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Abstract. Expanding on previous work to predict assembly times from detailed 
assembly models, low fidelity part models are used in a series of predictive per-
formance experiments.  Results reveal that this tool can predict the assembly 
time of a product to within 40% of the target “as built” time using a high fideli-
ty neural network and a low fidelity CAD model.  The tool is based on structur-
al complexity, representing the assembly graph as complexity vector of 29 met-
rics.  The graphs are automatically compiled from examining part proximity 
(interference checks) regardless of the choice of mating constraints used in the 
modeling.  A neural network is then used to build a relationship between the 
complexity vector (input) and the assembly time (output).  Low-fidelity models 
can be used to predict assembly times, thereby supporting earlier inclusion of 
design for assembly methods in the design process. 
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1 Motivation for Time Estimation 

Design for Assembly (DFA) is a design method used in industry to improve the as-
semblability of a product with the ultimate goal of reducing manufacturing costs.  
With increasing manufacturing costs, an interest in DFA has emerged due to the as-
sembly phase in product development accounting for approximately 50% of the man-
ufacturing time and 20% of the manufacturing cost [1–8]. Furthermore, approximate-
ly 70% of the total product cost is determined during the early stages of design, moti-
vating the need for DFA tools that can support product development throughout the 
design process [9, 10].  

Assembly time estimation tools, within the larger design for assembly method, 
have been developed for predicting the assembly time of a product [5, 8, 11]. Time 
estimate tools do not support assembly time estimation in the early stages of design as 
detailed information about the parts, assembly sequence, and assembly structure are 
required. This information is often not determined until the embodiment or detail 
design phase of the design process. The majority of these assembly time estimation 
tools are used primarily to estimate the assembly benefit of a design change to an 
existing product. This paper focuses on the development of an extended complexity 

mailto:Include@e.mail.address


connectivity assembly time estimation [12–14] method based on information retrieved 
from low fidelity CAD models in the conceptual design phase.   

1.1 Connectivity Complexity Method 

The term complexity is used in many disciplines all with different interpretations of 
the definition [15–17]. For this research, the term complexity will be used to describe 
amount of information required to describe a system comprised of more than one 
component [15, 18]. Previous research developed a set of complexity metrics to cap-
ture the connectedness of parts within a system [12, 14, 19]. The connectivity method 
uses the complexity metrics as the input vector to a historical-based prediction model 
to estimate assembly times of a product [12–14]. The complexity connectivity method 
uses 29 graph-based complexity metrics of an assembly [14, 19]. 

2 Low Fidelity CAD Model Assembly Time Estimate:  The 
Experiment 

Previous work has focused on estimating assembly times from detailed component 
and assembly models. This work evaluates the potential of using components repre-
sented at lower levels of detail (conceptual models or low-fidelity models).  While the 
exact dimensions and features of the components are not known, the general system 
architecture and layout is captured [20]. The form of the individual components are 
developed throughout the design process to create a completed CAD model with 
working drawings in the detailed design stage [20]. For clarity, low-fidelity models 
are those that are found in conceptual design and high-fidelity models are found in 
detailed design phases. 

This experiment explores the use a modified complexity connectivity method to es-
timate the assembly time of models in the conceptual design phase. The estimated 
assembly time of the conceptual models is compared to the estimated assembly time 
of the complete models using the same modified complexity connectivity method. 
The following research questions are answered: 

• What is the predictive power of ANN trained on detailed models to predict detailed 
models? 

• What is the predictive power of ANN trained on detailed models to predict low 
fidelity models? 

• What is the predictive power of ANN trained on low fidelity models to predict low 
fidelity models? 

• What is the predictive power of ANN trained on low fidelity to predict high fideli-
ty? 



2.1 Set of Models 

The experiment used a total of thirteen products (Table 1) to compare the estimated 
assembly time of high-fidelity models and low-fidelity models. The models were used 
in previous work and were created by multiple designers by physically reverse engi-
neering existing products or downloading models from the public domain [13]. The 
last three models are withheld for testing purposes. 

