## COMPARISON OF FEA SIMULATIONS AND EXPERIMENTAL RESULTS FOR AS-BUILT ADDITIVELY MANUFACTURED DOGBONE SPECIMENS

Prathamesh J Baikerikar

Advisor: Dr. Cameron Turner





- Introduction
  - Motivation
  - > Objective
  - > Scope
- Literature Review
  - What others have done
  - Methods adopted
- Methodology
- Results
- Work remaining
- Conclusion
- Future Work





- Additive manufacturing refers to the methods of building 3D objects in which material is **added**/deposited layer-by-layer.
- Represents additive processes like FDM, SLA, SLS etc.



Source: http://ie.sabanciuniv.edu/en/announcements-detail/62827

Source: https://www.pinterest.com/pin/469359592385258477/







Source: https://www.3dhubs.com/talk/thread/additive-manufacturing-infographic







Source: [4] T. Wohlers, "U.S. Manufacturing Competitiveness Initiative Dialogue," presented at the Council on Competitiveness, Oak Ridge, TN, 18-Apr-2013.





- FDM is layered manufacturing technology that produces parts with complex geometries layer by layer by extruding and depositing material.
- Variety of polymers: ABS, PLA
- Applications: Tooling, Functional Prototypes, Low volume production parts etc.



Source: <u>http://www.custompartnet.com/wu/fused-deposition-modeling</u>







Source: https://engineerdog.com/2015/03/08/3d-printing-a-3d-honeycomb-infill-concept/



Source: http://www.makepartsfast.com/solid-concepts-expands-fdm-capacity/



Source: http://www.stratasys.com/materials/fdm/nylon





## **General FDM/AM process**

Е





- Build lightweight, durable parts.
- Ability to design complex parts including complicated, internal features.
- Absence of tooling, saves time and money included in tooling process.
- Ability to build durable and effective parts in low volume.
- Additive process reduces material waste.
- Ideal for concept modeling and prototyping.





- Manufactured part is not a perfect rendition of the 3D CAD model.
- Owing to the microstructure and imperfect bonding, material properties are not as expected.
- The properties depend greatly on the layer orientation (filament direction within layers).
- The part as a whole behaves as an anisotropic part, even though the material is isotropic





- With increasing use of AM parts in functional applications, the need for simulating parts in loading conditions arises.
- With weight-savings from infill patterns and different layer orientations, analyses of these parts is important.
- Analyses like FEA in which the part is discretized into a continuum of finite elements which can be used.
- Due to the microstructure of FDM, FEA may not be able to effectively predict the behavior of FDM parts in their entirety.
- Comparing and validating the FEA results with experimental results will informs us about the prediction reliability of FEA models for AM parts.



- To analyze as-built FDM parts by Finite Element Analysis, using isotropic and orthotropic properties.
- To validate FEA results with experimental results using FDM printed parts.





- To develop as-built parts with different infill patterns.
- Print the parts and conduct tensile tests to obtain experimental results.
- To simulate the tensile tests and analyze these parts using bulk material properties.
- Analyses are also carried out using derived isotropic properties and orthotropic properties.
- ANSYS and Abaqus are used as FEA solvers.
- Parts are analyzed only in the elastic region.





- Review effect of process parameters to get effective or best possible print.
- Review parameters causing anisotropy.
- Review approaches used for analysis.
- Review research needed.





|                                                                                                      | Raster / Layer<br>Orientation | Temperature  | Filament<br>Width | Air gap      | Layer<br>Thickness |
|------------------------------------------------------------------------------------------------------|-------------------------------|--------------|-------------------|--------------|--------------------|
| Gajdos et al [9]                                                                                     |                               | $\checkmark$ |                   |              |                    |
| Sun et al [10]                                                                                       | $\checkmark$                  | $\checkmark$ |                   |              |                    |
| Bagsik <i>et al</i> [11],<br>Es-Said <i>et al</i> [12],<br>Zieman et al [13],<br>Upadhyay et al [14] | ✓                             |              |                   |              |                    |
| Ahn et al [15]                                                                                       | $\checkmark$                  | $\checkmark$ | $\checkmark$      | $\checkmark$ |                    |
| Wu et al [16],<br>Syamsuzzaman et al [17]                                                            | $\checkmark$                  |              |                   |              | ✓                  |





