulate the hypothesis. State the null 

hypothesis, H0 and the alternative hypothesis 
H1 about some parameter q.

2. Select the test statistic.
3. Establish the significance level and the 

acceptance and rejection regions for the 
decision rule.

4. Compute the value of the test statistic from 
the data.

5. Make the decision.

22



Comments
• Test aimed to assess strength of evidence against null 

hypothesis.  Either we have enough evidence to reject the null 
hypothesis or we do not have enough evidence to reject.

• The null hypothesis is the theory we hope to reject, the 
alternative hypothesis is what we want to support, by rejecting 
the null hypothesis.

• We can only reject hypotheses. We can never prove a 
hypothesis, all we can say is, we had insufficient evidence to 
reject the hypothesis: The strong conclusion is to provide 
sufficient evidence to reject the hypothesis.
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Research fallacies and validity 

24



Types of fallacies

25

• Fallaciesà Errors in reasoning, usually based 
on assumptions
– Ecological fallacyà assuming single observation 

is part of average
– Exception fallacy à assume single observation 

implies averages



Validity
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• Validity applied to propositions, inference, or 
conclusions.

• There are 4 main types of validity (but some 
have subcomponents)
– Conclusion
– Internal 
– Constructs
– External



Why is validity important?
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• To accurately interpret cause-effect 
relationships

• Conclude that the manipulation influences 
outcome measures

• Is the evidence good or poor?
• If there is low validity in a study, then we 

should not draw conclusions from that study.
– Thus, without validity a study is garbage.  



Conclusion validity

28

• Is there a relationship between the variables?
– What are some threats to conclusion validity?  



Internal validity
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• If there is a relationship between the variables 
(conclusion validity) then is the relationship 
causal? 
– What are some threats to internal validity?  

Hint: There are LOTS!



Establishing causality
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• Temporal precedenceà Timing matters
• Covariation of the cause and effectà

Relationship between variables
• No plausible alternative explanationsà

Cannot contribute effect to extraneous variable 



Threats to Internal Validity
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• Single-group threats
– Only a single group receives intervention

• Multiple-group threats
– When several groups are included 

(differences/similarities between groups)
• Social threats to internal validity

– When research is ‘less controlled’ there may be 
other factors that influence behavior 



Threats to Internal Validity
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• History threat
• Maturation threat
• Testing threat
• Instrumentation threat
• Mortality threat (study drop outs)
• Regression threat (regression to the mean, non-

random sample)



Construct Validity
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• Assuming a causal relationship, does the 
relationship support the constructs of the 
intervention and the construct of the 
measurement
– It is the intervention what you intended and are 

you measuring what you intended.  
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Within construct validity
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• Translation validity
– Face validity
– Content validity

• Criterion-related validity 
– Predictive validity
– Concurrent validity
– Convergent validity
– Discriminant validity



Translational Validity
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• Is the operationalization a good reflection of 
the construct?

• Face validityà On the surface does it support 
the construct?  
– Weakest way to demonstrate construct validity

• Content validity à How does the 
operationalization match the literature and 
domain expertize 



Criterion-related Validity
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• Does the operationalization behaves the way it 
should in your theory?

• Predictiveà Can the operationalization correctly 
predict what it should be able to predict?

• Concurrentà Can the operationalization correctly 
distinguish between groups?

• Convergentà Is the operationalization similar to 
other operationalizations it should be similar to? 

• Discriminantà Is the operationalization different 
than operationalizations for which it should 
differ? 



Coke example
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• For market researchers, criterion validity is crucial, and can make or break a 
product. One famous example is when Coca-Cola decided to change the 
flavor of their trademark drink.

• Diligently, they researched whether people liked the new flavor, performing 
taste tests and giving out questionnaires. People loved the new flavor, so 
Coca-Cola rushed New Coke into production, where it was a titanic flop.

• The mistake that Coke made was that they forgot about criterion validity, 
and omitted one important question from the survey. People were not asked 
if they preferred the new flavor to the old, a failure to establish concurrent 
validity.

• The Old Coke, known to be popular, was the perfect benchmark, but it was 
never used. A simple blind taste test, asking people which flavor they 
preferred out of the two, would have saved Coca Cola millions of dollars.

