
STRUCTURAL COMPLEXITY METRICS APPLIED AGAINST PRODUCT 

GRAPHS 

Predicting Market Price and Assembly Time from Function and Assembly models 
 

Objective 
Understand and identify key complexity metrics of different product model graphs 
(assembly models and function structures) that can be used for surrogate modeling 
of product performance metrics (assembly time and market cost).   

Background 
• Informed decision making can be done  based on First principles, Engineering 

expertise and Historical pattern matching. 
• Our research is based on historical pattern making since it is not possible to use 

the first two options in this case. The research focuses on developing four 
prediction models. Previous work was done on:  

 1. Market value (MV) estimation based on function structures (FS) 
 

 
                                           
 
 
                                  

 

(Mathieson, JL L, and JD Summers. 2010. “Complexity Metrics For Directional Node-Link System Representations: Theory and Applications.” )  
     2. Assembly time (AT) estimation based on assembly (CAD) models (AM) 

 
 
 

 
 
(Namouz, Essam Z., and Joshua D. Summers. 2013. “Complexity Connectivity Metrics – Predicting Assembly Times with Low Fidelity Assembly 

CAD Models.”) 

 
• This previous work has shown that historical data in the form of product graphs 

reduced to a vector of twenty nine complexity metrics coupled with 
performance metrics can be used for performance prediction through artificial 
neural network surrogate modeling.   

• Current work being done on: 
     3. Market value (MV) estimation based on Assembly models (AM) 
     4. Assembly time (AT) estimation based on function structures (FS) 
 
 
 

 
Figure: Timeline 

 
 

Artificial Neural Networks 
• ANNs serve as a surrogate model to map the graphs to the performances values. 
• ANNs are chosen, as they explore the relationships due to their ability to perform 

nonlinear statistical modeling (Tu,1996). 
• For this research, a population size of 189 architectures are used and are 

replicated 100 times to predict the performance values of the products. 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure: Training of the ANNs using Complexity Metrics and Target Values 

Test Results 
   Table: Absolute Average Percentage Error of four prediction models 

                                                 
                                                                                                                                                                                                         

 
 
 
 
                                                    

 
 
 

        
 

 

 

 

 

                                                                                    Figure: Test Results 

Conclusion 
• Between assembly models and function structures, use of assembly models for 

prediction has a lesser absolute error percentage. 
• The prediction model of ‘Assembly time estimation based on assembly (CAD) 

models’ has the lowest absolute error percentage. 
     Table: Comparison of four prediction models 
 

 

 
 
 
 
 

  

Future work 
• Analyze the level of significance of each complexity metric in the prediction  of 

performance metrics.   
• Explore both principle component analysis  & linear and nonlinear regression 

analysis to refine the complexity metric vector.  

  AM-AT AM-MV FS-AT FS-MV 

SANDER 10.2% 11.9% -59.9% -59.3% 

HAIR DRYER -7.5% 12.4% -42.1 153.9% 

LAWN MOWER -0.2% -7.2% -14.5% -21.7% 

FLASH LIGHT 2.9% 23.2% 18.9% 36.0% 

FOOD CHOPPER -5.8% 6.1% -8.6% -13.9% 

ABSOLUTE 

AVERAGE 
5% 12% 29% 57% 

                      Assembly Time Market Value 

Assembly 
Models 

Absolute Average Percentage 
Error of Five Test Products is 

5% [maximum-10%] 
{20%- Namouz et al. (2013)} 

Absolute Average Percentage 
Error of Five Test Products is 

12% [maximum-23%] 

Function 
Structure

s 

Absolute Average Percentage 
Error of Five Test Products is 

29% [maximum-60%]  

Absolute Average Percentage 
Error of Five Test products is 

57% [maximum-154%] 
{50%- Mathieson et al. (2011)}  

Outline of The Experimentation Method 
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Figure: Conversion of FS and AM to bi-partite graphs to 29 complexity metric vector 
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Artificial Neural Networks 

 

• Generate Function Structures and Assembly Models of Products. 

• Create Bi-Partite Graphs of these Structures and Models. 

• Build the 29 complexity metric vector metric using these graphs. 

• Store Assembly Times and Market Values of  Products as Target Values.  

 

• Train Artificial Neural Networks using the Complexity Metrics and Target Values. 

 • Test the five selected products against the trained Artificial Neural Networks. 

• Compute Analysis on the test results. 
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