| Isotropic Model   |   |                    |                    |                    |                 |                 |                 |                                          |
|-------------------|---|--------------------|--------------------|--------------------|-----------------|-----------------|-----------------|------------------------------------------|
| ε <sub>x</sub>    |   | $\frac{1}{E_I}$    | $-\frac{\nu}{E_I}$ | $-\frac{\nu}{E_I}$ | 0               | 0               | 0               | $\begin{bmatrix} \sigma_x \end{bmatrix}$ |
| Еу                |   | $-\frac{\nu}{E_I}$ | $\frac{1}{E_I}$    | $-\frac{\nu}{E_I}$ | 0               | 0               | 0               | $\sigma_y$                               |
| εz                |   | $-\frac{\nu}{E_I}$ | $-\frac{\nu}{E_I}$ | $\frac{1}{E_I}$    | 0               | 0               | 0               | σz                                       |
| γ <sub>xy</sub>   | _ | 0                  | 0                  | 0                  | $\frac{1}{G_I}$ | 0               | 0               | $	au_{xy}$                               |
| $\gamma_{yz}$     |   | 0                  | 0                  | 0                  | 0               | $\frac{1}{G_I}$ | 0               | $	au_{yz}$                               |
| γ <sub>zx -</sub> |   | 0                  | 0                  | 0                  | 0               | 0               | $\frac{1}{G_l}$ | $\tau_{zx}$                              |

[18]

## Transversely Isotropic Model<sup>[19]</sup>

| Ex ]              |   | $\frac{1}{E}$      | $-\frac{\nu'}{E'}$ | $-\frac{\nu}{E}$   | 0              | 0              | 0                    | $\begin{bmatrix} \sigma_x \end{bmatrix}$ |
|-------------------|---|--------------------|--------------------|--------------------|----------------|----------------|----------------------|------------------------------------------|
| εy                |   | $-\frac{\nu'}{E'}$ | $\frac{1}{E'}$     | $-\frac{\nu'}{E'}$ | 0              | 0              | 0                    | σy                                       |
| εz                | _ | $-\frac{\nu}{E}$   | $-\frac{\nu'}{E'}$ | $\frac{1}{E'}$     | 0              | 0              | 0                    | σz                                       |
| γ <sub>xy</sub>   |   | 0                  | 0                  | 0                  | $\frac{1}{G'}$ | 0              | 0                    | $	au_{xy}$                               |
| $\gamma_{yz}$     |   | 0                  | 0                  | 0                  | 0              | $\frac{1}{G'}$ | 0                    | $	au_{yz}$                               |
| γ <sub>zx</sub> _ |   | 0                  | 0                  | 0                  | 0              | 0              | $\frac{2(1+\nu)}{E}$ | $\tau_{zx}$                              |

|                | Material Models Used                 | Results                                                                    |
|----------------|--------------------------------------|----------------------------------------------------------------------------|
| Zou et al [20] | Isotropic, Transversely<br>Isotropic | 2% difference between the 2 models.<br>Recommends using anisotropic model. |





Orthotropic Model<sup>[21]</sup>

$$\begin{bmatrix} \varepsilon_{XX} \\ \varepsilon_{Yy} \\ \varepsilon_{ZZ} \\ \varepsilon_{YZ} \\ \varepsilon_{YZ} \\ \varepsilon_{Xy} \end{bmatrix} = \begin{bmatrix} \frac{1}{E_{\chi}} & -\frac{v_{Y\chi}}{E_{y}} & -\frac{v_{Z\chi}}{E_{y}} & 0 & 0 & 0 \\ -\frac{v_{\chi y}}{E_{\chi}} & \frac{1}{E_{y}} & -\frac{v_{Zy}}{E_{z}} & 0 & 0 & 0 \\ -\frac{v_{\chi z}}{E_{\chi}} & -\frac{v_{yz}}{E_{y}} & \frac{1}{E_{z}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2G_{yz}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2G_{ZX}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2G_{\chi y}} \end{bmatrix} \begin{bmatrix} \sigma_{\chi\chi} \\ \sigma_{\chiy} \\ \sigma_{\chiz} \\ \sigma_{\chiy} \end{bmatrix}$$

Classical Laminate Theory<sup>[22]</sup>

$$\begin{bmatrix} \frac{E_1}{1 - v_{12}v_{21}} & \frac{v_{12}E_2}{1 - v_{12}v_{21}} & 0\\ \frac{v_{21}E_1}{1 - v_{12}v_{21}} & \frac{E_2}{1 - v_{12}v_{21}} & 0\\ 0 & 0 & G_{12} \end{bmatrix}$$





|                                    | Material Model Used       | Results                                                                                                                          |
|------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Casavola et al [23]                | Classical Laminate Theory | Results are in accordance with<br>experimental data for majority of the<br>stress-strain curve; Results deviate at<br>2% strain. |
| Magalha <sup>~</sup> es et al [24] | Classical Laminate Theory | Mechanical Behavior not predicted<br>accurately using CLT; Suggest using a<br>better analytical model.                           |
| Alaimo et al [25]                  | Classical Laminate Theory | Results obtained using CLT are consistent with the experimental data.                                                            |





|                            | Approach                                                                                   | Results                                                                         | Work needed.                           |
|----------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------|
| Hambali <i>et al</i> [26]  | Orthotropic Material properties used.                                                      | Result in XY direction<br>in accordance. Not all<br>are results consistent.     | Inconsistency                          |
| Martinez <i>et al</i> [27] | Uses a laminate model<br>with orthotropic properties<br>and compares with a solid<br>model | Considerable<br>differences in the<br>results obtained from<br>both the models. | Difference in results                  |
| Sayre [28]                 | Composite laminate<br>model used in Abaqus,<br>compared with isotropic<br>model.           | Composite model<br>closer to experimental<br>data.                              | Shell elements used in composite layup |





