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ABSTRACT 

Artificial Neural Networks (ANNs) have been used to 
predict assembly time and market value from assembly models. 
This was done by converting the assembly models into bipartite 
graphs and extracting 29 graph complexity metrics which were 
used to train the ANN prediction models. This paper presents the 
use of sub-assembly models instead of the entire assembly model 
to predict assembly quality defects at an automotive OEM. The 
size of the training set, order of the bipartite graph, selection of 
training set, and defect type were experimentally studied.  With 
a training size of 28 parts, an interpolation focused training set 
selection, and second order graph seeding, over 70% of the 
predictions were within 100% of the target value. The study 
shows that with an increase in training size and careful selection 
of training sets, assembly defects can be predicted reliably from 
sub-assemblies complexity data. 

Keywords: Complexity, Assembly, Defect Prediction, Artificial 
Neural Networks 

1.  MOTIVATION: ENHANCING DECISION 
MAKING THROUGH PREDICTION MODELS 
Engineering design has often been perceived as a compound 

decision making task [1–5]. Designers are challenged to make 
decisions in engineering activities such as problem definition, 
concept selection, geometric sizing, configuration, 
manufacturing, distribution, or marketing [1,2,6,7]. As these 
decisions directly impact the product development process, 
designers continually seek ways to make design decisions earlier 
in the design process to reduce the cost of changes that occur late 
in the design stage [8–11]. For instance, during the assembly of 
a new automotive design, an alignment issue is identified for the 
door handle, which causes the associate on the assembly line to 
occasionally scratch the exterior surface of the panel. A fix for 

this change may require a modification in either the door handle 
or the panel design, resulting in a modification of the tool used 
to manufacture the particular part. When in production, a change 
will be difficult and costly to implement [12–14].  However, if 
the issue could have been predicted earlier, perhaps before the 
fixtures and tools are developed, the solution would be easier and 
less costly to implement. Using historical data to develop models 
that can predict assembly defects in the early stages will help 
reduce the cost of design changes later in the development 
process. With such a method, engineers will be able use solid 
models along with automated processing to predict the number 
of assembly defects for specific parts. This information can then 
be used to make decisions about different configurations and 
architectures of the assemblies and part interactions to minimize 
these defect issues.  Research demonstrates that Artificial Neural 
Networks (ANNs) can be used to predict assembly time using 
product complexity information [15–22]. In this paper, the use of 
such a method is evaluated for the purpose of predicting 
assembly defects in automotive manufacturing. 

ANNs have been shown to have powerful prediction 
capabilities and do not require model assumptions by using 
Socratic learning to generate prediction models [23]. However, 
ANNs are black box models and do not provide any direct 
understanding about the relationships between the inputs and 
outputs. These relationships must be deduced externally. ANN 
modeling is a promising option for predicting quality in a 
complex assembly, as the relationships between known 
information and the desired information in cases such as these 
are highly nonlinear and context dependent. This makes 
derivation of the relationships difficult, motivating to the use of 
alternative methods that can be black box approaches.   

In order to use an ANN prediction tool, it is necessary to 
develop a representation for parts that could be used to set up a 
relationship between the parts and the desired output. In order to 
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address this need, connectivity information is collected for the 
entire assembly. This connectivity data is then used to generate 
bipartite graphs of varying orders (depths) for individual parts. A 
bipartite graph separates the nodes in the graph into two groups 
that are not directly interconnected.  Here, the first group of 
nodes is the “part” group and the second group of nodes is the 
“contact relation” group.  This is a generalized approach 
developed to support other types of engineering design graph and 
network representations [24].  For the assemblies, a connectivity 
graph generated by detailing connections of a system by 
grouping the components into pairs. An example of a bipartite 
graph is shown in Figure 1. 

 
Figure 1: Bi-Partite Graph of Assembly Model 

As shown in figure above, the bipartite graph has two main 
components: the parts and the relationships between two parts.  
Part 12 is in physical contact with Part 13.  This is captured 
through a physical contact relation.  Further, Part 12 is in 
physical contact with Part 14.  In this case, the physical contact 
is determined through a clash detection algorithm in a CAD 
software [20].  Results from the clash detection analysis are then 
used to compile a list of connections between two parts, with one 
identified as a source, and the other as sink. The complete list of 
connections is subsequently used to develop bipartite graphs for 
individual parts. From these graphs, complexity metrics are 
mined [25], and the metrics are then used as the input for training 
the ANNs [21,26,27].  

2.  RESEARCH QUESTIONS 
The primary objective of this research was to evaluate the 

capabilities of Artificial Neural Networks in predicting assembly 
defects using connectivity information for the constituent parts. 
Specifically, graph complexity metrics generated from a bipartite 
graph were to be used as inputs for the prediction tool. Therefore 
the following research questions are defined: 

• Can ANNs trained with part complexity and defects be 
used to predict assembly defects for an automotive 
manufacturing facility? 