• Ultimately, the predictive validity was also poor, because their good results 
did not correlate with the poor sales. By then, it was too late!

https://explorable.com/criterion-validity



External validity
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• Can the results of this study be generalized to 
other populations, groups, and situations?
– What are threats to external validity?   
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How to minimize threats to validity
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• By argumentà Argue that the threat is not an 
issue

• By measurement or observationà If you can 
quantify some threat it may minimize the effect

• By design à Use appropriate control groups and 
designs

• By analysis àProvide an analysis that minimizes 
threats (e.g., regression on pre-test scores)



Data analysis
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Sample from a population 
• Typically in an engineering analysis, only a 

sample from a population is collected
• Population parameters

– µ,  σ2

• Sample parameters
• X(bar),  s2

Population

Sample

43
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Numerical summaries of data 
• Mean: Population Sample 

• Median 
Separates the upper and lower 50% of the sample 
Either the middle point if n=odd or the average of the two 
middle points if n=even 

• Mode
The most frequently observed data point in the sample 
(not always a single value)  

x =
xi

i=0

n

∑
n

µ =
xi

i=0

N

∑
N

x
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Variance 
Population Sample 

• Variance 

• Standard deviation 

s2 =
(xi − x)

2

i=1

n

∑
n−1

σ 2 =
(xi − x)

2

i=1

N

∑
N

s = s2σ = σ 2
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Stem and leaf diagrams
• Dot diagram

• A stem and leaf diagram can be used with more data. 

• Steps:
– Divide each data point into two parts, a stem (typically the 

leading digit or digits) and the leaf (the remaining digits) 
– List all of the values in a vertical column
– Attach each data point (leaf) to the stems
– Document the units.  

47



Example of a stem and leaf plot 

• What is the range of the data?

• What is the mode?

• What is the median? 

48



Frequency distributions and histograms 
• Bins are selected such that between 5 and 20 

bins are used. 
The number of bins is roughly sqrt(n) 

• This is subjective, but needs to demonstrate the 
shape of the data.

• If the bins correspond to categories of data, not 
bins, then it is refereed to as a Pareto chart.    

49



9 bins, width=20 

50



17 bins, width=10 
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Skewed distributions 
• Can identify if the distribution is skewed. 
• Skewed left (long tail to the left), skewed right 

(long tail to right) 
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Boxplots (AKA box & whisker plot)

• Displays the quartiles (1st, 2nd, and 3rd) 
• How do you calculate the quartiles? 

• Whiskers extend from 1st and 3rd quartiles out to 
the last data point that is within 1.5 times the IQR.  
– Does not extend the full 1.5*IQR on both sides, only 

to the last data point on each side.  
53
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Probability plots

• Used to determine if some data come from a 
specific probability distribution. 

• X-Y plot
– X axis is the values of the data 
– Y axis is usually the standardized normal scores 

for each value. 
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Using normal probability plot
• Use “fat pencil” test to determine if the plot is 

approximately normal.    
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Exercises
• When will the median of a sample be equal to 

the mean?
• When will the mode of a sample be equal to 

the median?
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Normal distribution 
• Examples of data that is normally distributed?

• A continuous random variable X has a normal distribution with 

parameters µ and s (or s2) written X~N(µ,s2) where  -¥ < µ < 

+¥ and 0 < s < +¥, if the probability density function is:

• E[X] = µ
• V[X] = s2

¥<<¥-=
--

xexf
x

for
2
1)( 2

2

2
)(

s
µ

ps

N(µ,σ 2 )
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Distribution characteristics
Bell shaped distribution

Symmetry of f(x):  P(X<µ) + P(X>µ) =1.0 
P(µ-σ<X<µ+σ)=0.6827
P(µ-2σ<X<µ+2σ)=0.9545
P(µ-3σ<X<µ+3σ)=0.9973
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Statistical Inference
• Draw a sample from a population and infer 

from the sample about the whole population.
• Take a random sample X1, X2, …,Xn is  of size n

Population

Sample

60



Point Estimation
• A point estimate is a reasonable value of a population 

parameter
• Often we don’t know the true probability distribution for 

a population.  We sample the population to make 
inferences on the population’s probability distribution.