- Design CAD geometries:
  - Accommodate infill patterns
  - Suitable for tensile testing
- Experimental work
  - Print parts on a FDM printer
  - Printed parts are tested on a tensile test bed.
  - Data is post-processed to obtain stress-strain curves and material properties
- FEA
  - Simulate tensile test using bulk material properties for the parts.
  - Simulate tensile test using derived isotropic properties.
  - Simulate tensile test using orthotropic properties.
- Compare and Discuss





- Trace gcode path in Solidworks to create geometry.
- Use 'Sweep' feature to model intra-layer fibers.
- Build model layer by layer to achieve high fidelity with actual part.







- Problems with intersecting surfaces (Adjacent and successive).
- Created a huge part file, which took hours to be saved.
- Meshing, if possible was computationally intensive (9 hours).







- Since tensile tests are conducted: Dogbone geometry is used.
- Narrow gage section to ensure fracture
- Shoulders for gripping.
- Similar to ASTM standards.
- Used to obtain derived isotropic properties.







- Hexagonal Infill
- Circular Infill Straight
- Circular Infill Packed
- Linear Infill Straight
- Linear Infill Cross-Hatch
- Hilbert Curve
- Infill-less
- Continuous Specimens To derive material properties





- Gage dimensions decided so as to accommodate the features of the infill pattern.
- Maximum dimensions decided based on the size of the printer bed and the tensile test bed.
- Printing parameters used so as to obtain best possible part quality within reasonable amount of time.
- Printer used: MakerBot Replicator 2X
- Slicers used: Slic3r, Simplify 3D.
- Extruder Temp: 230° C ; Bed Temp: 130° C





- Layer Height: 0.2 mm
- Filament width: 0.67 mm
- Infill density: 20 %







- Layer Height: 0.4 mm
- Filament width: 0.42 mm
- Infill density: 30 %







- Layer Height: 0.4 mm
- Filament width: 0.42 mm
- Infill density: 30 %







- Layer Height: 0.2 mm
- Filament width: 0.67 mm
- Infill density: 40 %







- Layer Height: 0.2 mm
- Filament width: 0.67 mm
- Infill density: 40 %







- Layer Height: 0.2 mm
- Filament width: 0.67 mm
- Infill density: 30 %







- Layer Height: 0.4 mm
- Filament width: 0.42 mm
- Infill density: 100%





33 of 103

- Layer Height: 0.2 mm
- Filament width: 0.67 mm
- Infill density: 100 %







## 3/17/2017 Dogbone for deriving Orthotropic Properties 34 of 103

- Layer Height: 0.2 mm
- Filament width: 0.67 mm
- Infill density: 100 %







- Psylotech µTs 'Modular under Microscope Mechanical Test System'
- Displacement controlled tensile test was performed at a rate of 50  $\mu$ /s.
- Test is conducted till fracture occurs.
- Data points are recorded every 0.05 secs.
- Displacement and corresponding force required at every time step is obtained.
- A sample set 20 samples is used.
- Results are post-processed to obtain material properties.





- Transient Analysis using ANSYS and Abaqus .
- One end of the shoulder is fixed.
- Displacement is applied on the other shoulder.
- Average displacement of a particular sample set is used.
- Mesh convergence is used to decide appropriate mesh size.
- Metrics for Comparison: Stress at 2% strain, Area of fracture, stressstrain curve.




### Hexagonal Infill

### Hilbert Curve Infill











## Linear Straight Infill

### Linear CrossHatch Infill







- Use material properties of the Bulk ABS material.
- Use Isotropic Material Model.
- Solve for Stress and Strain plots for given displacement.
- Compare with experimental Values

| Material Property of ABS | Value                  |
|--------------------------|------------------------|
| Young's Modulus          | 2 GPa                  |
| Poisson's Ratio          | 0.394                  |
| Density                  | 1020 kg/m <sup>3</sup> |





- Derive Material Properties by using a continuous model with the same printing parameters
- Use Isotropic Material Model with derived properties.
- Solve for Stress and Strain plots for given displacement and compare with experimental values.

| Material Property of ABS | Value                  |
|--------------------------|------------------------|
| Young's Modulus          | 1 GPa                  |
| Poisson's Ratio          | 0.394                  |
| Density                  | 1020 kg/m <sup>3</sup> |





## 3/17/2017 Analysis using Orthotropic Material Properties 41 of 103

- Derive Orthotropic Material Properties by using a continuous model built in three orientations: X, Y, Z.
- Use Orthotropic Material Model with derived properties.