• Can ANNs be used with sub assembly models, instead 
of complete assembly models, to predict part 

information for a large automotive manufacturing 
facility? 

In order to address these questions, a series of experiments 
were conducted to evaluate the prediction capabilities of an 
artificial neural network structure given a relatively small data 
set and a large variance in the prediction targets.  An existing 
ANN structure, described in [17,19] is used for the actual 
prediction process. In previous research, the entire assembly 
model is used to predict the complete assembly time.  In this 
research, the defects for individual parts are of interest; training 
with the entire assembly model is not possible.  Therefore, it is 
critical to determine the size of the graph seeded around the part 
of interest that will generate the best prediction models.  It should 
be noted that this research is focused only on the topological 
adjacency graphs of the assemblies and other part information 
(material, size, mass) and joining information (overlap area, joint 
type) are explicitly not considered.  Incorporating this other 
information is reserved for future work to extend the tool. 

3.  EXPERIMENTAL PROCEDURE 
The artificial neural networks used for the experiments 

presented in this paper are trained using back propagation with a 
cascade-forward network [28–30]. A backpropagation 
architecture was chosen because it was suitable to the type of 
inputs being used and the type of outputs that were desired. 
Additionally, a cascade-forward network was selected because 
the mechanics allow for better accommodation of small data sets 
as each layer receives the original input as well as the outputs 
from all previous layers [15]. 

3.1.Basic Procedure 
A general procedure used for these experiments is outlined 

in [31]. A graphical representation of this process is shown in 
Figure 2.  

 
Figure 2: Basic Procedure for ANN Prediction 

As shown in Figure 2, the basic procedure for ANN 
prediction has five main steps. First, the information used for 
prediction and the performance metric being predicted need to 
be collected. In this case, an assembly model is being used for 
prediction. Next, the assembly model is transformed into a 
bipartite graph. Graph complexity metrics are generated from 
this bipartite graph using a complexity analysis tool. The 
complexity metrics and the known targets with associated parts 
are then used to train an ANN structure which estimates a 



Copyright © ASME 2015 3 

relationship between the input complexity metrics and the 
desired output target. This trained and populated ANN structure 
is next used to estimate the targets for new complexity metrics. 

Figure 3 shows the standard experimental procedure for 
predicting the assembly quality data of a product using the entire 
assembly model. 

 
Figure 3: Procedure for ANN Prediction with Assembly 

Models 
The procedure is similar to that described in Figure 2, and 

follows converting the assembly models into bipartite graphs and 
extracting the complexity metrics from the bipartite graphs. This 
complexity vector is then used as the input for the training 
procedure. The assembly quality data gathered are used as the 
training targets.  

The goal of the research presented in this paper is to predict 
assembly defects for individual parts in an assembly. For this 
purpose, the complete assembly model cannot be used because 
that does not provide any differentiation between parts in the 
assembly. Therefore, a different description of the parts in an 
assembly is needed to use for ANN training. The first phase of 
the basic procedure shown in Figure 3 was modified in order to 
allow for a different representation of part information. 
Previously, the entire assembly model was being used for 
training models. The experiments presented in this paper use an 
assembly model that is pruned based on the connections of one 
part. Figure 4 below shows the growth of the connectivity graph 
for an individual part from that of the entire assembly.  

 
Figure 4: Graph order growth of assembly model 

In Figure 4, the first image shows the connectivity graph of 
a complete assembly model, with a part of interest identified. The 
second image shows a first order connectivity graph for that part. 
Finally, the third image shows a second order connectivity graph 
for the identified part. As shown in Figure 4, first order 
connectivity graph is every part in direct contact with the part of 
interest, which can be referred to as the first order connections. 
A second order connectivity graph is a model consisting of all 
the first order connections, as well as all parts in contact with the 
first order connections, which are the second order connections. 

A third order connectivity graph adds third order connections to 
the model in a similar manner. 

The use of partial connectivity graphs from the assembly 
models represents a significant change from previous 
experiments with ANNs and assembly models. Instead of the 
information available from the complete assembly model, only 
the information available from the pruned assembly model is 
being used to predict the assembly defects. As such, information 
that is more than a specified degree of connectivity away from 
the part of interest is not available to develop the prediction 
models. For automotive manufacturing, this is particularly 
important because many of the parts are in physical contact with 
the vehicle body. Once the vehicle body appears in the 
connectivity graph for a part, the graph will likely be saturated. 
Saturation will cause the higher order bipartite graphs to 
approach the entire assembly. This results in a situation similar 
to previous work with ANNs using the entire assembly as instead 
of a sub-assembly. The effects of training with saturated graphs 
are not known, however, there has been research that shows it 
can help identify categories of parts [32]. 

3.2.Detail Experimental Procedure 
In order to evaluate the use of ANNs as a prediction tool for 

assembly defects, the assembly model for an automobile was 
collected. A clash detection analysis on the assembly model was 
used to generate a bipartite graph showing all the physical 
relationships between components in a source-sink form.  