Table 1. Products Used in Training and Testingt 

Common Name Training/Testing CAD Model Image 
Stapler Testing Not included for brevity 

Flash Light Testing 
 

Ink Pen Testing Not included for brevity 

Pencil Compass Training 

 
Indoor Electric Grill Training See Fig. 1 

Solar Yard Light Training Not included for brevity 

Table Vise Training 

 
Drill Training Not included for brevity 

Shift Frame Training Not included for brevity 
Vegetable Chopper Training Not included for brevity 
Computer Mouse Training Not included for brevity 
Piston Assembly Training Not included for brevity 

3 Hole Punch Training Not included for brevity 

2.2 Reducing Model Fidelity  

Low-fidelity CAD models are difficult to define and are often not distinctly saved by 
the designer before they are evolved to more detailed higher fidelity models. For this 
work, the high-fidelity models were reduced in fidelity to represent low-fidelity mod-
els in the conceptual design phase.  

To do this, each part included in an assembly model was reduced to its lowest level 
feature. In SolidWorks the feature tree stores the features used to create a part and the 
order in which those features were created. To decrease bias in the reduction of fideli-



ty of the parts, the feature tree was reduced to the top level feature for each part. It 
should be noted that if a multiple designers create the same part, a different conceptu-
al model may result. This uncertainty is not the focus of this research and is reserved 
for future work.  

As an example, the first feature used to create a bolt is an extruded shaft (Boss-
Extrude1). Next, a swept extrusion (Sweep1) is used to create the threads around the 
shaft of the bolt. An additional extrude (Boss-Extrude2) is used to create the bolt head 
and then an extruded cut (Cut-Extrude1) is used to cut the hex in the top of the bolt 
head. Starting from the bottom of the feature design tree, the Cut-Extrude1 is deleted, 
followed by Boss-Extrude2 and Sweep1 leaving only the initial extrude as an example 
of a conceptual model for a bolt (see Table 2). 

Table 2. Reduction of Fidelity of a Bolt Complete Model to Create a Low Fidelity Model 

     
Cut-Extrude1 Boss-Extrude2 Sweep1 Boss-Extrude1 
This removes detail from the parts in the CAD model, leaving a low-fidelity model 

of the product simulating a model created in the conceptual phase of the design pro-
cess. The indoor electric grill (Fig. 1) is similarly reduced from a detailed model to an 
assembly of the low-fidelity part models. Mating relationships may be lost in this 
transformation, precluding the use of previous graph generation tools [21]. Therefore, 
a mate-independent method for generating the connectivity graphs is used based on 
interference checks. 

  
Fig. 1. Transformation of Electric Grill from High Fidelity Model to Low Fidelity Model 

2.3 Artificial Neural Network Generation 

The artificial neural network (ANN) used for this research is a supervised back prop-
agation network [12, 13]. The ANN is trained by providing a set of input vectors and 
a set of target values. The ANN then creates a relationship between the input values 
and the target value. In this case, the complexity vector of 29 metrics is the input vec-



tor and the assembly time of the product will be used as the output. Once an ANN is 
trained, a new complexity metric is input and the ANN provides an assembly time. 

2.4 Experimental Sets 

Two separate neural networks are created and compared. The first ANN uses the 
complexity vector of the high-fidelity models as input and assembly times as the tar-
gets. The second ANN uses the complexity vectors of the low-fidelity models as the 
training inputs and the same assembly times as target times. This approach is used to 
test the ability to train a neural network to find a relationship between low-fidelity 
complexity vectors and product assembly times. Each ANN is used to predict the 
assembly time of a test data set (three products) using the high-fidelity and low-
fidelity models. The experimental sets are summarized in Table 3. 

Table 3. Experiment Design Sets 

Set Number ANN Trained on: Test Set Type: 
1 High Fidelity Models Vectors High Fidelity Model Test Vector 
2 High Fidelity Models Vectors Low Fidelity Model Test Vectors 
3 Low Fidelity Model Vectors High Fidelity Model Test Vector 
4 Low Fidelity Model Vectors Low Fidelity Model Test Vectors 

3 Conceptual Model Time Estimate Results 

After the two ANN are trained, the input vectors are passed back in to the neural net-
work to gain a qualitative assessment of ANN fit to the training set. One shortcoming 
with ANNs is the potential for overtraining, limiting the ability of the ANN to extrap-
olate to new data sets [22–24]. The percent error is calculated as the normalized 
difference from the target time (see Eqn. 1). A positive percent error indicates that the 
predicted time was greater than the target time, and a negative percent error indicates 
that the predicted time is less than the target time. 