# **Orthotropic properties**

| Material Property of ABS                       | Value                  |
|------------------------------------------------|------------------------|
| Young's Modulus in X (E <sub>x</sub> )         | 1.1 GPa                |
| Young's Modulus in Y (E <sub>y</sub> )         | 0.9 GPa                |
| Young's Modulus in Z ( $E_z$ )                 | 0.88 GPa               |
| Poisson's Ratio ( $v_{xy} = v_{xy} = v_{xy}$ ) | 0.394                  |
| Shear Modulus (G <sub>xy</sub> )               | 0.39 GPa               |
| Shear Modulus (G <sub>yz</sub> )               | 0.32 GPa               |
| Shear Modulus (G <sub>xz</sub> )               | 0.31 GPa               |
| Density                                        | 1020 kg/m <sup>3</sup> |

$$G_T = \frac{E_T}{2(1+\nu_T)}$$





- Apply Composite Layup to solid 3D model as FDM part is built in layers.
- Enables specification of fiber direction within each layer.
- Use CLT along with orthotropic properties to define model.

$$\mathbf{C} = \begin{bmatrix} \frac{E_1}{1 - \nu_{12}\nu_{21}} & \frac{\nu_{12}E_2}{1 - \nu_{12}\nu_{21}} & 0\\ \frac{\nu_{21}E_1}{1 - \nu_{12}\nu_{21}} & \frac{E_2}{1 - \nu_{12}\nu_{21}} & 0\\ 0 & 0 & G_{12} \end{bmatrix}$$





## **Printed parts**

- Derived isotropic properties (a)
- Orthotropic properties in X (b)
- Orthotropic properties in Y (c)
- Orthotropic properties in Z (d)







- Circular Packed (a)
- Circular Straight (b)
- Linear Straight (c)
- Linear Cross-Hatch (d)
- Hexagonal (e)
- Hilbert Curve (f)







- Infill-less (a)
- Continuous specimens (b) (Hexagonal, Hilbert)
- Continuous specimens (c) (Circular-Packed, Straight Linear-Straight, CrossHatch)







### Derived properties for isotropic model



| <b>~</b> · |       | _ |      | - |
|------------|-------|---|------|---|
|            | ACC I |   | Stro |   |
|            | ESS 1 |   |      |   |
|            |       |   |      |   |

| Result              | Value       |
|---------------------|-------------|
| Yield Stress        | 30 MPa      |
| Yield Strain        | 0.039       |
| Stress at 2% strain | 18.5 MPa    |
| Elastic Modulus     | 1 ± 0.1 GPa |





### Derived properties for orthotropic model



| Material Property of ABS                       | Value                  |
|------------------------------------------------|------------------------|
| Young's Modulus in X ( $E_x$ )                 | 1.1 GPa                |
| Young's Modulus in Y (E <sub>y</sub> )         | 0.9 GPa                |
| Young's Modulus in Z ( $E_z$ )                 | 0.88 GPa               |
| Poisson's Ratio ( $v_{xy} = v_{xy} = v_{xy}$ ) | 0.394                  |
| Shear Modulus (G <sub>xy</sub> )               | 0.39 GPa               |
| Shear Modulus (G <sub>yz</sub> )               | 0.32 GPa               |
| Shear Modulus (G <sub>xz</sub> )               | 0.31 GPa               |
| Density                                        | 1020 kg/m <sup>3</sup> |





### Hexagonal Infill and Continuous



| Infill                                                           |                                   |  |
|------------------------------------------------------------------|-----------------------------------|--|
| Result                                                           | Value                             |  |
| Yield Stress                                                     | 27.9 Mpa                          |  |
| Yield Strain                                                     | 0.028                             |  |
| Stress at 2% strain                                              | 24 MPa                            |  |
| Elastic Modulus                                                  | 1.25 ± 0.2 GPa                    |  |
| Continuous                                                       |                                   |  |
|                                                                  | inuous                            |  |
| Result                                                           | Value                             |  |
| Result<br>Yield Stress                                           | Value<br>16 MPa                   |  |
| Result<br>Yield Stress<br>Yield Strain                           | Value<br>16 MPa<br>0.023          |  |
| Result<br>Yield Stress<br>Yield Strain<br>Stress at 2%<br>strain | Value   16 MPa   0.023   15.7 MPa |  |









pbaiker@clemson.edu





| Infill              |               |
|---------------------|---------------|
| Result              | Value         |
| Yield Stress        | 28.6 MPa      |
| Yield Strain        | 0.023         |
| Stress at 2% strain | 27.4 MPa      |
| Elastic Modulus     | 1.6 ± 0.2 GPa |