3.2.1.Generating Individual Bipartite Graphs 
This complete bipartite of the assembly model was then 

pruned based on the specific parts for which assembly defect data 
was available. Figure 5 shows the process used to extract 
bipartite graphs from the complete assembly bipartite.  

 
Figure 5: Algorithm used for generating bipartite graphs 

for individual parts 
The algorithm shown in Figure 5 can be used to generate a 

bipartite graph for any order. However, for the purpose of this 
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experiment, only first, second and third order bipartite graphs 
were generated.  

The bipartite graph consists of two main parts: the first to nth 
order connections, and the nth order interconnections. The input 
to this script is an excel file containing the complete assembly 
bipartite and the part numbers for which the bipartite graphs need 
to generated. As shown in the figure, the first step to extracting 
the bipartite graph of one part from the entire assembly is to 
search for first order connections. This means that the source 
column of the assembly bipartite is filtered for the part number 
of interest. The associated part numbers in the sink column are 
first order sinks. Next, the first order sinks are used as sources to 
find next order sinks. This process is repeated until the desired 
graph order is achieved. The final step is to search the 
connections one order above the desired graph order for parts 
that act as sources as well as sinks.  

3.2.2. Calculating Complexity Metrics 
After generating the bipartite graphs, the next step is to 

calculate 29 complexity metrics for each part. The method used 
to generate the complexity vector is presented in [12]. Using this 
method, a complexity vector containing 29 complexity metrics 
was generated for each part being used in the experiment. An 
example complexity vector is shown in Table 1. 

Table 1:  Example Graph Complexity Vectors 
Complexity Metric Part 1 Part 2 Part 3 

Size 
Dim Elem. 6 4 17 

Rel. 5 3 23 

Con DOF 5 3 23 
Conn 10 6 46 

Interconnection 

Path 

Sum 11 5 59 
Max 2 2 2 
Mean 0.367 0.417 0.217 

Density 0.073 0.139 0.009 

Flow 

Sum 13 7 72 
Max 2 2 15 
Mean 0.361 0.438 0.249 

Density 0.072 0.146 0.011 

Centrality 

Between 

Sum 3 1 18 
Max 2 1 15 
Mean 0.50 0.25 1.06 

Density 0.10 0.08 0.05 

Cluster 

Sum 0 0 2.946 
Max 0 0 0.5 
Mean 0 0 0.173 

Density 0 0 0.008 

Decomp 

Ameri-Summers 7 4 47 

Core In 

Sum 5 3 23 
Max 1 1 4 
Mean 0.833 0.750 1.353 

Density 0.167 0.250 0.059 

Core 
Out 

Sum 5 3 23 
Max 2 2 15 
Mean 0.833 0.750 1.353 

Density 0.167 0.250 0.059 
The set of 29 complexity metrics describe the connectivity 

of an individual part within the complete assembly with respect 

to a specific graph order. The complexity metrics are divided into 
four main categories: size, interconnection, centrality, and 
decomposition. These are directly derived from the bipartite 
graph, and therefore will vary between graph orders of the same 
part. Moreover, if two different parts have the same bipartite 
graph, the complexity metrics will also be identical.  

After calculating the complexity metrics, the next step is to 
acquire the performance metrics, or the prediction targets. In this 
case, the assembly defects for the relevant parts were collected. 
Defects data was only collected for the vehicle model that was 
used to generate the initial bipartite graphs. The defects were 
categorized into gap, loose, wrong, missing, miscellaneous, and 
total. The different categories were used as different training 
targets. One set of the defects data is shown in Table 2. 

Table 2: Initial Defects Data Set 
Part # Total Gap Missing Wrong Misc. Loose 
Part 1 53 16 0 35 0 2 
Part 2 131 111 0 7 0 13 
Part 3 35 0 0 29 0 6 
Part 4 3932 3750 29 128 4 21 
Part 5 34 31 0 1 0 2 
Part 6 22 11 0 9 0 2 
Part 7 1248 640 0 513 0 95 
Part 8 155 88 0 64 1 2 
Part 9 5 4 0 1 0 0 

Part 10 55 51 0 4 0 0 
Part 11 57 50 0 3 0 4 
Part 12 1941 1506 0 431 0 4 
Part 13 53 16 0 35 0 2 
Part 14 265 164 1 84 1 15 
Part 15 267 55 0 3 0 209 
Part 16 167 19 39 86 23 0 
Part 17 203 108 0 94 0 1 
Part 18 1941 1506 0 431 0 4 
Part 19 125 71 0 39 0 15 
Part 20 246 194 0 33 0 19 
Part 21 631 533 0 65 33 0 
Part 22 85 19 14 14 37 1 
Part 23 1121 378 35 119 551 38 

