Test Frame Design for Characterization of Additive Manufacturing Compliant Materials

Sean Taylor Fry Chair: Dr. Cameron Turner Committee: Dr. Joshua Summers Dr. Garrett Pataky

- Background
- Motivation of Design
- Research Questions
- Research Method
- Singularity Work
- Design Solution
- Solution Justification
- Discussion of Solution
- Conclusions
- Future Work
- References

Practice Defense

Practice
DefenseBackground of Parallel Manipulators

Classification by: DOF, kinematic structure, drive technology
 This design: 6-DOF, closed-loop, electrohydraulic [Tsai]

- 3 types of parallel manipulators
 - Planar \rightarrow 3-DOF = 3 limbs
 - Spherical \rightarrow 3-DOF = 3 limbs
 - Spatial \rightarrow 6-DOF = 6 limbs
- This work \rightarrow Spatial parallel manipulator

3/36

2017.10.10

Practice Defense Background: Stewart-Gough Platform

4/36 2017.10.10

- First published paper by Stewart in 1965 (right)
 - Flight simulator for helicopter pilots
- Gough developed similar platform before Stewart (bottom left)
 - Tire testing machine
- SPU configuration (bottom right)
 - Spherical \rightarrow Prismatic \rightarrow Universal

Practice Defense Background: Stewart-Gough Platform

5/36 2017.10.10

- Vector-loop equation:
 - $\overline{A_i B_i} = \boldsymbol{p} + R_B^A \boldsymbol{b}_i^B \boldsymbol{a_i}$
- Rotation Matrix:
 - $R_B^A = \begin{bmatrix} u_x & v_x & w_x \\ u_y & v_y & w_y \\ u_z & v_z & w_z \end{bmatrix}$
- Leg length: Inverse Kinematics

$$- d_i^2 = \overline{A_i B_i}^T \overline{A_i B_i}$$

• Jacobian

- s_i = unit vector of $\overline{A_i B_i}$

$$J = \begin{bmatrix} \boldsymbol{s}_1^T & (\boldsymbol{b}_1 \times \boldsymbol{s}_1)^T \\ \vdots & \vdots \\ \boldsymbol{s}_6^T & (\boldsymbol{b}_6 \times \boldsymbol{s}_6)^T \end{bmatrix}$$

- Naval Research Laboratory (NRL) at Washington, DC
- "Real-time" characterization of anisotropic composite materials [1-3]
 - Full field strain measurements
 - ~ 2 meters tall
 - ~ 1.5 m platform diameter
 - ~ 170 cm stroke

NRL 66.3 [4]

7/36						
2017.	10.10					

- Developed by senior design team at Colorado School of Mines
 - 30 weeks
- Several issues
 - SPS configuration
 - Platform is too heavy and compliant for testing
 - Metallic or composite materials
 - "Home" position \rightarrow nearly singular
 - Forces and displacements of specimen → sensitive to variations in geometry of platform
 - Grips not suitable for:
 - bending/torsion tests
 - metals
 - Stroke length is insufficient (60 mm)
 - Load rating: 1349 lbf.
 - Bending test: Slope ~ 42°

stfry@g.clemson.edu http://www.clemson.edu/ces/cedar

~ 500 mm

~ 474 mm

8/36

2017.10.10

- Background
- Motivation of Design
- Research Questions
- Research Method
- Singularity Work
- Design Solution
- Solution Justification
- Discussion of Solution
- Conclusions
- Future Work
- References

Practice Defense

- Need for a more in depth knowledge of characterization of nonlinear anisotropic materials
 - Change load dynamically for greater excitation of properties
- 6-DOF test frame = greater movement than traditional stands
 - Reduces the amount of specimens \rightarrow reduces cost
- Small scale design is more efficient
 - Reduces weight, cost, space, resources
 - Easier transportation

- Background
- Motivation of Design
- Research Questions
- Research Method
- Singularity Work
- Design Solution
- Solution Justification
- Discussion of Solution
- Conclusions
- Future Work
- References

Practice Defense

- 1. How suitable is the given design for...
 - 1. With respect to workspace
 - 2. With respect to FEA
 - 3. With respect to some metallic AM materials
- 2. How can the design be improved for a larger workspace for more compliant materials?
- 3. How can the singularities be better understood in the parallel manipulator?

