#### Two Level Structural Optimization:

#### Designing Varying Mesostructures To Form A Macro Gradient

Anthony Garland Research Assistant apg@clemson.edu Dr. Georges Fadel Professor fgeorge@clemson.edu





## Overview

- Why do we care about material gradients?
- Two level optimization
  - Current methods
  - Current problems
- Our Solution
  - Macro Problem
  - Meso Problem
  - Comparison of Meso Optimization techniques





## **Functional Gradient Material**

- Two or more materials within a single object.
- Smooth transition between materials.

#### **Composite vs. Gradient material**



Point by Point Additive manufacturing allows fabrication of gradient designs









#### Why do we care about material gradients?

• Using a wide range of material properties within a single design results in 'more' optimal solutions.







#### How do we achieve target properties?

| Vary fiber density<br>and direction | Vary volume<br>composition of two<br>or more materials | Vary meso<br>structures |
|-------------------------------------|--------------------------------------------------------|-------------------------|
|-------------------------------------|--------------------------------------------------------|-------------------------|



[1]





#### Two Level Optimization (Current Methods)



[2]





# Problems

- Coordination of macro and meso levels is minimal
- Excessive computational power required
  - 4\*21\*7=588 (meso problems) each iteration.
- The meso-level problem never converges







# Solution







## Macro Problem

- 1. Macro problem designs
  - The overall shape/topology of the structure
  - Selects the target properties for the sub-problems
- Design Variables (4 per location)
  - $\rho$  Topology (artificial SIMP density)
  - $E_{xx}$  and  $E_{yy}$  components of an orthogonal material
  - $\theta$  rotation of the orthogonal material.

$$D_{orth} = \begin{bmatrix} \frac{E_{xx}}{1 - v^2} & \frac{E_{12}v}{1 - v^2} & 0\\ \frac{E_{12}v}{1 - v^2} & \frac{E_{yy}}{1 - v^2} & 0\\ 0 & 0 & \frac{0.5(1 - v)E_{12}}{1 - v^2} \end{bmatrix}$$
$$E_{12} = \frac{E_{xx} + E_{yy}}{2}$$
$$c = \cos(\theta)$$
$$s = \sin(\theta)$$
$$T(\theta) = \begin{bmatrix} c^2 & s^2 & 2sc\\ s^2 & c^2 & -2sc\\ -sc & sc & c^2 - s^2 \end{bmatrix}$$
$$R = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 2 \end{bmatrix}$$







## Macro Problem

Maximize stiffness

#### min $U^T K U$

- Subject To:
  - Constitutive equations

F = KU

• Space occupied by any type of material is limited to 60% of domain

$$\rho d\Omega - V_{total} = 0$$

• Minimum average elastic modulus at each point, and Maximum upper limit.

$$E_{xx} \leq E_{base}$$
$$E_{yy} \leq E_{base}$$
$$E_{yy} \leq F$$

$$E_{xx} + E_{yy} > E_{min}$$

Average Elastic Modulus Target in the regions with material

$$\sum_{e=1}^{N} \frac{(E_{xx,e} + E_{yy,e})\rho_e}{2\rho_e} - E_{target} = 0$$
  
of  $\theta$  is  $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]^1$ 

• Domain of  $\theta$  is  $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 





# Optimization

- Sequential optimization of each variable type
- Optimal Criteria method for  $\rho$ ,  $E_{xx}$ , and,  $E_{yy}$
- Golden Section algorithm for θ since it is unconstrained







## **Design Problem**



- Bridge Design
- 6 loading conditions
  - 500 N
  - Applied evenly
- Maximize stiffness
- 39x21 grid (39\*21\*4=3276 vars)
- $E_{base} = 100000 Pa$
- $E_{min} = 25000 Pa$
- $E_{target} = 62500 Pa$





## Results







## Results







## **Tracking Optimization Parameters**







## Compare



| Final Objective | Average    |
|-----------------|------------|
| value           | Elastic    |
|                 | modulus of |
|                 | occupied   |
|                 | regions    |



29% improvement from just topology optimization!





## Meso Design

- At each macro element/region, find a meso structure that has the same homogenized properties as the corresponding macro element
- Minimize material usage

$$D_{eff,target} = \rho^n T(\theta)^{-1} D_{orth} R T(\theta) R^{-1}$$

• 60% \* 39\*21 = 491 meso design problems.