3.2.3. Selection of Experimental Sets 
During the experiment, it was necessary to select a group of 

parts to be used as the training set and the other parts to be used 
as the testing set. The parts were divided so that roughly 80% of 
the parts would be used for training and the remaining parts 
would be used for testing. Five different methods were used for 
selecting the training and test sets. The first group of sets were 
chosen at random. The following sets were chosen using vector 
distance calculations from the mean vector of all of the parts. The 
first method was to use the absolute distance from the mean 
vector and order the parts from nearest to the mean to farthest for 
all 3 orders. The testing set was chosen as the parts nearest to the 
mean across all 3 orders of graph. The second group of sets was 
chosen using the cosine distance from the mean instead of the 
absolute distance. A similar selection process across all 3 orders 
was used. This process was then repeated using only the 11 
metrics identified as being significant in previous work [19]. 
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This was done in an attempt to increase the accuracy of the 
prediction as ANNs are typically trained on large data sets. Since 
extensive defect data was not available, alternative methods to 
increase the accuracy of the prediction were investigated. This 
increases the likelihood of interpolating amongst the data and not 
extrapolating. An example of extrapolating test set can be seen 
in Figure 7, while an interpolating test set can been seen in Figure 
8. The parts reserved for testing are orange and the training set is 
blue.  In both figures, the rectangle shows the area encapsulated 
by the training set. Any parts that fall outside this area will 
require the estimations to be extrapolated.  Ideally, graphs shown 
in Figure 7 and Figure 8 would need to be generated for all 
combinations of pairs within the 29 complexity metrics. 
However, in order to simplify the pairwise comparisons, 
clustering approaches such as finding the minimum cosine 
distances were used to identify interpolating test sets.  

 
Figure 6: Extrapolating test set 

 
Figure 7: Interpolating test set 

3.2.4. Training and Testing of ANN Structure 
The ANNs structure was then trained using the assembly 

complexity information from the training sets with the 
corresponding assembly defect information. To reduce the 
variability of the ANN training process with small data sets, 189 
different ANN architectures were used. The training process for 
each architecture was replicated 100 times resulting in 18,900 
unique ANNs. Figure 9 shows a graphical representation of the 
process used to build and test the ANN structure.  

 
Figure 8: Building and testing the ANN structure 

The trained ANNs were then used to predict the assembly 
defects for the test sets using the test set assembly complexity 
information. The 18,900 outputs were then averaged as the 
prediction for the assembly defects. Using the predictions and 
the existing assembly defect data for the test set, several different 
error values were generated. 

3.2.5. Error Calculation 
The predictions generated from the ANN needed to be 

compared to the known values to understand the results of the 
experiment. As the prediction targets ranged widely, three 
different error calculation methods were used. For prediction 
targets between 0 and 15, a residual error was used. Equation 1 
shows how the residual error was calculated. 

𝑬𝑬𝒓𝒓𝒓𝒓𝒓𝒓 = 𝑻𝑻𝑻𝑻𝒓𝒓𝑻𝑻𝒓𝒓𝑻𝑻 − 𝑷𝑷𝒓𝒓𝒓𝒓𝑷𝑷𝑷𝑷𝑷𝑷𝑻𝑻𝒓𝒓𝑷𝑷 1 

In the Equation 1, Target refers to the known target value, 
while predicted refers to the value prediction by the ANN. For 
this case, the error was considered to be larger than 100% when 
the residual was greater than 15. Similarly, if the residual was 
between 15 and 30, the error was considered to be between 100% 
and 200%. Finally, any residuals larger than 30 were considered 
to have an error higher than 200%.  

Next, for prediction targets between 16 and 200, a standard 
percent error was calculated. Equation 2 was used to calculate 
this error. 

𝑬𝑬𝒓𝒓𝑻𝑻𝑷𝑷 =  
|𝑻𝑻𝑻𝑻𝒓𝒓𝑻𝑻𝒓𝒓𝑻𝑻 − 𝑷𝑷𝒓𝒓𝒓𝒓𝑷𝑷𝑷𝑷𝑷𝑷𝑻𝑻𝒓𝒓𝑷𝑷|

𝑻𝑻𝑻𝑻𝒓𝒓𝑻𝑻𝒓𝒓𝑻𝑻
 2 

Finally, for prediction targets of 201 and higher, a 
normalized error was calculated using Equation 3.  

𝑬𝑬𝒏𝒏𝒏𝒏𝒓𝒓𝒏𝒏 =  
(𝑻𝑻𝑻𝑻𝒓𝒓𝑻𝑻𝒓𝒓𝑻𝑻 − 𝑷𝑷𝒓𝒓𝒓𝒓𝑷𝑷𝑷𝑷𝑷𝑷𝑻𝑻𝒓𝒓𝑷𝑷)𝟐𝟐

|𝑻𝑻𝑻𝑻𝒓𝒓𝑻𝑻𝒓𝒓𝑻𝑻 × 𝑷𝑷𝒓𝒓𝒓𝒓𝑷𝑷𝑷𝑷𝑷𝑷𝑻𝑻𝒓𝒓𝑷𝑷|  
3 

The primary objective of using different error calculation 
methods was to better represent the impact of the errors in 
prediction. 

