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What is Additive Manufacturing (AM)?

 Additive manufacturing refers to the methods of building 3D 

objects in which material is added/deposited layer-by-layer. 

 Represents additive processes like FDM, SLA, SLS etc. 

Source: http://ie.sabanciuniv.edu/en/announcements-detail/62827 Source: https://www.pinterest.com/pin/469359592385258477/
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AM Technologies

Source: https://www.3dhubs.com/talk/thread/additive-manufacturing-infographic
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Applications

[4]

Source: [4] T. Wohlers, “U.S. Manufacturing Competitiveness Initiative Dialogue,” presented at the Council on Competitiveness, Oak Ridge, TN, 18-Apr-2013.
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Fused Deposition Modeling (FDM)

 FDM is layered 

manufacturing technology 

that produces parts with 

complex geometries layer by 

layer by extruding and 

depositing material. 

 Variety of polymers: ABS, 

PLA

 Applications: Tooling, 

Functional Prototypes, Low 

volume production parts etc. 

Source: http://www.custompartnet.com/wu/fused-deposition-modeling
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Infill pattern and Complex geometries

Source: https://engineerdog.com/2015/03/08/3d-printing-a-3d-honeycomb-infill-concept/

Source: http://www.makepartsfast.com/solid-concepts-expands-fdm-capacity/

Source: http://www.stratasys.com/materials/fdm/nylon
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General FDM/AM process 

Pre-processing

• Create a 3D 
CAD model.

• Convert into 
STL file format

• Use a slicing 
software which 
slices the 
model into 
successive 
layers for the 
printer 

Production

• The printer heats the 
filament to a semi-
molten state and 
deposits the filament 
on the extrusion path.

• After a layer is 
completed, the build 
platform moves down 
and the subsequent 
layer is deposited on 
top of it.

• Since the material is 
extruded in a semi-
molten state, the newly 
deposited material 
fuses with adjacent 
material.

• Supports are printed 
simultaneously  in case 
of overhangs. 

Post-processing

• Break 
away 
supports 
or use 
water in 
case of 
dissolvabl
e support.

• Polish 
rough 
areas if 
any. 

3/17/2017
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Advantages of FDM/AM technologies

 Build lightweight, durable parts.

 Ability to design complex parts including complicated, internal  features.

 Absence of tooling, saves time and money included in tooling process.

 Ability to build durable and effective parts in low volume.

 Additive process reduces material waste.

 Ideal for concept modeling and prototyping. 

3/17/2017
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Disadvantages

 Manufactured part is not a perfect rendition of the 3D CAD model.

 Owing to the microstructure and imperfect bonding, material properties

are not as expected.

 The properties depend greatly on the layer orientation (filament direction

within layers).

 The part as a whole behaves as an anisotropic part, even though the

material is isotropic

3/17/2017
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Motivation 

 With increasing use of AM parts in functional applications, the

need for simulating parts in loading conditions arises.

 With weight-savings from infill patterns and different layer

orientations, analyses of these parts is important.

 Analyses like FEA in which the part is discretized into a

continuum of finite elements which can be used.

 Due to the microstructure of FDM, FEA may not be able to

effectively predict the behavior of FDM parts in their entirety.

 Comparing and validating the FEA results with experimental

results will informs us about the prediction reliability of FEA

models for AM parts.

3/17/2017



12 of 103

pbaiker@clemson.edu

Objective

 To analyze as-built FDM parts by Finite Element Analysis, using

isotropic and orthotropic properties.

 To validate FEA results with experimental results using FDM printed

parts.

3/17/2017
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Scope 

 To develop as-built parts with different infill patterns.

 Print the parts and conduct tensile tests to obtain experimental results.

 To simulate the tensile tests and analyze these parts using bulk material 

properties.

 Analyses are also carried out using derived isotropic properties and 

orthotropic properties. 

 ANSYS and Abaqus are used as FEA solvers. 

 Parts are analyzed only in the elastic region. 

3/17/2017
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Literature Review 

 Review effect of process parameters to get effective or best possible

print.

 Review parameters causing anisotropy.

 Review approaches used for analysis.

 Review research needed.

3/17/2017
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Literature Review - Effect of process parameters 

Raster / Layer 

Orientation 
Temperature

Filament 

Width 
Air gap

Layer 

Thickness

Gajdos et al [9] 

Sun et al [10]  

Bagsik et al [11],

Es-Said et al [12],

Zieman et al [13],

Upadhyay et al [14] 



Ahn et al [15]    

Wu et al [16],

Syamsuzzaman et al [17]  
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Analytical Approaches used for material model

Isotropic Model Transversely Isotropic Model 

Material Models Used Results 

Zou et al [20] Isotropic, Transversely 

Isotropic 

2% difference between the 2 models. 