- Background
- Motivation of Design
- Research Questions
- Research Method
- Singularity Work
- Design Solution
- Solution Justification
- Discussion of Solution
- Conclusions
- Future Work
- References

Practice Defense

- Background research
- Recommendations for Naval Research Laboratory (NRL)
- Overview of given design
- Kinematic analysis of general SG platform
- Singularity analysis
- Analysis of specimen design
- Optimization of design
 - Design for modularity
 - Reduce weight
 - Minimize deflection
 - Maximize workspace

- Background
- Motivation of Design
- Research Questions
- Research Method
- Singularity Work
- Design Solution
- Solution Justification
- Discussion of Solution
- Conclusions
- Future Work
- References

Practice Defense

Practice Defense Singularity Work: Jacobian Normalization

• Condition number varies with units

$$J = \begin{bmatrix} \boldsymbol{s}_1^T & (\boldsymbol{b}_1 \times \boldsymbol{s}_1)^T \\ \vdots & \vdots \\ \boldsymbol{s}_6^T & (\boldsymbol{b}_6 \times \boldsymbol{s}_6)^T \end{bmatrix}$$

• To normalize the Jacobian values within the workspace of the manipulator

$$J_N = \frac{J - J_{Min}}{J_{Max} - J_{Min}}$$

16/36

2017.10.10

- Taking a "slice" of the x-y plane at "home" z value
 - Min and max Jacobian taken from both ends of the line ($0 \le \theta \le 180$)


```
Practice
Defense
```

Jacobian Normalization Results

17/36 2017.10.10

Plotting normalized Jacobian values vs the movement of centroid, P

- Background
- Motivation of Design
- Research Questions
- Research Method
- Singularity Work
- Design Solution
- Solution Justification
- Discussion of Solution
- Conclusions
- Future Work
- References

Practice Defense

Design Solution: EHA Actuators

20/36 2017.10.10

- Electrohydraulic actuators (EHA)
 - 8 in. stroke
 - Capacity: 4800 lbs. (x6 = 28,800 lbs.)
 - Speed: 1.3 in/s
- Drawer slide & aluminum plates
 - Why?
- Linear Motion Position-Measuring Transmitters (LMPMT)
 - Stroke: 12.5 in.
 - Accuracy Range: -0.25% 0.25%
 - Repeatability Range: -0.05% 0.05%
- Spherical ball joint
 - Static radial load: 10,250 lbs.
- Universal Joint
 - Max Torque: 5,500 in-lbs.

Defense Design Solution: Bottom Frame Assembly

21/36 2017.10.10

• Can adjust bottom joint locations for change in workspace

Design Solution: Top Frame

22/36 2017.10.10

- All welded
 - Except exploded portion
- Modified H-beams for additional stiffness
 - Account for in-plane bending

Design Solution: Grips

23/36 2017.10.10

- Grips (black): ADMET GV-50T
 - Tensile Force: 50kN
 - Plain clamping surface
 - Opening size 0 30 mm
- Adapter (grey) from force sensor to grip
- 6 axis force/torque sensor
 - Sunrise Instruments: M3943
 - Non-linearity: 1%
 - Hysteresis: 1%
 - Fx & Fy: 16200 N
 - Fz: 32400 N
 - Mx & My: 660 Nm
 - Mz: 530 Nm

• Aluminum ring

Practice

Defense

- 3D printed camera adapter (green)
 - Slot design for stability (bottom left)
- Cameras (black)
 - FLIR: Chameleon 1.3 MP Color
 - 1280 x 1024 res; 149 FPS
- 3D printed legs

24/36

2017.10.10

Design Solution: Top Plate

25/36 2017.10.10

- 3" x 3" x ¹⁄₄" 4140 Tubing
 - Welded together
- 1 connected by M14 screws
- 2 connected by M14 screws through all