4.  EXPERIMENTS ON TRAINING CHOICE 
In order to better understand the predicting capabilities of 

the neural network structure being used, certain variables were 
tested to understand their relationship with the prediction 
accuracy. The variables tested were as follows.  

• Training size (Experiment 1)  
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• Test group selection (Experiment 2)  
• Graph order (Experiment 3) 
• Defect type used as target for prediction (Experiment 4) 
• Multiple defect data sets (Experiment 5) 

4.1. Experiment 1: Training Size 
It is common for ANN prediction models to be developed 

using a large training set. However, for this project, the training 
set available was relatively small. Therefore, a compound neural 
network made from 189 different architectures repeated 100 
times each was used. However, it was still important to 
understand how the prediction models would behave if larger 
training sets were available. 

The initial training data used consisted of 10 training parts 
and 5 test parts. An example of the prediction results for this test 
are shown in Table 3. 

Table 3: Defect Prediction with 10 Training Parts 

Part Known 
Defects 

Predicted 
Defects Error 

Part 1 53 2297 4136% 
Part 2 34 277 627% 
Part 3 265 1216 281% 
Part 4 155 -423 510% 
Part 5 97 79 4% 
Subsequent tests were conducted with 18 parts and 28 parts 

for training. The overall results from these tests are shown in the 
Figure 10. 

 
Figure 9 : Error distribution with respect to training size 

In Figure 10, the red section of the bar shows prediction 
errors higher than 200% of the target value. The yellow sections 
of the graph show errors between 100% and 200% of the target 
value, whereas the green section shows the errors less than a 
100% of the target value. As shown in Figure 10, with an 
increasing training size, the percentage of predictions with error 
less than 100% has increased from 14% at 7 parts in training to 
over 50%, at 28 parts. The larger data sets introduced the 
intermediate predictions where the error was significant but 
within a reasonable order. This is a growth from the smaller 
training sets where the bad predictions were typically several 

orders of magnitude off. This is a challenge that modelers using 
ANNs face frequently when dealing with small data sets. The 
continued growth of the training sets is a goal of this project to 
increase the prediction accuracy. 

4.2. Experiment 2: Graph Order 
In addition to the size of the training set, the order of the 

bipartite graph generated for the part was also experimented with 
to determine an appropriate level of detail needed for predictions. 
In the early stages of the project, only first and second order 
graphs were available to experiment with. Table 4 contains the 
results of 5 test parts being tested across 2 orders of assembly 
models (1st order, 2nd order) and 4 assembly defects (Gap, 
Loose, Wrong, and Total). 
Table 4: First and Second Order Predictions for Test Parts 

    First Order 
   Part 1 Part 2 Part 3 Part 4 Part 5 

G
ap

 Targ. 16 111 0.001 3750 31 
Pred. 519.36 519.36 357.19 187.04 395.93 
Error 3 3 3 3 3 

Lo
os

e Targ. 2 13 6 21 2 
Pred. 47.05 47.05 23.25 76.96 75.11 
Error 3 3 2 3 3 

To
ta

l Targ. 53 131 35 3932 34 
Pred. 687.82 687.82 529.13 426.72 564.12 
Error 3 3 3 3 3 

W
ro

ng
 Targ. 35 7 29 128 1 

Pred. 254.09 254.09 226.20 50.17 105.37 
Error 3 3 3 1 3 

    Second Order 
   Part 1 Part 2 Part 3 Part 4 Part 5 

G
ap

 Targ. 16 111 0.001 3750 31 
Pred. 452.05 264.61 292.05 528.05 77.67 
Error 3 3 3 3 3 

Lo
os

e Targ. 2 13 6 21 2 
Pred. 103.31 85.17 13.48 27.11 13.26 
Error 3 3 1 1 1 

To
ta

l Targ. 53 131 35 3932 34 
Pred. 671.29 436.90 386.85 669.70 164.93 
Error 3 3 3 3 3 

W
ro

ng
 Targ. 35 7 29 128 1 

Pred. 289.24 222.43 72.63 120.04 37.10 
Error 3 3 3 1 3 

These test parts were randomly selected from a pool of 23 
parts where the remaining 18 parts were used for training. The 
error was calculated using the normalized percentage error. A 
green, or group 1, prediction was considered to be within 100%. 
A yellow, or group 2, prediction was considered to be from 100% 
to 200% error. A red, or group 3, prediction included errors 
greater than 200%. In the first order results, only one of the 
predictions was within 100%. The second order results improved 
to 4 predictions within 100%.  

As the available data increased, third order assembly models 
were also compared to the results of the first and second order 
graphs. The experiments including third order graphs were done 
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simultaneously with other experiments and the specific results 
can be seen in the following sections. Figure 11 shows the results 
of the predictions based on the graph order used for training the 
ANN structure for all tests to date.  