• Distributions are described by their parameters. 
• For example, what parameters describe the

– normal distribution?
– binomial distribution?
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Point Estimation
• A point estimate of a parameter q is obtained 

by selecting an appropriate statistic Θ, and 
computing its value using the sample data.  
The selected statistic is called the point 
estimator.
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Statistical inference
• Making decision about a population based on 

information from a random sample from that 
population

• A RANDOM sample is very important.
– Must be independent random variables
– All data must have the same probability 

distribution

63



• A statistic is any function of the observations 
in a random sample

• Sampling distribution:  The probability 
distribution of a statistic  
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Central Limit Theorem
• Let X1,X2, ….,Xn be a random sample of size n

taken from a population with mean µ an finite 
variance s2.  If     is the sample mean, then the 
limiting form of the distribution of  

as n®¥ is the standard normal distribution. 

n
XZ
/s
µ-

=

X

65
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Intervals
• We can generate an interval for an estimate for 

a parameter 

• Confidence intervals
• Tolerance intervals
• Prediction intervals
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Confidence Interval
• A 100(1-α)% confidence interval for a parameter q is a 

random interval [L,U], such that
P(L £ q£ U) » 1-α.

• L: Lower confidence limit
• U: Upper confidence limit

68



Interpretation of confidence intervals
• If repeated random samples are taken, and a 100(1-α)%

confidence interval is computed for each sample, then 
100(1-α)% of these intervals will contain the true value of 
q.

• NOT that the CI contains the true parameter with 95% 
confidence!
– Because we used a sample to calculate the point estimate and the 

interval 
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Several CIs on a mean 
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CI on Mean: Sigma2 Unknown
• When σ2 is unknown, it can be estimated using s2

• For large sample sizes, n³30, the test procedures using the 
test statistic can be used (CLT will ensure normal 
distribution of means).

• For small sample sizes, n<30, use a t-test statistic, and 
further must assume that underlying distribution is 
normal.

• Test statistic with n-1 degrees of freedom:
– A 100(1-a)% is given as:
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t-distribution  
(AKA Student’s t-distribution) 

• The t-distribution is similar to the standard 
normal distribution.

• Both have mean equal to zero.
• Both are bell-shaped.
• The density t, is spread out more than the standard 

normal distribution.
• As n®¥ the t-distribution approaches the 

standard normal distribution
• First published by William Gosset (from 

Guinness) 
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CIs

• Confidence interval for mean (known sigma) 

• Confidence interval for mean with unknown sigma, n<30

• Confidence interval for mean with unknown sigma, n=>30

X − zα /2
σ
n
≤ µ ≤ X + zα /2

σ
n

n
stX

n
stX nn 1,2/1,2/ -- +££- aa µ

X − zα /2
s
n
≤ µ ≤ X + zα /2

s
n
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Inferences on the Mean of a Population 
(Variance Known)
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• One-sided hypothesis:

• Two-sided 

H0: µ = µ0 H0: µ = µ0
H1: µ < µ0 H1: µ > µ0

Reject H0 if Z0<-za Reject H0 if Z0>za

H0: µ = µ0
H1: µ ¹ µ0
Reject H0 if Z0<-za/2 or Z0>za/2



Example 1
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• A mining engineer is studying ways to increase the 
production of metal from a large copper deposit. 

• A large amount of ore is bypassed because quality is too 
low for economical processing.  The engineer is interested 
in a new process based on bacterial leaching.  

• 100 loads of ore are removed.  The final yield (in lbs of 
copper per ton of ore) is of interest.  Based on current prices 
and processing costs, the break even level is  36 pounds of 
recoverable copper per ton.



Example 1 continued
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• What is our hypothesis?
• H0:
• H1: 

• It was found that
• For 
• Calculate our test statistic:

40/25 == xtonlbs

645.1,05.0 05.0 == za



P-value
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• The P-value is the lowest level of significance 
that would lead to the rejection of H0. It is the 
probability that you would get a more extreme 
value than the one you got.

• That is
• P-value ≤ ⍺àreject H0 at level a
• P-value > αà fail to reject H0 at level a



P-value
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• For a normal distribution:

• The smaller the P-value, the more strongly H0
can be rejected.

P =
2[1−Φ(| z0 |)] two tailed test
1−Φ(z0 ) upper tailed test
Φ(z0 ) lower tailed test

#

$
%

&
%



Type I error
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• Hypothesis tests specify the test in terms of a level of 
significance α. 

• α = P(Type I error) 
= P(reject H0 | H0 is true)



Type II error
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β = P(Type II error) 
= P(fail to reject H0 when H0 is false)
= P(fail to reject H0 | H0 is false)

• Power of a test: probability of the test leading us to 
reject the null hypothesis when the null hypothesis is 
false (equivalently, reject null hypothesis when some 
alternative hypothesis is true). 