- Background
- Motivation of Design
- Research Questions
- Research Method
- Singularity Work
- Design Solution
- Solution Justification
- Discussion of Solution
- Conclusions
- Future Work
- References

Practice Defense

Solution Justification: Deflection

27/36 2017.10.10

		Тор	Frame								
6061-T6 Specimen					Top Plate						
Value	Unit	Direction	Location	Value	Units			6061-T6 S	Specimen		
Shear						Value	Unit	Direction	Location	Value	Units
0.3453	mm	In-plane shear, one leg	Grips	3000	N	Shear					
	mm	in-plane shear, two legs	Grips	3000	N			In-plane			
Tensile						0.3517	mm	shear, one leg	Grips	3000	N
0.3305	mm	Tensile	Grips	30000	N			in-plane			
Torsion						0 3965	mm	snear, two	Grins	3000	N
0.001335	mm	Y-direction	center of i-beam leg	30	Nm	Tensile		logo	Chp5	0000	
FIXED	mm	y-direction	Grips	30	Nm	0 1798	mm	Tensile	Grins	30000	N
Moment						Torsion		T CHOICE	Chp5	00000	
	mm	neg Z direction	Grips	26	Nm	10131011			outer		
0.007857	'nm	pos X direction	Grips	100	Nm	0.003258	mm	y-direction	edge	30	Nm
	mm	neg X direction	Grips	100	Nm				Ŭ		

- "Value" column
 - Taken from specimen FEA
- Aluminum specimen vs. polymer specimen
- Coordinate system based on SW

- Rotation data \rightarrow Z direction
 - Can reach ~ 102° total
- Moments measured from center frame of specimen
- Translational movement
 - X & Y: ± 200 mm
 - Z: ~ ± 100 mm

Rotation Data					
About +X	28.7	Deg			
About -X	-31.5	Deg			
About +Y	25.8	Deg			
About -Y	-25.8	Deg			
About +Z	51.1	Deg			
About -Z	-51.1	Deg			

Pure Bending Limits				
Direction	Degree			
My (-)	28.813			
My(+)	28.675			
Mx (-)	29.012			
Mx (+)	28.869			

- Background
- Motivation of Design
- Research Questions
- Research Method
- Singularity Work
- Design Solution
- Solution Justification
- Discussion of Solution
- Conclusions
- Future Work
- References

Practice Defense

- Limitations of design
 - Grips: Slippage, pressure on specimen, specimen setup
 - Not a "table-top" design
 - Metallic specimen redesign
- Singularity analysis theoretical only
 - Testing to compare experimental results
 - Does not account for rotation of the top plate
 - Suitable condition number and determinant values are not well known
- May need additional cameras for compliant materials

- Background
- Motivation of Design
- Research Questions
- Research Method
- Singularity Work
- Design Solution
- Solution Justification
- Discussion of Solution
- Conclusions
- Future Work
- References

Practice Defense

Practice	
Defense	

- Solution addresses the problems of previous design
 - Workspace
 - Singularities
 - Stiffness
- In-plane shear and in-plane bending account for most of the deflection
- More work and testing is needed for analysis of singularities

- Background
- Motivation of Design
- Research Questions
- Research Method
- Singularity Work
- Design Solution
- Solution Justification
- Discussion of Solution
- Conclusions
- Future Work
- References

Practice Defense

- Finish building test frame
- Getting test frame to move
- Getting sensors to work
- Getting results (without calibration)
 - Compare bulk material with printed specimen
- Calibrate test frame
- Run with various materials and different printing styles