 
Figure 10: Error distribution based on graph order 
As shown in Figure 11, second order graphs, where over 

65% of the predictions were within 100% of the target, have 
the best predictions, while first and third order graphs behave 
roughly the same.  

4.3. Experiment 3: Set Selection 
Besides the size of the training set and the graph order, the 

selection of the training set was also experimented. As discussed 
previously, it is important to select a training set that 
encompasses the test set for which the ANN structure is being 
used to predict the targets. In order to verify this claim, as well 
as further understand the impact of changes in the training set, 
the training set selection was varied in five different alternatives: 
random grouping, cosine significant, cosine total, means 
significant, and means total. Table 5 shows the distribution of 
prediction error with five randomly selected groups that were 
used for testing the ANN structure.  

Table 5: Error Distribution for Random Groups 

As shown in Table 5, the majority of the predictions in this 
experiment resulted in an error of 200% or more. Predictions 
generated from second order graphs were less accurate that those 
generated from first order graphs. First order group 4 resulted in 
the best prediction accuracy with 65% of the predictions being 
less than 100% error, whereas, first order group 1 was the least 
accurate prediction with 90% of the predictions being 200% or 
higher in error. The results of the four different set selection 
methods across all three orders of assembly model can be seen 
in Table 6.  

Table 6: Selected Sets Error Distribution 
 First 

Order 
Second 
Order 

Third 
Order 

 

Cosine 
Significant 

60 62 48 Green (%) 
7 7 16 Yellow (%) 

33 31 36 Red (%) 

Cosine 
Total 

50 76 55 Green (%) 
19 12 16 Yellow (%) 
31 12 29 Red (%) 

Means 
Significant 

40 50 48 Green (%) 
20 14 16 Yellow (%) 
40 36 36 Red (%) 

Means Total 
62 71 57 Green (%) 
16 10 14 Yellow (%) 
22 19 29 Red (%) 

The best performing selected test set was the means total set. 
The percentages of good predictions were 62%, 71%, and 57% 
for first, second, and third order, respectively. Second order 
performed the best across all four selected sets with an average 
of 64.75% good predictions. The best performing individual test 
was the cosine total set, second order with 76% good predictions. 
As a whole, the total method worked better than the significant 
method for selecting the test sets. This is not expected as the 
metrics deemed significant previously should be more important 
to the prediction than the entire complexity vector.  

4.4. Experiment 4: Target Defect Type Selection 
The next experiment conducted was to test the prediction 

capabilities for different types of defect targets. As shown in 
Figure 12, six total defect types were investigated: gap, loose, 
missing, miscellaneous, total, and wrong.  

 
Figure 11: Error distribution based on defect type 

From the ANN prediction experiments, the missing defect 
was found to be the most accurate, followed by loose, wrong, 
miscellaneous, total and gap, in that order. However, it is 
important to note that in initial defects data set, missing and 
miscellaneous defect type were not significant as they were 
mostly zero. As shown previously in Table 2, only 6 out of 23 
parts contained non-zero defects for both missing and 
miscellaneous defect types. As such, prediction using missing 
and miscellaneous defect types was found to be unreliable. Table 
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7 shows the prediction results for missing and miscellaneous 
defect types from an experiment conducted with eighteen 
training parts and five tests parts.  

Table 7: Defect Prediction for Missing and Miscellaneous 
First Order, Random Grouping  - Missing Defects 

 Part 1 Part 2 Part 3 Part 4 Part 5 
Known 
Defects 0 0 0 1 0 

Predicted 
Defects -3 31 48 16 53 

Second Order, Random Grouping  - Miscellaneous 
 Part 1 Part 2 Part 3 Part 4 Part 5 

Known 
Defects 0 0 0 1 0 

Predicted 
Defects 38 40 41 10 21 

According to Table 7, majority of the predictions will yield 
a residual larger than 30, resulting in an error greater than 200% 
as defined in the error calculation methods. After examining 
these results, the missing and miscellaneous experiments were 
dropped for this defects data set. When an updated data set was 
available, the missing and miscellaneous experiments were 
resumed as the number of defects in the new defects data set was 
reasonable.   

In addition to the six defect types mentioned above, a 
bucketing approach to the total defects was also investigated. 
The list of parts with total defects was sorted in five buckets. The 
buckets are shown in the Table 8. 

Table 8: Bucketing Parameters 

Bucket Defect Count 
(targets) 

1 0 to 50 
2 51 to 100 
3 101 to 200 
4 201 to 1000 
5 > 1000  

The bucketing approach was applied to the ANNs trained 
with four selected sets as mentioned earlier. The prediction 
results from means total set across three graph orders is shown 
in Table 9. 

Table 9: Bucket Prediction Results 

The targets are the bucket within which each defect count 
falls, and the predicted value is the output of the model when 
trained with the buckets instead of the actual number of defects. 
This was done in an attempt to increase the functionality of the 
predictions. It is also expected to help in dealing with the wide 

range of defects across different parts. Only three of the 
predictions lied within 1 bucket of the target value. Six 
predictions lied between one and two buckets of the target value. 