Recommends using anisotropic model. 

[19][18]
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Analytical Approaches used for material model

Orthotropic Model Classical Laminate Theory
[21] [22]
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Analytical Approaches used for material model

Material Model Used Results

Casavola et al [23] Classical Laminate Theory

Results are in accordance with 

experimental data for majority of the 

stress-strain curve; Results deviate at 

2% strain.

Magalha˜es et al [24] Classical Laminate Theory

Mechanical Behavior not predicted 

accurately using CLT; Suggest using a 

better analytical model.

Alaimo et al [25] Classical Laminate Theory
Results obtained using CLT are 

consistent with the experimental data. 

3/17/2017
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Simulation Approach

Approach Results Work needed. 

Hambali et al [26]
Orthotropic Material 

properties used. 

Result in XY direction 

in accordance. Not all 

are results consistent.

Inconsistency

Martinez et al [27]

Uses a laminate model

with orthotropic properties 

and compares with a solid 

model

Considerable

differences in the 

results obtained from 

both the models.

Difference in results 

Sayre [28]

Composite laminate 

model used in Abaqus, 

compared with isotropic 

model. 

Composite model 

closer to experimental 

data. 

Shell elements used in

composite layup

3/17/2017
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Methodology 

 Design CAD geometries:

– Accommodate infill patterns 

– Suitable for tensile testing

 Experimental work

– Print parts on a FDM printer 

– Printed parts are tested on a tensile test bed.

– Data is post-processed to obtain stress-strain curves and 
material properties

 FEA 

– Simulate tensile test using bulk material properties for the 
parts.

– Simulate tensile test using derived isotropic properties. 

– Simulate tensile test using orthotropic properties.

 Compare and Discuss

3/17/2017
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Modeling – Initial Approach

 Trace gcode path in Solidworks to create geometry.

 Use ‘Sweep’ feature to model intra-layer fibers.

 Build model layer by layer to achieve high fidelity with actual part.

3/17/2017
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Modeling – Initial Approach

 Problems with 

intersecting surfaces 

(Adjacent and 

successive).

 Created a huge part 

file, which took hours to 

be saved.

 Meshing, if possible 

was computationally 

intensive (9 hours). 

3/17/2017
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Geometry

 Since tensile tests are 

conducted: Dogbone

geometry is used. 

 Narrow gage section to 

ensure fracture 

 Shoulders for gripping. 

 Similar to ASTM standards. 

 Used to obtain derived 

isotropic properties. 

3/17/2017
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Parts printed 

 Hexagonal Infill 

 Circular Infill – Straight

 Circular Infill – Packed 

 Linear Infill – Straight

 Linear Infill – Cross-Hatch

 Hilbert Curve 

 Infill-less

 Continuous Specimens – To derive material properties 

3/17/2017
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Printing Parameters

 Gage dimensions decided so as to accommodate the features of

the infill pattern.

 Maximum dimensions decided based on the size of the printer

bed and the tensile test bed.

 Printing parameters used so as to obtain best possible part

quality within reasonable amount of time.

 Printer used: MakerBot Replicator 2X

 Slicers used: Slic3r, Simplify 3D.

 Extruder Temp: 230o C ; Bed Temp: 130o C

3/17/2017
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Hexagonal Infill 

 Layer Height: 0.2 mm

 Filament width: 0.67 mm

 Infill density: 20 %

3/17/2017
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Circular Infill: Straight arrangement 

 Layer Height: 0.4 mm

 Filament width: 0.42 mm

 Infill density: 30 %

3/17/2017
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Circular Infill: Packed arrangement 

 Layer Height: 0.4 mm

 Filament width: 0.42 mm

 Infill density: 30 %

3/17/2017
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Linear Infill: Straight arrangement 

 Layer Height: 0.2 mm

 Filament width: 0.67 mm

 Infill density: 40 %

3/17/2017
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Linear Infill: CrossHatch arrangement 

 Layer Height: 0.2 mm

 Filament width: 0.67 mm

 Infill density: 40 %

3/17/2017
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Hilbert Curve

 Layer Height: 0.2 mm

 Filament width: 0.67 mm

 Infill density: 30 %

3/17/2017
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Continuous Pattern

 Layer Height: 0.4 mm

 Filament width: 0.42 mm

 Infill density: 100%

3/17/2017



33 of 103

pbaiker@clemson.edu

Infill-less Pattern

 Layer Height: 0.2 mm

 Filament width: 0.67 mm

 Infill density: 100 %

3/17/2017
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Dogbone for deriving Orthotropic Properties

 Layer Height: 0.2 mm

 Filament width: 0.67 mm

 Infill density: 100 %

3/17/2017
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Tensile Tests 

 Psylotech - µTs ‘Modular under Microscope Mechanical Test System’

 Displacement controlled tensile test was performed at a rate of 50 µ/s.