References

- [1] Steuben JS, Michopoulos JG, Iliopoulos AP, Turner CJ. "Inverse characterization of composite materials using surrogate models," Proceedings of the ASME 2013 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference August 4-7, 2013, Portland, OR, USA, DETC2013-12656.
- [2] J. Steuben, J., Michopoulos, J., Iliopoulos, A. and Turner, C., "Inverse Characterization of Composite Materials Using Surrogate Models," Journal of Composite Structures, 132: pp. 694-708.
- [3] Steuben, J., (2014). *Massively Parallel Engineering Simulations on Graphics Processors: Parallelization, Synchronization, and Approximation,* Ph.D. Dissertation, Colorado School of Mines, Golden, Colorado.
- [4] Iliopoulos A, Michopoulos JG, "On the feasibility of crack propagation tracking and full field strain imaging via a strain compatibility functional and the Direct Strain Imaging method", International Journal of Impact Engineering (2015), http://dx.doi.org/10.1016/j.ijimpeng.2015.03.006
- [5] Tsai. (1999). Robot Analysis: the mechanics of serial and parallel manipulators. New York: Wiley.
- [6] Stratasys. (n.d.). ABS-ESD7. Retrieved April 24, 2016, from http://www.stratasys.com/materials/fdm/abs-esd7
- [7] Norton, R. (2000). *Machine Design: an integrated approach*. Second Edition. Upper Saddle River, N.J: Prentice Hall.
- [8] Arai, T., Ropponen, T., (1995), "Accuracy Analysis of a Modified Stewart Platform Manipulator", IEEE International Conference on Robotics and Automation, 0-7803-1965-6/95.
- [9] Merlet, J-P., "Jacobian, manipulability, condition number, and accuracy of parallel robots", INRIA, BP 93, 06902 Sophia-Antipolis, France.
- [10] Bonev, L.A., Zlatanov, D., "The mystery of the singular SNU translational parallel robot", http://www.parallemic.org/Reviews/Review004.html.
- [11] Ma, O., Angeles, J., (1991). "Optimum architecture design of platform manipulator", ICAR, pp. 1131-1135.
- [12] Fattah, A., Ghasemi, H., (2002), "Isotropic design of spatial parallel manipulators", Int. J. of Robotics Research, 21(9): pp. 811 824.

QUESTIONS?

BACKUP SLIDES

38/36 2017.10.10

- What are singularities?
 - Boundary of workspace
 - Poorly understood within workspace
 - Condition Number/Determinant of Jacobian
 - Heavily determined by geometry

- Types [5]
 - Inverse kinematic singularities
 - Direct kinematic singularities
 - Combined singularities
- Inverse kinematic singularities
 - Occur at the workspace boundary
 - Do not occur within workspace
 - J_q = Identity matrix
- Direct kinematic singularities
 - Impossible to find all singularities
 - Can be examined by Jacobian matrix of platform velocity
 - Depends on geometry
 - 1. Top plate geometry is similar to bottom plate geometry
 - 2. Point at which all the leg lengths are equal
 - 3. Legs are parallel to each other
- Combined singularities do not happen for SG-platform

Condition Number & Determinant

- Suitable scenarios
 - Condition number = 1
 - Higher the determinant, the better
- Unsuitable scenarios
 - Condition number goes to infinity
 - Determinant = 0

- Pure bending results of ABS-ESD7 [6]
 - Using platform geometry of initial design
 - 25 mm deflection
 - Increasing bottom plate radius
 - Constant top plate radius (250 mm)

Practice Defense Condition Number & Determinant Cont.

- Pure bending results of ABS-ESD7
 - Increasing top plate radius
 - Constant bottom plate radius (250 mm)

- What is considered an acceptable range? *
 - Plug into direct kinematic equations
 - Compare results

stfry@g.clemson.edu http://www.clemson.edu/ces/cedar

41/36

2017.10.10

Jacobian Normalization Results

42/36 2017.10.10

- Limitations and Issues
 - It is not known whether this method shows that singularities are actually there
 - Does not account for rotation of the top plate
 - Suitable condition number and determinant values are not well known

Practice

Defense

43/36 2017.10.10

- Changed spacing between leg positions on top and bottom plate
- Initial location of leg joints with respect to angle from the xaxis

Other Findings

300

- Bad singularities indicated near "home" position
- Good No singularities, but there regions of higher condition numbers

Other Findings

300

• Bad – 3 singularities

Good – No singularities and the condition number does not go above 50