In another attempt to manipulate the defect counts for 
prediction accuracy, the log of the defect counts was used. This 
attempt was looking to accomplish the same thing as the 
bucketing except becoming less subjective. The determination of 
the bucketing bounds was done manually. The results of log 
experiment will be calculated similar to the bucketing 
experiment with within 1 count of the predicted value will be a 
good prediction. The experiment was done using the means total 
selected group across all three orders of graph. Table 10 shows 
the results from using the base 10 log of the number of defects 
as a target for the ANN training.  

Table 10: Log Defect Prediction Results 

There were twelve total predictions that lied within the 
acceptable range. This is a much greater improvement than the 
bucketing experiment. It should be noted that this is also a much 
larger spread than the ranges of the buckets and may be too wide 
of a range to be applicable. 

4.5. Experiment 5: Target Data Selection 
As the project progressed, new defects data was available. 

This resulted in an opportunity to test the ANN prediction 
capabilities with a larger data set as the two defects data sets 
could be combined to generate a new prediction model. The goal 
of this experiment was to understand whether the ANN 
prediction model would be more accurate if historical data from 
different intervals of time was available for training. Table 11 
shows the prediction results when targets from both and old and 
new defects data set were selected for training.  
Table 11: Defect Prediction with Multiple Defects Data Sets 

The prediction shown in table above were analyzed in two 
different ways. One method was to compare the prediction to the 
average of old and new targets. The predictions for part 1 to part 

   Part 1 Part 2 Part 3 Part 4 Part 5 
Order Targ. 1 5 1 5 4 

1st 
Pred. 3 3 3 3 3 
Error 2 2 2 2 1 

2nd 
Pred. 6 3 3 4 4 
Error 5 2 2 1 0 

3rd 
Pred. 5 3 3 4 0 
Error 4 2 2 1 4 

  Part 1 Part 2 Part 3 Part 4 Part 5 
Order Targets 1.53 3.10 1.74 3.29 2.42 

1st Pred. 3.08 3.30 2.96 3.36 2.90 
Error 2.08 1.70 1.96 1.64 1.10 

2nd Pred. 6.02 2.50 2.90 4.36 3.51 
Error 5.02 2.50 1.90 0.64 0.49 

3rd Pred. 5.04 2.59 2.60 4.19 0.28 
Error 4.04 2.41 1.60 0.81 3.72 

  Target 
(Old) 

Target 
(New) 

Target 
(Average) Prediction 

Part 1 791 155 473 624.585 
Part 2 267 1505 886 705.756 
Part 3 167 1031 599 484.822 
Part 4 265 2159 1212 446.286 
Part 5 114 1384 749 557.245 
Part 6 267 155 211 705.756 
Part 7 155 395 275 1480.668 
Part 8 395 128 261.5 781.459 
Part 9 131 248 189.5 1095.017 
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5 were within a 100% of the average target. Part 6 to 9 however, 
resulted in predictions higher than 300% of the average target.   

The second method was to check if the prediction fell within 
the bounds generated by using the old and new targets as 
minimum and maximum. As shown in table above, the prediction 
for Part 1 to Part 5 all fell within the bounds generated by old 
and new targets, whereas Parts 6 to Part 9 all fell outside the 
maximum target.  

5.  DISCUSSION AND CONCLUSION 
The current collection of experiments represents a variety of 

variables and concepts influencing the ability to accurately 
predict assembly defects from pruned assembly models. In the 
first experiment, the impacts of the training size on the results 
was observed. It is shown that as the training size increases, the 
test results become increasingly better (from 14% to 54% of 
predictions within 100% error). This is an expected result as 
using ANNs is typically done with large data sets. Continually 
increasing the size of the data set will continue to positively 
impact the results of future experiments. 

The second experiment conducted was on graph order of the 
pruned assembly models. This has design implications for 
manufacturing. The designers can learn how many connections 
away can decisions impact the assembly quality of a specific 
part. The current experiments included first, second, and third 
order assembly models. An average of all of the experiments run 
has second order graphs outperforming first and third order 
graphs by more than 10%. Reviewing specific experiments, 
instances can be shown where first order and second order are 
the best performing. To develop a better understanding of the 
effects of the graph order on predicting assembly defects, more 
testing must be completed. First, fourth and fifth order graphs 
should be generated to observe the effects of the higher orders. 
Simultaneously, the saturation rates of the assembly graphs 
should be studied for trends among parts with higher and lower 
saturation rates and the order of graph that is optimal for 
predicting the assembly defects. This is relevant because specific 
parts are highly integrated into the assembly as others are more 
isolated. The difference between the two parts could potentially 
provide insight into predicting the assembly defects. Second, 
graph order should continue to be isolated in experiments to 
observe the effects independently of other experimental changes. 