#### Continuous

| Result                 | Value          |
|------------------------|----------------|
| Yield Stress           | 21.2 MPa       |
| Yield Strain           | 0.024          |
| Stress at 2%<br>strain | 18.9 MPa       |
| Elastic Modulus        | 0.99 ± 0.1 GPa |





### Circular - Packed Infill & Continuous



| Infill              |               |
|---------------------|---------------|
| Result              | Value         |
| Yield Stress        | 26.5 Mpa      |
| Yield Strain        | 0.026         |
| Stress at 2% strain | 22.5 MPa      |
| Elastic Modulus     | 1.1 ± 0.1 GPa |

| Continuous          |                |
|---------------------|----------------|
| Result              | Value          |
| Yield Stress        | 21.2 MPa       |
| Yield Strain        | 0.024          |
| Stress at 2% strain | 18.9 MPa       |
| Elastic Modulus     | 0.99 ± 0.1 GPa |





### Linear - Straight Infill & Continuous



| Infill                 |                   |  |
|------------------------|-------------------|--|
| Result                 | Value             |  |
| Yield Stress           | 24.6 Mpa          |  |
| Yield Strain           | 0.023             |  |
| Stress at 2%<br>strain | 22.7 MPa          |  |
| Elastic Modulus        | 1.4 ± 0.2 GPa     |  |
| Continuous             |                   |  |
| Result                 | Value             |  |
| Yield Stress           | 21.2 MPa          |  |
|                        |                   |  |
| Yield Strain           | 0.024             |  |
| Stress at 2%           | 0.024<br>18.9 MPa |  |





### Linear - CrossHatch Infill & Continuous



| Infill              |                |  |
|---------------------|----------------|--|
| Result              | Value          |  |
| Yield Stress        | 22.8 Mpa       |  |
| Yield Strain        | 0.03           |  |
| Stress at 2% strain | 18.9 MPa       |  |
| Elastic Modulus     | 1 ± 0.1 GPa    |  |
| Cont                | inuous         |  |
| Result              | Value          |  |
| Yield Stress        | 21.2 MPa       |  |
| Yield Strain        | 0.024          |  |
| Stress at 2% strain | 18.9 MPa       |  |
| Elastic Modulus     | 0.99 ± 0.1 GPa |  |





## **Fractured Specimens**

- Circular Packed (a)
- Circular Straight (b)
- Linear Straight (d)
- Linear Cross-Hatch (c)
- Hexagonal (e)
- Hilbert Curve (f)







- Continuous specimens (a) (Circular-Packed, Straight Linear-Straight, CrossHatch)
- Continuous specimens (b) (Hexagonal, Hilbert)
- Infill-less (c)
- Completely Continuous (d)







### **Completely Continuous**







### **Completely Continuous**







### Hexagonal Infill



|                     | Error      |                  |
|---------------------|------------|------------------|
|                     | Bulk Model | Derived<br>Model |
| Stress at 2% strain | 33%        | 33%              |
| Stress at 1% strain | 30%        | 33%              |





#### 3/17/2017 FFA Results - Rulk and Derived Isotronic Model



### Hilbert Infill



|                        | Error      |                  |
|------------------------|------------|------------------|
|                        | Bulk Model | Derived<br>Model |
| Stress at 2% strain    | 16%        | 42%              |
| Stress at 1%<br>strain | 8%         | 45%              |





## Hilbert Infill







### **Circular Straight Infill**



|                        | Error      |                  |
|------------------------|------------|------------------|
|                        | Bulk Model | Derived<br>Model |
| Stress at 2% strain    | 42%        | 7%               |
| Stress at 1%<br>strain | 60%        | 6%               |





### **Circular Straight Infill**







### **Circular Packed Infill**



|                        | Error      |                  |
|------------------------|------------|------------------|
|                        | Bulk Model | Derived<br>Model |
| Stress at 2% strain    | 42%        | 4%               |
| Stress at 1%<br>strain | 60%        | 7%               |





### **Circular Packed Infill**







### Linear Straight Infill

50 45 40 35 Stress (MPa) 30 25 20 15 10 5 0 0.005 0.01 0.015 0.025 0.03 0 0.02 Strain Experimental ---- Derived Bulk

Stress vs Strain

|                     | Error      |                  |
|---------------------|------------|------------------|
|                     | Bulk Model | Derived<br>Model |
| Stress at 2% strain | 75%        | 11%              |
| Stress at 1% strain | 38%        | 30%              |





## 3/17/2017 FEA Results – Bulk and Derived Isotropic Model 68 of 103

### Linear Straight Infill







### Linear CrossHatch Infill



|                     | Error      |                  |
|---------------------|------------|------------------|
|                     | Bulk Model | Derived<br>Model |
| Stress at 2% strain | 45%        | 26%              |
| Stress at 1% strain | 30%        | 35%              |