• Power of a test = 1-β  



Balancing α and β
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True mean 
µ

a = P(reject H0 | H0 true)

b = P(fail to reject H0 | H0 false)

H0: hypothesized mean 
µ0

Rejection regionDo not reject region



Test of the Mean of a Normal 
Distribution with Unknown Variance
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• Since we have unknown variance we will 
need to use the test statistic t0

• Test statistic: 

ns
Xt
/

0
0

µ-
=



Example 2
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A new steel plant has gone into production and markets a 
specific grade of steel.  It is necessary to determine if the mean 
ultimate tensile strength of the new product,    differs 
significantly from the industry standard mu=50,000 psi.  A 
sample of 10 is taken from the process and yields a value of    
=48,500 and standard deviation (s=2,700 psi).  With a 
significance level of alpha=0.05, is there a significant 
difference between the industry standard and the new process?  

X

X



Inference on variance and standard deviation of a 
normal distribution 
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• Test the variance of a normal population 
compared to some specific value

• Must assume that the data follows a normal 
distribution   

• Test statistic:
• Use Chi2 distribution 

χ 2
0 =
(n−1)S2

σ 0
2



Inference on variance and standard 
deviation of a normal distribution 
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• One sided hypothesis:
– H0:σ2 =σ2

0 H0: σ2=σ2
0

– H1: σ2<σ2
0 H1: σ2>σ2

0

– Reject H0 if χ2
0< -χ2

a,n-1 χ2
0 > χ2

a,n-1

• Two sided hypothesis:
– H0: σ2=σ2

0

– H1: σ2¹σ2
0

– Reject H0 if χ2
0< -χ2

a,n-1 or χ2
0< -χ2

a,n-1



Example 3 
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• Data from am Izod impact test resulted in a 
sample standard deviation of 0.25 with a 
sample size of 20.  Does the sample standard 
deviation significantly differ from 0.10?  Use 
α=0.01
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Inference on Population Proportion 

88

• In a sample of n, we have X successes, we can 
estimate the probability of success 

• Recall, if X has a binomial distribution with 
parameters n and p, the X can be approximated 
with a normal distribution that has parameters 
µ=np0 and s2=np0(1-p0)

• Test statistic:

)1( 00

0
0 pnp

npXZ
-

-
=



Inference on Population Proportion 
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• One sided hypothesis:
– H0: p=p0 H0: p=p0

– H1: p<p0 H1: p>p0

– Reject H0 if z0<-za z0>za
• Two sided hypothesis:

– H0: p= p0

– H1: p¹ p0

– Reject H0 if z0<-za/2 or z0>za/2



Nonparametric Tests and 
Approaches

90



Advantages of nonparametric tests
• Usually quick and easy
• We can test categorical data, rank order data
• We can still use a specific level of significance 

100%(1-α)
• Can be used with smaller samples than is 

typically required in parametric tests but are 
less efficient

• The most efficient test should always be used 
if possible.  
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The sign test
• Used to test hypotheses about the median
• Key ideas:

– In a normal distribution, 50% of the distribution is 
above the median, and 50% is below. 

– In a normal distribution the mean=median. 
– Test Xi-median0, count the number of  positive 

values (r+)
– r+ is a binomial random variable 
– P=P(R+ ≤ r+, when p=1/2)
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Example 5
• The impurity level (in ppm) is routinely measured 

in an intermediate chemical process.  Data:
• 2.4, 2.5, 1.7, 1.6, 1.9, 2.0, 2.5, 2.6, 2.3, 2.0, 1.8, 

1.3, 1.7, 2.0, 1.9, 2.3, 1.9, 2.4, 1.6.

• Can we claim that the median impurity is less 
than 2.5 ppm?  

• Use the sign test with α=0.05, calculate the P-
value for this test.  
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Wilcoxon Signed-rank test
• Like the sign 

test, but also 
takes into 
account the 
magnitude of 
the 
differences 
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Example of Wilcoxon Signed Rank Test
• We are assessing the summer salary of a 

company’s co-op and intern students.  We want 
to evaluate the claim that the salary is $2000 
for the summer.