 Test is conducted till fracture occurs.

 Data points are recorded every 0.05 secs. 

 Displacement and corresponding force required at every time step is 

obtained.

 A sample set 20 samples is used.

 Results are post-processed to obtain material properties.  

3/17/2017
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Finite Element Analysis

 Transient Analysis using ANSYS and Abaqus .

 One end of the shoulder is fixed.

 Displacement is applied on the other shoulder.

 Average displacement of a particular sample set is used.

 Mesh convergence is used to decide appropriate mesh size.

 Metrics for Comparison: Stress at 2% strain, Area of fracture, stress-

strain curve. 

3/17/2017
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Meshed Part 

Hexagonal Infill

Hilbert Curve Infill

3/17/2017
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Meshed Part 

Linear Straight Infill

Linear CrossHatch Infill

3/17/2017
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Analysis using Bulk Material Properties

 Use material properties of the Bulk ABS material.

 Use Isotropic Material Model.

 Solve for Stress and Strain plots for given displacement.

 Compare with experimental Values

Material Property of ABS Value 

Young’s Modulus 2 GPa

Poisson’s Ratio 0.394

Density 1020 kg/m3

3/17/2017
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Analysis using Derived Material Properties

 Derive Material Properties by using a continuous model with the same 

printing parameters  

 Use Isotropic Material Model with derived properties.

 Solve for Stress and Strain plots for given displacement and compare 

with experimental values.

Material Property of ABS Value 

Young’s Modulus 1 GPa

Poisson’s Ratio 0.394

Density 1020 kg/m3

3/17/2017
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Analysis using Orthotropic Material Properties

 Derive Orthotropic Material Properties by using a continuous model built 

in three orientations: X, Y, Z.

 Use Orthotropic Material Model with derived properties.

3/17/2017
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Orthotropic properties

Material Property of ABS Value 

Young’s Modulus in X (Ex) 1.1 GPa

Young’s Modulus in Y (Ey) 0.9 GPa

Young’s Modulus in Z (Ez) 0.88 GPa

Poisson’s Ratio (νxy = νxy = νxy) 0.394

Shear Modulus (Gxy) 0.39 GPa

Shear Modulus (Gyz) 0.32 GPa

Shear Modulus (Gxz) 0.31 GPa

Density 1020 kg/m3

3/17/2017
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Composite Analysis using Abaqus.

 Apply Composite Layup to solid 3D model as FDM part is built in layers.

 Enables specification of fiber direction within each layer. 

 Use CLT along with orthotropic properties to define model. 

C =

3/17/2017
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Printed parts 

 Derived isotropic properties (a)

 Orthotropic properties in X (b)

 Orthotropic properties in Y (c)

 Orthotropic properties in Z (d)

a

b

c

d
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Printed parts 

 Circular Packed (a)

 Circular Straight (b)

 Linear Straight (c)

 Linear Cross-Hatch (d)

 Hexagonal (e)

 Hilbert Curve (f)

a

b

c

d

e

f

3/17/2017



46 of 103

pbaiker@clemson.edu

Printed parts 

 Infill-less (a)

 Continuous specimens (b)

(Hexagonal, Hilbert)

 Continuous specimens (c)

(Circular-Packed, Straight

Linear-Straight, CrossHatch)

a

b

c
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Tensile Test Results 

Derived properties for isotropic model
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Result Value 

Yield Stress 30 MPa

Yield Strain 0.039

Stress at 2% strain 18.5 MPa

Elastic Modulus 1 ± 0.1 GPa
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Tensile Test Results 

Derived properties for orthotropic model

Material Property of ABS Value 

Young’s Modulus in X (Ex) 1.1 GPa

Young’s Modulus in Y (Ey) 0.9 GPa

Young’s Modulus in Z (Ez) 0.88 GPa

Poisson’s Ratio (νxy = νxy = νxy) 0.394

Shear Modulus (Gxy) 0.39 GPa

Shear Modulus (Gyz) 0.32 GPa

Shear Modulus (Gxz) 0.31 GPa

Density 1020 kg/m3
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Tensile Test Results 