## 3/17/2017 FEA Results – Bulk and Derived Isotropic Model 70 of 103

#### Linear CrossHatch Infill







#### **Infill-less**

Stress vs Strain



|                     | Error      |                  |
|---------------------|------------|------------------|
|                     | Bulk Model | Derived<br>Model |
| Stress at 2% strain | 4%         | 35%              |
| Stress at 1% strain | 9%         | 43%              |





## 3/17/2017 FEA Results – Bulk and Derived Isotropic Model 72 of 103

#### **Infill-less**






#### Continuous

Stress vs Strain

Error 35 Derived 30 **Bulk Model** Model 25 Stress (MPa) Stress at 2% 20 11% 0% strain 15 Stress at 1% 10 strain 30% 20% 5 0 0.005 0 0.01 0.015 0.02 0.025 Strain Experimental -Bulk -Derived





#### Continuous









Experimental vs Analytical

■Bulk ■Experimental ■Derived





76 of 103

#### **Circular Straight Infill**



|                 | Experimental | Analytical |        | Error |
|-----------------|--------------|------------|--------|-------|
|                 |              | ANSYS      | Abaqus |       |
| Yield<br>Stress | 28.3         | 33.5       |        |       |
| Yield<br>Strain | 0.024        | 0.024      |        |       |
| Stress at 2%    | 27.2         | 28.3       |        | 3.5%  |
| Stress at<br>1% | 16.4         | 14.5       |        | 8%    |





- Bulk properties over predicted results.
- Derived properties under predicted results.
- Better representation of FDM part is needed.
- Accurate material model is needed.
- Circular Pattern showed consistent results with derived properties.
- Pattern with continuous thick infill showed consistent results.
- FEA stress plots of patterns with continuous areas is consistent with experimental data.
- Stress plots of intricate infills like Hexagon fail to predict actual fracture.





- The FEA models used above are not reliable for analyzing FDM parts.
- Lack of an accurate material model leads to errors.
- Representation of FDM parts as solid continuous parts produces inconsistencies.
- Higher fidelity models require long times and are computationally intensive.
- Current FEA model can be used as a visual aid to predict fracture in case of patterns having continuous geometry.





- Evaluate orthotropic properties.
- Analyze using orthotropic material model.
- Analyze using a composite layup.
- Compare and discuss.





- Better representation for actual structure of FDM parts.
- Better Material Model using an extensive anisotropic model formulation.
- Higher fidelity FEA models.
- Compare with different AM technologies.
- Discrete Element Analysis.



- [1] <u>http://ie.sabanciuniv.edu/en/announcements-detail/62827</u>
- [2] https://www.pinterest.com/pin/469359592385258477/
- [3] https://www.3dhubs.com/talk/thread/additive-manufacturing-infographic

# [4] T. Wohlers, "U.S. Manufacturing Competitiveness Initiative Dialogue," presented at the Council on Competitiveness, Oak Ridge, TN, 18-Apr-2013.

- [5] http://www.custompartnet.com/wu/fused-deposition-modeling
- [6] https://engineerdog.com/2015/03/08/3d-printing-a-3d-honeycomb-infill-concept/
- [7] http://www.makepartsfast.com/solid-concepts-expands-fdm-capacity/
- [8] <u>http://www.stratasys.com/materials/fdm/nylon</u>

[9] Gajdoš, I., & Slota, J. (2013). Influence of printing conditions on structure in FDM prototypes. Technical Gazette, 20(2), 231-236.

[10] Sun, Q., Rizvi, G. M., Bellehumeur, C. T., & Gu, P. (2008). Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyping Journal, 14(2), 72-80.

- [11] Bagsik, A., Schöppner, V., & Klemp, E. (2010, September). FDM part quality manufactured with Ultem\* 9085. In 14th International Scientific Conference on Polymeric Materials (Vol. 15, pp. 307-315).
- [12] Es-Said, O. S., Foyos, J., Noorani, R., Mendelson, M., Marloth, R., & Pregger, B. A. (2000). Effect of layer orientation on mechanical properties of rapid prototyped samples. Materials and Manufacturing Processes, 15(1), 107-122.
- [13] Ziemian, C., Sharma, M., & Ziemian, S. (2012). Anisotropic mechanical properties of ABS parts fabricated by fused deposition modelling. INTECH Open Access Publisher.
- [14] Upadhyay, K., Dwivedi, R., & Singh, A. K. (2017). Determination and Comparison of the Anisotropic Strengths of Fused Deposition Modeling P400 ABS. In Advances in 3D Printing & Additive Manufacturing Technologies (pp. 9-28). Springer Singapore.
- [15] Ahn, S. H., Montero, M., Odell, D., Roundy, S., & Wright, P. K. (2002). Anisotropic material properties of fused deposition modeling ABS. Rapid prototyping journal, 8(4), 248-257.





References

[16] Wu, W., Geng, P., Li, G., Zhao, D., Zhang, H., & Zhao, J. (2015). Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials, 8(9), 5834-5846.