The third experiment conducted involved specifically 
selecting test sets to ensure that the model was attempting to 
predict information that lied within the current set of training 
data. This was done as part of an effort to increase the accuracy 
of the predictions regardless of the size of the training set. The 
results of the experiment show a tremendous increase in the 
accuracy of the predictions once using selected tests sets as 
opposed to random. It is also viable to use similar vector 
mathematics to compare an unknown test part to the mean of the 
training vectors to see if the product lies within a reasonably 
predictable range. The total metrics sets outperformed the 
significant metrics sets in the experiment. This was unexpected 
as the total metrics set was considered to contain information that 

was not related to the prediction. This could mean that the entire 
complexity vector is necessary for an accurate prediction. 
Another possibility is determining the significant metrics 
through alternative techniques or performing a more robust 
validation on those decisions. 

The fourth experiment was conducted to understand what 
types of targets were most suited for prediction. The experiment 
tested six different types of defects, as well as a bucketing of the 
total defects, and a log of total defects. Only the total defects 
were selected for this because total defects included all other 
defects types, and therefore was seen as a better representation 
of assembly quality. The experiment results showed that certain 
defect types consistently yielded better predictions. However, it 
should be noted that “missing” and miscellaneous”  defect types 
only yielded good predictions when the training size was 28 parts 
and new defect data was used as targets. Besides using different 
defect types, a numerical manipulation of the number of defects 
was also used as targets in the form of “bucketing” and “log 
targets.” The results from these tests were different from those 
obtained from simply using number of defects. However, the 
prediction was not consistently better, and therefore the 
alternative targets were not considered reliable. 

Finally, a combination of old and new defects data was used 
to generate predictions. This training set was chosen to 
understand the effects of multiple targets for the same part. The 
expectation was that training the ANN in this manner will 
generate a more flexible prediction model resulting in a 
reduction of the larger errors. It was also expected that the 
prediction would fall between the two targets provided, 
effectively feeding the ANN with a range of values as a target 
instead of a single number. The results from the experiment 
suggested that if the range is relatively large, it is likely that the 
prediction will fall in the range, however, if the range is no larger 
than 200% of the lower bound, the predictions will have a larger 
error.  

As a whole, the experiment has led to a better understanding 
of the specific combinations of procedures that can be used to 
improve the prediction accuracy of assembly quality issues. 
Using as large as possible a training set with the selected sets has 
shown to be beneficial. As the data set increases, using selected 
sets can potentially be phased out as the introduction of this 
methodology was to combat the small data sets. For the graph 
order, more experimentation is required, however, second order 
graphs seem to be a reasonable solution at this time. Second 
order graphs make sense from a physical realization stand point 
as well, because in a single assembly, higher order bipartite 
graphs may approach saturation, resulting in a loss of the 
differentiation between parts.  

The next significant challenge of the experiment is move 
beyond one vehicle of assembly data. Currently, all of the parts 
and defect data are extracted from one vehicle. The next step 
would be to repeat combinations of the previously performed 
experiments on a new vehicle. Also, determine if the defect data 
from one vehicle can be used to predict assembly defects on a 
separate vehicle, and the degree of accuracy for the predictions. 
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If data from one vehicle is able to prediction defects for another 
vehicle, the aspects of similarity between the vehicles should 
also be determined. 

One of the greatest limitations on continuing the experiment 
moving forward is the ability to collect more part and defect 
information for said parts. This hinders the accuracy of the 
experiment greatly from the standpoint of the training the ANN. 
This is because the training algorithm begins with randomly 
generated weights and without a large training set, this 
“randomness” can be difficult to remove from the prediction. 
Another significant limiting factor of the experiment is the 
simultaneous change of two procedural steps from a previously 
successful model. By moving from the entire assembly model to 
pruned assembly models, and moving to assembly defects from 
assembly time or market value, it is possible that either change 
could be hindering better predictions from the model. Isolation 
of these two variables moving forward could potentially add 
insight to the model. 

From the experiments performed, it is reasonable to believe 
that assembly defects can be predicted from pruned assembly 
graphs. The prediction accuracy has improved as a result of the 
various experiments conducted to determine the impact of 
different variables on the predictions. The most suitable 
combination of training size, graph order, and set selection found 
during the experiments was able to generate more than 70% of 
predictions that lied within a 100% of the target value. A general 
trend was identified from the experiment results which suggest 
that an increase in training size and the use of selected sets have 
positive impact on the prediction accuracy. 

The success of the experiments so far encourage more work 
be done to improve the prediction model. This includes the 
addition of more training data to confirm that larger training sets 
will continue to improving the predictions. The order of the 
graph and the corresponding effects of this order on the 
prediction will also be observed more closely and isolated in 
experimental cases. The expansion of the experiments beyond 
third order will hopefully provide insight into some of the 
behaviors already observed among the first, second and third 
order experiments. Additionally, the use of a range of values as 
a target for prediction will also be investigated further. 
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