• We have data from 8 co-op and interns
• 2500, 2200, 1900, 2450, 2100, 1700, 1600, 

1400
• Use a Wilcoxon Signed Rank test to evaluate 

this claim  use alpha=0.05.  
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Wilcoxon Rank-Sum test (sometimes called 
the Mann-Whitney test, but not really)

• Can be used to test one or two sided tests
• Procedure

– Arrange all data in ascending order.
– Assign ranks
– Define W1 as smaller sample sum of the ranks
– W2= (n1+n2)(n1+n2+1)/2 – W1

– Define critical values from tables

Two sample test
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Example 6
• A traveler travels to Seattle and uses either 

Delta or Alaska.  Flight delays are recorded for 
the last six trips on each airline. Is there 
evidence that either airline has superior on-
time arrival performance? Use α=0.01 and the 
Wilcoxon rank-sum test. 

• Delta: 13, 10, 1, -4, 0, 9
• Alaska: 15, 8, 3, -1, -2, 4

97



98



Example 7
• Grades for exams for select students were 

recorded.  Is there a difference in grades 
between Form A and Form B exams? Use 
α=0.05 and the Wilcoxon Rank-sum test.

• Form A: 24, 67, 88, 90, 98
• Form B: 25, 45, 70, 70, 80, 85, 
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http://imgs.xkcd.com/comics/boyfriend.png
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Correlation

• Used to show the joint behavior of two 
variables to determine if they are related, 
rather than using one to predict the other

Strong positive
Strong negative

No relationship

No linear 
relationship

101



Sample correlation coefficient 

r = SXY

(xi − x )
2∑ (yi − y )

2∑
=

SXY
SXX SYY
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Properties of r
• 1. The value of r does not depend on which of the two 

variables are labeled as x or y
• 2.  The value of r is independent of the units of x and y.
• 3. –1 ≤r ≤ 1 
• 4.  r=1 iff all (xi, yi) lie on a straight line with a positive 

slope, and r=-1 iff all (xi, yi) lie on a straight line with a 
negative slope

• 5. The square of the sample correlation coefficient gives the 
value of the coefficient of determination from linear 
regression (next lecture)  (r)2=r2

• 6. Rule of thumb:
0 ≤ |r| ≤ 0.5: weak correlation 
0.8 ≤ |r| ≤ 1.0: strong correlation 

103



Correlation vs. Causation 

Correlation does NOT imply causation. 
Empirically observed correlation is a necessary but not 
sufficient condition for causality. (Recall validity from 
earlier).

http://filipspagnoli.wordpress.com/2009/05/06/lies-damned-lies-and-statistics/
104



http://bama.ua.edu/~sprentic/101%20Psych%20&%20Life--Correlation-causation.htm
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Simple linear regression
Is a statistical tool which examines the effects that some 
variables exert (or appear to exert) on others.  It utilizes 
the relation (or apparent relation) between 2 or more 
quantitative variables so that 1 variable can be 
predicted from the others.

Examples:
Predict price of a house based on size
Predict weight based on height
Predict car mpg based on car weight
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Approach to linear regression 

• Per Capita Health 
Spending and Per Capita 
Gross Domestic Product 
(GDP) in 24 OECD 
Countries (1989) 
– From Schieber, Poullier

and Greenwald, Health 
Affairs, 1991

Country Per Cap Hlth Per Cap GDP 
1 United States 2051 18.1429
2 Canada 1483 17.2857
3 Iceland 1241 15.5714
4 Sweden 1233 13.8571
5 Switzerland 1225 13.8571
6 Norway 1149 15.5714
7 France 1105 12.2857
8 Germany 1093 13.4286
9 Luxemburg 1050 14.8571

10 Netherlands 1041 13.0000
11 Austria 982 11.8571
12 Finland 949 12.8571
13 Australia 939 12.2857
14 Japan 915 13.4286
15 Belgium 879 11.8571
16 Italy 841 12.4286
17 Denmark 792 13.5714
18 UK 758 12.4286
19 New Zeland 733 10.8571
20 Ireland 561 7.8571
21 Spain 521 8.8571
22 Portugal 386 6.5714
23 Greece 337 6.4286
24 Turkey 148 4.4286108



Approach to linear regression
• In regression analysis, we look at the conditional 

distribution of the response variable at different 
levels of a predictor variable 

• Response variable
– also called ‘dependent’ or ‘outcome’ variable
– what we want to explain or predict
– in simple linear regression, response variable is continuous