[17] Syamsuzzaman, M., Mardi, N. A., Fadzil, M., & Farazila, Y. (2014). Investigation of layer thickness effect on the performance of low-cost and commercial fused deposition modelling printers. Materials Research Innovations, 18(sup6), S6-485.

[18] http://www.efunda.com/formulae/solid\_mechanics/mat\_mechanics/hooke\_isotropic.cfm

[19] <u>http://www.efunda.com/formulae/solid\_mechanics/mat\_mechanics/hooke\_iso\_transverse.cfm</u>

[20] Zou, R., Xia, Y., Liu, S., Hu, P., Hou, W., Hu, Q., & Shan, C. (2016). Isotropic and anisotropic elasticity and yielding of 3D printed material. Composites Part B: Engineering, 99, 506-513.

[21] <u>http://www.efunda.com/formulae/solid\_mechanics/mat\_mechanics/hooke\_orthotropic.cfm</u>

[22] http://www.efunda.com/formulae/solid\_mechanics/composites/calc\_ufrp\_cs\_arbitrary.cfm

[23] Casavola, C., Cazzato, A., Moramarco, V., & Pappalettere, C. (2016). Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Materials & Design, 90, 453-458.

[24] Magalhães, L. C., Volpato, N., & Luersen, M. A. (2014). Evaluation of stiffness and strength in fused deposition sandwich specimens. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 36(3), 449-459.

[25] Alaimo, G., Marconi, S., Costato, L., & Auricchio, F. (2017). Influence of meso-structure and chemical composition on FDM 3D-printed parts. Composites Part B: Engineering, 113, 371-380.

[26] Hambali, R. H., Celik, H. K., Smith, P. C., Rennie, A. E. W., & Ucar, M. (2010, September). Effect of build orientation on FDM parts: a case study for validation of deformation behaviour by FEA. In IN: Proceedings of iDECON 2010—international conference on design and concurrent engineering, Universiti Teknikal Malaysia Melaka, Melaka (pp. 224-228).

[27] Martínez, J., Diéguez, J. L., Ares, E., Pereira, A., Hernández, P., & Pérez, J. A. (2013). Comparative between FEM models for FDM parts and their approach to a real mechanical behaviour. Procedia Engineering, 63, 878-884.

[28] Sayre III, R. (2014). A Comparative Finite Element Stress Analysis of Isotropic and Fusion Deposited 3D Printed Polymer (Doctoral dissertation, Rensselaer Polytechnic Institute).





# THANK YOU.





# Circular Straight Infill













# Linear Straight Infill

#### Linear CrossHatch Infill







|                               | ANSYS®      |        | Abaqus <sup>©</sup> |             |        |          |
|-------------------------------|-------------|--------|---------------------|-------------|--------|----------|
|                               | Туре        | Nodes  | Elements            | Туре        | Nodes  | Elements |
| Continuous (C)                | Tetrahedral | 15209  | 7344                | Tetrahedral | 2400   | 1092     |
| Hexagonal Infill (HI)         | Tetrahedral | 19522  | 9397                | Tetrahedral | 103885 | 62493    |
| Hexagonal Continuous (HC)     | Tetrahedral | 13341  | 6582                | Tetrahedral | 18765  | 9667     |
| Circular Straight Infill (CI) | Tetrahedral | 26840  | 13026               | Tetrahedral | 44840  | 13026    |
| Circular Continuous (CC)      | Tetrahedral | 13280  | 6515                | Tetrahedral | 17520  | 9572     |
| Circular Packed Infill        | Tetrahedral | 237364 | 147796              | Tetrahedral | 325621 | 153625   |
| Linear Straight Infill        | Tetrahedral | 321630 | 152453              | Tetrahedral | 123154 | 76545    |
| Linear CrossHatch Infill      | Tetrahedral | 212544 | 121456              | Tetrahedral | 213514 | 142123   |
| Hilbert Curve Infill          | Tetrahedral | 424719 | 212611              | Tetrahedral | 345334 | 121442   |
| Infill-less                   | Tetrahedral | 60437  | 36631               | Tetrahedral | 85463  | 45311    |





# 3/17/2017 Analysis using Orthotropic Material Properties 87 of 103

- Solve for Stress and Strain plots for given displacement and compare with experimental values.
- The compliance matrix for orthotropic model.

$$\begin{bmatrix} \varepsilon_{\chi\chi} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \varepsilon_{yz} \\ \varepsilon_{\chi\chi} \\ \varepsilon_{\chi\gamma} \end{bmatrix} = \begin{bmatrix} \frac{1}{E_{\chi}} & -\frac{v_{y\chi}}{E_{y}} & -\frac{v_{z\chi}}{E_{y}} & 0 & 0 & 0 \\ -\frac{v_{\chi\chi}}{E_{\chi}} & \frac{1}{E_{y}} & -\frac{v_{zy}}{E_{z}} & 0 & 0 & 0 \\ -\frac{v_{\chiz}}{E_{\chi}} & -\frac{v_{yz}}{E_{y}} & \frac{1}{E_{z}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2G_{yz}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2G_{z\chi}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2G_{z\chi}} \end{bmatrix} \begin{bmatrix} \sigma_{\chi\chi} \\ \sigma_{\chiy} \\ \sigma_{\chiz} \\ \sigma_{\chiy} \end{bmatrix}$$