## Comparison of Meso Design Methods

- Target a specific D constitutive matrix
- Volume usage
  - Minimize when an objective
  - Target when constraint
- Most of the literature is limited to single property optimization

$$\max E_{11} + E_{12} + E_{21} + E_{22}$$
$$\max E_{33}$$

s.t.

$$\frac{1}{V} \int_{\Omega} \rho_e - \rho_{target} = 0$$





|                                                  | Maximize Strain Energy.[2]                                                                                                                                                                                                        | Target material properties with ground structure [3]                                                                                                                                                                                                                            | BESO inverse topology optimization [4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective<br>(Standardized)                      | Maximize the strain energy<br>$\max \epsilon^T D_{sub} \epsilon$<br>$\epsilon$ is the macro strain, which is constant.<br>$D_{sub}$ is the homogenized matrix sub-<br>system matrix                                               | Minimize a cost function W<br>$\min \sum_{e=1}^{NE} \gamma_e \ \rho_e$ $\gamma_e = l_e \left(\frac{l_{pref}}{l_e}\right)^{\eta} \mu_e$ $\eta \text{ is not 1. } \mu \text{ is 1 for interior bars, and >1 for exterior bars. } \rho \text{ is cross section area of the beams}$ | Minimize compliance of the macro structure. Fixed topology. Only<br>changing meso structure's topology.<br>$\min J \\ J = \frac{1}{2}FU$ On the meso level, maximize the strain energy where the<br>displacements/strains are fixed.<br>$\max \epsilon^T D_{sub} \epsilon$                                                                                                                                                                                                                                                                                                                                           |
| Constraints<br>(Standardized)                    | $F = KU$ $\frac{1}{V} \int_{\Omega} \rho_e - \rho_{target} = 0$                                                                                                                                                                   | $F = KU$ $\sum_{e=1}^{NE} (D_{sub,e} - D_{system}) = 0$ $D_{system} \text{ has 4 the 4 target matrix terms}$                                                                                                                                                                    | $F = KU$ $\frac{1}{V} \int_{\Omega} \rho_e - \rho_{target} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Lagrangian $(\lambda \ 	ext{is the multiplier})$ | $\mathcal{L} = -\epsilon^T D_{sub}\epsilon + \lambda \left(\frac{1}{V} \int_{\Omega} \rho_e - \rho_{target}\right)$                                                                                                               | $\mathcal{L} = \sum_{e=1}^{NE} \gamma_e \ \rho_e + \sum_{i=1}^{4} \lambda_i \left( \sum_{e=1}^{NE} D_{sub,e} - D_{system} \right)$                                                                                                                                              | Not shown. Since the evolutionary technique is used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sensitivity for an element density $ ho$         | $\frac{\partial \mathcal{L}}{\partial \rho_e} = -\epsilon_{macro}^T \frac{\partial D_{sub}}{\partial \rho} \epsilon_{macro} + \lambda_1$ SIMP is used.<br>$\rho^{\zeta} D_0 = D_{eq}$ $\zeta$ is the SIMP power function exponent | $\frac{\partial \mathcal{L}}{\partial \rho_e} = \rho_e - \sum_{i=1}^{4} \lambda_i \frac{\partial D_{sub,e,i}}{\partial \rho_e}$ $\frac{\partial D_{sub,e,i}}{\partial \rho_e} = \frac{D_{sub,e,i}}{\rho_e}$                                                                     | $\frac{d\mathcal{L}}{d\rho_e} = -\frac{\zeta \rho_e^{\zeta - 1}}{2 Y } \sum_{i=1}^M \boldsymbol{U}_i^T \left\{ \int_{\Omega} \boldsymbol{B}^T \left[ \int_{Y_i} (I - bu)^T D_0 (I - bu) dY \right] \boldsymbol{B} dV \right\} \boldsymbol{U}_i$ $\frac{d\mathcal{L}}{d\rho_e} = \sum_{i=1}^M \boldsymbol{\epsilon}^T \frac{\partial D_{sub,e}}{\partial \rho_e} \boldsymbol{\epsilon}$ <b>B</b> is the macro derivative of the shape function for FEA<br><b>U</b> is the macro element displacement<br>$\boldsymbol{\epsilon}$ is the effective macro strain $\boldsymbol{\epsilon} = \boldsymbol{B} \boldsymbol{U}$ |
| Optimization<br>method                           | Optimal Criteria                                                                                                                                                                                                                  | Optimal Criteria, but the Lagrangian multipliers are updated using Newton-Raphson procedure                                                                                                                                                                                     | Evolutionary.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Results                                          | Works. Pushes toward a 0 or 1 design.<br>Not targeting specific properties<br>Constraints are fully met.                                                                                                                          | Works well. Constraints met. They say 'all kinds of<br>anisotropic and orthotropic materials Can be<br>constructed with the proposed algorithm.'                                                                                                                                | Meets target volume.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3/3/2017                                         |                                                                                                                                                                                                                                   | Ground structure has a 4x4 grid of nodes. The bars can<br>go through each other, so not necessarily a physically<br>realizable design.                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Methods, we have tried