 Percent Error = (Predicted Time - Target Time)/Target Time (1) 

The ANNs are able to estimate the training set assembly times within 70% of the 
target time, but visually do not appear to be over fit to the training set data (see Fig. 
2). Previous research offers techniques to prevent ANN over fit and improve perfor-
mance of ANN by varying ANN parameters. As the focus of this paper is to demon-
strate the potential to use ANN to predict assembly times of low-fidelity models, the 
improvement in design of the ANN itself is reserved for future work. 

To test the performance of the two ANNs in predicting the assembly times, com-
plexity vectors of three products (stapler, flash light, and ink pen) not used in the 
training are used for testing. For each of the test products the high fidelity and low 
fidelity graph complexity vectors were calculated and used as the input to both ANNs 
trained (high fidelity and low fidelity).  



 
Fig. 2. Training Set Percent Error from Target Time 

The target time, the predicted time, and the percent error for each of the three test 
cases are presented in Table 4. Each ANN predicted an assembly time greater than 
the target time for the test cases except for the high-fidelity ANN for the stapler. The 
test products varied in target assembly times from 34 seconds to 123 seconds. Addi-
tional test cases with a larger range of assembly times are needed to determine if the 
ANN time estimate accuracy is dependent on the assembly time or the complexity of 
the product being studied, but this is reserved for future work. 

Table 4. Test Products Results Summary 

Fidelity Levels Predicted Time [s] (Percent Error) 
ANN Test Assembly Stapler Flash Light Ink Pen 
High High 115.84 (-6%) 107.65 (43%) 54.78 (59%) 
High Low 119.43 (-3%) 91.79 (22%) 46.41 (35%) 
Low High 157.19 (27%) 109.89 (46%) 72.36 (110%) 
Low Low 198.30 (61%) 95.19 (26%) 51.65 (50%) 

Target Time [s] 123.51 75.40 34.40 
The percent error from the target time was calculated for each of the outcomes (see 

Fig. 3, Fig. 4, and Fig. 5). 



 
Fig. 3. Test Case Results for Stapler 

 



 
Fig. 4. Test Case Results for Flash Light 

 
Fig. 5. Test Case Results for Ink Pen 

The results from the analysis of the test cases indicate that both of the ANNs (high 
fidelity and low fidelity trained) can predict an assembly time to within 120% inde-
pendent of the type of input vector used.  However, the low fidelity ANN was the 
generally the worst at predicting assembly time when presented with a high fidelity 
input vector.  The best combination of ANN and input vectors, based on the lowest 
percent error for all three test cases is the high fidelity ANN being provide low fideli-
ty input vectors.  The focus of this research is if an ANN can predict the assembly 



time of a low fidelity model.  Both the high fidelity ANN and the low fidelity ANN 
were able to predict the assembly time of the conceptual model to within 120% of the 
target time.  There was not sufficient evidence in this study to determine if there is a 
significant difference in assembly time estimation between the high fidelity and low 
fidelity ANN when using the low fidelity input vectors. The training sets and the test 
cases were limited in number and could potentially influence the results.  The results 
of this study serve as motivation that there is potential to use an ANN to estimate the 
assembly time of models early in the design process. 

4 Conclusions and Future Work 

The ability of a neural network to create a relationship between input vectors and 
output vectors depends on the training set provided.  The larger the training set (to a 
degree to avoid over fitting), the better the neural network is at predicting the output.  
While the input vectors used to train the neural network in this research are limited to 
ten training products, future work includes increasing the training set to determine if 
the assembly time estimation can be further improved. The number of test products 
will also be increased to ensure the trends in this limited population are valid.  This 
paper presents the preliminary findings that must be extended with more validation. 

The findings of this study suggest that the high fidelity assembly model based neu-
ral networks provide good prediction tools for estimating assembly time for both high 
fidelity and low fidelity conceptual models.  There was not significant evidence to 
suggest that the high fidelity neural network or the low fidelity neural network can 
better predict assembly time.  It is clear however that a neural network trained on low 
fidelity models should not be used to predict the assembly time of high fidelity mod-
els.  Ultimately, this tool shows promise for providing engineers in conceptual stages 
of product development with useful information about production costs early in the 
design process.  The accuracy of these predicted times are sufficient to provide justi-
fication for alternative engineering selection decisions at early stages. 
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