Hexagonal Infill and Continuous 

Result Value 

Yield Stress 27.9 Mpa

Yield Strain 0.028

Stress at 2% 

strain

24 MPa

Elastic Modulus 1.25 ± 0.2 GPa
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Hexagonal Continuous Hexagnal Infill

Result Value 

Yield Stress 16 MPa

Yield Strain 0.023

Stress at 2% 

strain

15.7 MPa

Elastic Modulus 1 ± 0.1 GPa

Infill

Continuous
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Tensile Test Results 

Hilbert Curve Infill and Continuous & Infill-less 
Result Value 

Yield Stress 29.1 Mpa

Yield Strain 0.025

Stress at 2% 

strain

25.4 Mpa

Elastic Modulus 1.3 ± 0.2 GPa

Result Value 

Yield Stress 32.9 MPa

Yield Strain 0.025

Stress at 2% 

strain

28.8 MPa

Elastic Modulus 1.5 ± 0.1 GPa

Result Value 

Yield Stress 21.2 MPa

Yield Strain 0.023

Stress at 2% 

strain

18.9 Mpa

Elastic Modulus 0.9 ± 0.1 GPa
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Tensile Test Results 

Circular - Straight Infill & Continuous

Result Value 

Yield Stress 28.6 MPa

Yield Strain 0.023

Stress at 2% 

strain

27.4 MPa

Elastic Modulus 1.6 ± 0.2 GPa
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Stress vs Strain

Circular Continuous Circular Infill

Result Value 

Yield Stress 21.2 MPa

Yield Strain 0.024

Stress at 2% 

strain

18.9 MPa

Elastic Modulus 0.99 ± 0.1 GPa

Infill

Continuous
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Tensile Test Results 

Circular - Packed Infill & Continuous
Result Value 

Yield Stress 26.5 Mpa

Yield Strain 0.026

Stress at 2% 

strain

22.5 MPa

Elastic Modulus 1.1 ± 0.1 GPa

Result Value 

Yield Stress 21.2 MPa

Yield Strain 0.024

Stress at 2% 

strain

18.9 MPa

Elastic Modulus 0.99 ± 0.1 GPa
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Tensile Test Results 

Linear - Straight Infill & Continuous

Result Value 

Yield Stress 24.6 Mpa

Yield Strain 0.023

Stress at 2% 

strain

22.7 MPa

Elastic Modulus 1.4 ± 0.2 GPa

Result Value 

Yield Stress 21.2 MPa

Yield Strain 0.024

Stress at 2% 

strain

18.9 MPa

Elastic Modulus 0.99 ± 0.1 GPa
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Tensile Test Results 

Linear - CrossHatch Infill & Continuous

Result Value 

Yield Stress 22.8 Mpa

Yield Strain 0.03

Stress at 2% 

strain

18.9 MPa

Elastic Modulus 1 ± 0.1 GPa

Result Value 

Yield Stress 21.2 MPa

Yield Strain 0.024

Stress at 2% 

strain

18.9 MPa

Elastic Modulus 0.99 ± 0.1 GPa
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Fractured Specimens

 Circular Packed (a)

 Circular Straight (b)

 Linear Straight (d)

 Linear Cross-Hatch (c)

 Hexagonal (e)

 Hilbert Curve (f)

a

b

c

d

e

f
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Fractured Specimens

 Continuous specimens (a)

(Circular-Packed, Straight

Linear-Straight, CrossHatch)

 Continuous specimens (b)

(Hexagonal, Hilbert)

 Infill-less (c)

 Completely Continuous (d) 

a

b

c

d
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FEA Results – Bulk and Derived Isotropic Model 

Completely Continuous 
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FEA Results – Bulk and Derived Isotropic Model 

Completely Continuous 
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FEA Results – Bulk and Derived Isotropic Model 

Hexagonal Infill
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FEA Results – Bulk and Derived Isotropic Model 

Hexagonal Infill
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FEA Results – Bulk and Derived Isotropic Model 

Hilbert Infill
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FEA Results – Bulk and Derived Isotropic Model 

Hilbert Infill
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FEA Results – Bulk and Derived Isotropic Model 

Circular Straight Infill
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FEA Results – Bulk and Derived Isotropic Model 

Circular Straight Infill
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FEA Results – Bulk and Derived Isotropic Model 

Circular Packed Infill
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FEA Results – Bulk and Derived Isotropic Model 

Circular Packed Infill
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FEA Results – Bulk and Derived Isotropic Model 

Linear Straight Infill
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FEA Results – Bulk and Derived Isotropic Model 

Linear Straight Infill
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FEA Results – Bulk and Derived Isotropic Model 

Linear CrossHatch Infill
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FEA Results – Bulk and Derived Isotropic Model 

Linear CrossHatch Infill
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FEA Results – Bulk and Derived Isotropic Model 

Infill-less
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FEA Results – Bulk and Derived Isotropic Model 

Infill-less
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FEA Results – Bulk and Derived Isotropic Model 

Continuous 
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FEA Results – Bulk and Derived Isotropic Model 

Continuous 
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Results – Summary &Comparison 
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FEA Results – Orthotropic Properties Model 

Circular Straight Infill
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Results – Summary

 Bulk properties over predicted results.