|                                           |                                                                                                                                                                                           | No. Mathed Field Decide Create                                                                                                                                                                                                |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | Directly larget Material Properties with continuous                                                                                                                                       | New Method. Find Pseudo Strain                                                                                                                                                                                                |
| Objective                                 | Minimize material usage                                                                                                                                                                   | Minimize material usage                                                                                                                                                                                                       |
| (Standardized)                            | $\min(\rho^2)$                                                                                                                                                                            | Solve an alternate problem of maximizing stain<br>energy of using a pseudo strain.<br>$\max e^T D_{sub} e$<br>e is the pseudo strain.<br>Solve for the pseudo strain<br>$\max e^T D_{sys} e$<br>s.t. $e(1) + e(2) + e(3) = 1$ |
| Constraints                               | F = KU                                                                                                                                                                                    | For the alternate problem                                                                                                                                                                                                     |
| (Standardized)                            | $\left(D_{system} - D_{sub,e}\right)^2 = 0$                                                                                                                                               | $\frac{1}{V} \int_{\Omega} \rho_e - \rho_{target} = 0$                                                                                                                                                                        |
|                                           | $D_{system}$ has 4 the 4 target matrix terms                                                                                                                                              | $ \rho_{target} $ is adjusted until $D_{sys} = D_{sub}$                                                                                                                                                                       |
| Lagrangian ( $\lambda$ is the multiplier) | $\mathcal{L} = \sum_{e=1}^{NE} \rho^2 + \sum_{i=1}^{4} \left( \lambda_i \left( D_{system} - D_{sub,e} \right) + \right)$                                                                  | $\mathcal{L} = -e^T D_{sub} e + \lambda \left( \frac{1}{V} \int_{\Omega} \rho_e - \rho_{target} \right)$                                                                                                                      |
| Sensitivity for an element density $ ho$  | $\frac{\partial \mathcal{L}}{\partial \rho_e} = 2\rho + \sum_{i=1}^{4} \left( \lambda_i \left( -\frac{\partial D_{sub,e}}{\partial \eta} \right) + p \left( D_{system} - \right) \right)$ | $\frac{\partial \mathcal{L}}{\partial \rho_e} = -e^T \frac{\partial D_{sub}}{\partial \rho} e^T + \lambda_1$                                                                                                                  |
| Optimization method                       | Augmented Lagrangian multiplier                                                                                                                                                           | Optimal Criterial                                                                                                                                                                                                             |
| Results                                   | Constraint is partially met.                                                                                                                                                              | The pseudo strain, e, does not seem correct.<br>Otherwise, it will probably work.                                                                                                                                             |
|                                           |                                                                                                                                                                                           |                                                                                                                                                                                                                               |

## What next?

- Still working on the meso-design problem. Target specific properties and minimize volume
- Coordinate the maco and meso levels until the problem converges





## Sources

- [1] Klift, F. Van Der, Koga, Y., Todoroki, A., Ueda, M., and Hirano, Y., 2016, "3D Printing of Continuous Carbon Fibre Reinforced Thermo-Plastic (CFRTP) Tensile Test Specimens," (January), pp. 18–27.
- [2] Coelho, P. G., Fernandes, P. R., Guedes, J. M., and Rodrigues, H. C., 2008, "A hierarchical model for concurrent material and topology optimisation of three-dimensional structures," Struct. Multidiscip. Optim., 35(2), pp. 107–115.
- [3] SIGMUND, O., 1995, "Tailoring Materials With Prescribed Elastic Properties," Mech. Mater., **20**, pp. 351–368.
- [4] Zuo, Z. H., Huang, X., Rong, J. H., and Xie, Y. M., 2013, "Multiscale design of composite materials and structures for maximum natural frequencies," Mater. Des., **51**, pp. 1023–1034.





# Questions?





## Homogenization

- Given a single repeating unit cell, find the equivalent properties of the matrix of the cells.
- Chris Czech's work shows that 8x8 grid of repeating unit cells are needed.
- The effective properties are found by applying 3 unit strains.

$$\epsilon^{1} = (1,0,0)$$
  
 $\epsilon^{2} = (0,1,0)$   
 $\epsilon^{3} = (0,0,1)$ 





## Homogenization

• The equivalent force of the strains is calculated at each element.

$$f^{i} = \sum_{e} \int_{V_{e}} B_{e} C_{eq} \epsilon^{i} dV_{e}$$

The stiffness of each element is calculated then combined

$$K = \sum_{e=1}^{N} \int_{V_e} B_e^T C_{eq} B_e dV_e$$

The 3 problems are solved for the displacements  $KX^i = f^i$ 





## Homogenization

- Converting the displacements to strain
- Subtract from the unit strains
- Find the equivalent macro (homogenized) properties of the unit cell

$$C^{H} = \frac{1}{V} \sum_{e=1}^{R} \int_{V_{e}} (I - B_{e} X_{e})^{T} C_{eq} (I - B_{e} X_{e}) dV_{e}$$





# Limitations of Macro Optimization

- 1. Performance constraints instead of volume constraints would be better. (max displacement, max strain energy)
- 2. Mesh refinement at regions or rapidly changing stress
- 3. Make the Poisson's ratio a design variable
- 4. Some combinations of  $E_{\chi\chi}$  and  $E_{\chi\gamma}$  are not physically realizable.

If  $E_{xx} = E_0$ , ie it is max strength, so a totally solid meso structure, then  $E_{yy}$  must also be  $E_0$ 

- 5. Targeting an average meso density would be better
  - The function relationship between  $\rho(E_{xx}, E_{yy})$  is not known.
  - Until it is known, we cannot target a density