• Predictor variable 
– also called ‘independent’ variable or ‘covariate’
– in simple linear regression predictor variable is continuous
– How we define which variable is the response and which is 

the predictor depends on the research question 
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Makes sense to summarize the relationship between these variables with a straight 

line
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Linear function
• In considering the relationship between variables, there 

are two kinds:
– Functional:
– Statistical:

The simplest:

But we will use: 
• Y is the response variable that is a linear function of the 

predictor variable X
• β0 is the intercept; the value of Y when X=0
• β1 is the slope; how much Y changes when X increases 

by 1 unit
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Linear regression 
• In linear regression β0 +β1X represents the mean 

value of all of the Y’s for a give value of X

There is an entire distribution of Y values for each 
value of X (conditional distribution) 

We say that the relationship between X and Y is 
linear if the means of the conditional distribution of 
Y|X lie on a straight line. 

112



Error terms
• In regression, we represent factors other than 

Xi that affect Yi with an error term εi

• Population model: 
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Linear Regression
• Assumption

– Errors ~Normal (0, σ2)

• What do we know about y?

• How do we estimate the model?
114



Model
Parameter Estimate Std. Error t value for H0: 

Paramter=0  Pr(>|t|)
Intercept   -402.974 121.725 -3.311 0.00318 
Per.Cap.GDP  109.287 9.609 11.373 1.11e-10
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Inferences for the slope
• So far, we’ve been describing the relationship between two 

continuous variables
• Now we want to perform a hypothesis test to determine 

whether there is a linear relationship between two variables 
– Depends on assumptions of linear regression

• Question:  Does the value of Y depend on X?

• Answer:  Unless β1 =0 in which case:

• Hypothesis for test for linear relationship between Y and X
• H0: β1= 0

H1: β1 ≠ 0
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Hypothesis testing
• Standard form of test statistic: estimate divided by 

its standard error
• Standard error of  βhat1depends on 

– variability of Ys
– how closely the Xs are

• Follows a t distribution with n-2 degrees of 
freedom

• P-value:  probability of obtaining a t-statistic as 
extreme as or more extreme than, what we got, if 
Ho is true.  

117



Hypothesis testing 
• If we do not reject H0, then we would conclude that there is no 

linear relationship between x and Y.

• Recall that a P-value:
– Used in hypothesis tests to help you decide whether to 

reject or fail to reject a null hypothesis. The p-value is the 
probability of obtaining a test statistic that is at least as 
extreme as the actual calculated value, if the null 
hypothesis is true. A commonly used cut-off value for the 
p-value is 0.05.  For example, if the calculated p-value of a 
test statistic is less than 0.05, you reject the null hypothesis.
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Residuals 
• A linear model assumes that the residuals are 

normal
– How do we test this?  
– How did we test to see if data was normally 

distributed before?  
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Testing the residuals for normality
• Plot estimated values vs. residuals
• Plot histogram of residuals
• Plot QQ-plot
• Do a Shapiro-Wilk normality test
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From simple linear regression
• Multiple regression à more than one 

explanatory variable 
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Designing experiments
• Statistically-based experimental design can be 

VERY useful for engineers
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ANOVA

Part of this lecture is based on these lecture materials: 
http://www.utstat.toronto.edu/~olgac/sta248_2013/notes/sta248_Le

cture9.pdf
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Analysis of Variance (ANOVA)
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Assumptions of ANOVA
• Population distribution being sampled is normal

– If not, may need to transform data, or use nonparametric 
tests

– Can test by plotting the residuals
• The process is in control: it is repeatable
• Variance of the errors within all levels of the factor is 

homogeneous

If you violate the assumptions, your results may be 
incorrect or misleading



ANOVA with single factor (one-way ANOVA)
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• Completely randomized single factor 
experiment (completely randomized design)
– Only one factor is varied
– No restrictions on randomization
– Order of experimentation is completely random



ANOVA- single factor
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Slightly different notation
Let: 

tj: used to indicate the effect of the jth level of the single factor (one 
treatment effect)

The model is written as:
Yij = µ + tj + eij

Where
Yij represents the ith observation (i = 1,2,...n)  on the jth treatment 

(j = 1,2,...m levels).
µ is the common effect for the whole experiment (overall mean).
tj represents the effect of the jth treatment.
eij is the random error present in the ith observation on the jth treatment.

eij: normally and independently distributed 
(NID), with random effect, µ = 0, and s2 is 
the same for all treatments or levels.