 Derived properties under predicted results.

 Better representation of FDM part is needed.

 Accurate material model is needed. 

 Circular Pattern showed consistent results with derived properties. 

 Pattern with continuous thick infill showed consistent results. 

 FEA stress plots of patterns with continuous areas is consistent with 

experimental data. 

 Stress plots of intricate infills like Hexagon fail to predict actual 

fracture. 
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Conclusions from current work. 

 The FEA models used above are not reliable for analyzing FDM parts. 

 Lack of an accurate material model leads to errors.

 Representation of FDM parts as solid continuous parts produces 

inconsistencies.

 Higher fidelity models require long times and are computationally 

intensive. 

 Current FEA model can be used as a visual aid to predict fracture in 

case of patterns having continuous geometry. 
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Work to be completed

 Evaluate orthotropic properties.

 Analyze using orthotropic material model.

 Analyze using a composite layup. 

 Compare and discuss.
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 Better representation for actual structure of FDM parts.

 Better Material Model using an extensive anisotropic model formulation.

 Higher fidelity FEA models.

 Compare with different AM technologies.

 Discrete Element Analysis.

Future Work3/17/2017
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THANK YOU.
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Meshed Part 

Circular Straight Infill

Circular Packed Infill
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Meshed Part 

Linear Straight Infill

Linear CrossHatch Infill
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Mesh Statistics

ANSYS© Abaqus©

Type Nodes Elements Type Nodes Elements

Continuous (C) Tetrahedral 15209 7344 Tetrahedral 2400 1092

Hexagonal Infill (HI) Tetrahedral 19522 9397 Tetrahedral 103885 62493

Hexagonal Continuous (HC) Tetrahedral 13341 6582 Tetrahedral 18765 9667

Circular Straight Infill (CI) Tetrahedral 26840 13026 Tetrahedral 44840 13026

Circular Continuous (CC) Tetrahedral 13280 6515 Tetrahedral 17520 9572

Circular Packed Infill Tetrahedral 237364 147796 Tetrahedral 325621 153625

Linear Straight Infill Tetrahedral 321630 152453 Tetrahedral 123154 76545

Linear CrossHatch Infill Tetrahedral 212544 121456 Tetrahedral 213514 142123

Hilbert Curve Infill Tetrahedral 424719 212611 Tetrahedral 345334 121442

Infill-less Tetrahedral 60437 36631 Tetrahedral 85463 45311
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Analysis using Orthotropic Material Properties

 Solve for Stress and Strain plots for given displacement and compare 

with experimental values.

 The compliance matrix for orthotropic model.
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FEA Results – Bulk Isotropic Properties Model 
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FEA Results – Bulk Isotropic Properties Model 

Completely Continuous – Stress Plot 
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FEA Results – Bulk Isotropic Properties Model 

Hexagonal Infill
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FEA Results – Bulk Isotropic Properties Model 

Hexagonal Infill
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FEA Results – Bulk Isotropic Properties Model 

Hilbert Infill
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FEA Results – Bulk Isotropic Properties Model 

Hilbert Infill
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FEA Results – Bulk Isotropic Properties Model 

Circular Straight Infill
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FEA Results – Bulk Isotropic Properties Model 

Circular Straight Infill
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FEA Results – Bulk Isotropic Properties Model 

Circular Packed Infill
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FEA Results – Bulk Isotropic Properties Model 

Circular Packed Infill
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FEA Results – Bulk Isotropic Properties Model 

Linear Straight Infill
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FEA Results – Bulk Isotropic Properties Model 

Linear Straight Infill
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FEA Results – Bulk Isotropic Properties Model 

Linear CrossHatch Infill
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FEA Results – Bulk Isotropic Properties Model 

Linear Cross-Hatch Infill
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FEA Results – Bulk Isotropic Properties Model 

Infill-less
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FEA Results – Bulk Isotropic Properties Model 

Infill-less
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FEA Results – Bulk Isotropic Properties Model 

Continuous 
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FEA Results – Bulk Isotropic Properties Model 

Continuous
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