#### **Completely Continuous**



|                 | Experimental | Analy | Freeze |       |
|-----------------|--------------|-------|--------|-------|
|                 |              | ANSYS | Abaqus | EIIOI |
| Yield<br>Stress | 30.2         | 45.1  | 43     |       |
| Yield<br>Strain | 0.04         | 0.042 | 0.042  |       |
| Stress at 2%    | 18.1         | 22.8  | 22     | 25%   |
| Stress at 1%    | 9.6          | 12    | 11.9   | 25%   |





#### **Completely Continuous – Stress Plot**







#### **Hexagonal Infill**



|                 | Experimental | Analy | Error  |       |
|-----------------|--------------|-------|--------|-------|
|                 |              | ANSYS | Abaqus | EIIOI |
| Yield<br>Stress | 27.9         | 44.4  | 43     |       |
| Yield<br>Strain | 0.028        | 0.023 | 0.022  |       |
| Stress at 2%    | 24           | 32    | 32     | 33%   |
| Stress at 1%    | 12.1         | 15.9  | 16     | 30%   |





#### **Hexagonal Infill**







### Hilbert Infill



|                 | Experimental | Analy | Error  |            |
|-----------------|--------------|-------|--------|------------|
|                 |              | ANSYS | Abaqus |            |
| Yield<br>Stress | 28.6         | 35.2  | 35     |            |
| Yield<br>Strain | 0.024        | 0.023 | 0.023  |            |
| Stress at 2%    | 25.4         | 29.4  | 30     | 16%        |
| Stress at<br>1% | 14.2         | 15.2  | 15.5   | 7% -<br>8% |





#### Hilbert Infill







#### **Circular Straight Infill**



|                 | Experimental | Analy | Error  |     |
|-----------------|--------------|-------|--------|-----|
|                 |              | ANSYS | Abaqus |     |
| Yield<br>Stress | 28.3         | 64.7  | 65     |     |
| Yield<br>Strain | 0.026        | 0.027 | 0.027  |     |
| Stress at 2%    | 27.2         | 52    | 51     | 42% |
| Stress at<br>1% | 16.4         | 26.7  | 25.8   | 60% |



#### **Circular Straight Infill**







#### **Circular Packed Infill**



|                 | Experimental | Analy | Error  |     |
|-----------------|--------------|-------|--------|-----|
|                 |              | ANSYS | Abaqus |     |
| Yield<br>Stress | 25.9         | 50    | 51     |     |
| Yield<br>Strain | 0.026        | 0.026 | 0.26   |     |
| Stress at 2%    | 22.6         | 37.6  | 38     | 42% |
| Stress at<br>1% | 11.6         | 18.7  | 19.5   | 60% |





#### **Circular Packed Infill**







#### Linear Straight Infill



|                 | Experimental | Analy | Error  |     |
|-----------------|--------------|-------|--------|-----|
|                 |              | ANSYS | Abaqus |     |
| Yield<br>Stress | 24.3         | 45.5  | 44.2   |     |
| Yield<br>Strain | 0.025        | 0.022 | 0.022  |     |
| Stress at 2%    | 22.7         | 40    | 41.5   | 75% |
| Stress at<br>1% | 14.7         | 20.3  | 21.2   | 38% |





## Linear Straight Infill







#### 100 of 103

## Linear CrossHatch Infill



Stress vs Strain

|                 | Experimental | Analy | Error  |     |
|-----------------|--------------|-------|--------|-----|
|                 |              | ANSYS | Abaqus |     |
| Yield<br>Stress | 22.7         | 42    | 43     |     |
| Yield<br>Strain | 0.032        | 0.03  | 0.3    |     |
| Stress at 2%    | 19           | 28    | 28.8   | 45% |
| Stress at 1%    | 11           | 14.3  | 15     | 30% |





#### Linear Cross-Hatch Infill







102 of 103

**Infill-less** 







Infill-less







104 of 103

#### Continuous



|                 |              | Analy |        |       |
|-----------------|--------------|-------|--------|-------|
|                 | Experimental | ANSYS | Abaqus | Error |
| Yield<br>Stress | 16.2         | 30.8  | 31.5   |       |
| Yield<br>Strain | 0.022        | 0.023 | 0.023  |       |
| Stress at 2%    | 15.7         | 27    | 28     | 11%   |
| Stress at<br>1% | 9.9          | 13.8  | 14.2   | 30%   |





105 of 103

### Continuous