Collected	Data

Example: data for one-way ANOVA
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Ho: tj = 0  for all j’s to be tested.
Ha: at least two of the tj are different.

Factor Levels 1 (auditory) 2 (visual) 3 (both)
cells Y11=25 Y12=32 Y13=24

Y21=24 Y22=30 Y23=23
Y31=23 Y32=24 Y33=22

Totals T.1=72 T.2=86 T.3=69 T..=227
Count n1=3 n2=3 n3=3 N=9
Means Y.1=24 Y.2=28.7 Y.3=23 Y..= 25.2

Treatment (Devicesj)



ANOVA- single factor calculations
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Example: computing residuals
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Ho: tj = 0  for all j’s to be tested.
Ha: at least two of the tj are different.

Factor Levels 1 (auditory) 2 (visual) 3 (both)
cells Y11=25 Y12=32 Y13=24

Y21=24 Y22=30 Y23=23
Y31=23 Y32=24 Y33=22

Totals T.1=72 T.2=86 T.3=69 T..=227
Count n1=3 n2=3 n3=3 N=9
Means Y.1=24 Y.2=28.7 Y.3=23 Y..= 25.2

Treatment (Devicesj)



ANOVA – single factor example
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• Test for normality

12425 example,For   1.1111. =-=-=-= yyeyye jijij

Factor Levels 1 (auditory) 2 (visual) 3 (both)
cells e11=1 e12=3.33 e13=1

e21=0 e22=1.33 e23=0
e31=-1 e32=-4.67 e33=-1

Treatment (Devicesj)



Test for normality
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ANOVA – single factor
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Factor Levels 1 (auditory) 2 (visual) 3 (both)
cells Y11=25 Y12=32 Y13=24

Y21=24 Y22=30 Y23=23
Y31=23 Y32=24 Y33=22

Totals T.1=72 T.2=86 T.3=69 T..=227
Count n1=3 n2=3 n3=3 N=9
Means Y.1=24 Y.2=28.7 Y.3=23 Y..= 25.2
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ANOVA – single factor
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Source of  
Variation 

Sum of 
Squares 

df Mean 
Square 

 
F0 

A SSA m - 1 
1-

=
m
SSMS A

A  E

A
0 MS

MSF =

 

Error (within treatment) SSE N-m mN
SSMS E

E -
=

 
 

Total SST N - 1   
 

Source of  
Variation 

Sum of 
Squares 

df Mean 
Square 

 
F0 

Vehicle Display 54.89 3-1=2 45.27
2
89.54

=  26.4
45.6
45.27

=  

Error (within treatment) 38.67 9-3=6 45.6
6
67.38

=   
Total 93.56 9-1=8    
 

F(critical) = F(2,6)=5.14

Do not reject



ANOVA and regression
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ANOVA
• Developed by Ronald 

Fisher
• Based on univariate 

theory
– To help further reduce 

data to more plausible 
levels for further 
experimentation

Regression
• Developed by Karl 

Pearson (1908)
• Based on multivariate 

theory of correlation
– Includes goodness of 

fit and inferences 
regarding coefficients



Difference between ANOVA and regression
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ANOVA (Fitted regression model)
• Purpose: to seek the impact of IVs on 

DV
• Good: Can help us get to a better 

controlled measures
• Good: Can tell if differences in a 

particular measure (the DV) between 
groups (IVs) are due to chance.

• Bad: Tells us very little about the nature 
of that relationship

• Bad: Limited to category variables as 
IVs and a continuous variable as DV

• Can account for continuous DV as a 
covariate

Regression for predictive model
• Purpose: to seek the impact of IV on 

DV
• Bad: Nothing is controlled
• Bad: Cannot establish causation
• Good: Determines the coefficients 

for each variable
• Good: Can predict the behavior of 

the response variable
• Good: Can use continuous IVs to 

predict continuous DVs



When to use what?
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• Use ANOVA when balanced dataset across 
categorical independent variables

• Use linear regression when:
– datasets are not balanced (typical in surveys)

• Note: variation explained by a factor will be different if the factor is 
used first (e.g., stepwise regression)

– where the researcher can not plan the values of every 
explanatory variable (observational study)

– Cannot control experimentally, so control (or adjust for) 
variables statistically

– If the explanatory variables include categorical variables 
and continuous variables
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