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Types of Representation 2017510

« Early phase of design (first 5%) is of importance to researchers because of the cost
implication on deciding the total cost of product development (70%)

» Different methods to model the functions in the conceptual design phase

» Different models suited for different areas of application have been developed over the years
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Motivation - 1 2017.3.10

Function structure modelling is a designer/human centric knowledge
representation

Different designers end up with different function models even though they
are describing the same product as is revealed by protocol studies (Sen
2014; Thiagarajan 2017; Nagel 2015; Patel 2016)

Hence, researchers tried to standardize the elements of the function
models

Knowledge Collection & Standardization Efforts: design repository,
functional basis; functional basis hierarchy; composition rules;
quantification of information content; impact of level of detail; impact of
level of detail on information content

Calls for benchmarking
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Understand how designers create function structures — how are the function blocks
and the function flows created

Videotaping — Sequence, Patterns, Pauses — Code

Three modelling strategies identified — Forward Chaining, Backward Chaining, and
Nucleation
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Coding results from Thiagarajan

Mixture of the three schemas
used by each individual

Bias in favor of forward Chaining

Protocol study results from Patel
et al

Number of functions added by
students when seed function
structure is created using one of
the three methods

Forward chained seed results in
the least number of functions
added
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What is the amount of information content in each of the three chaining methods at
various stages of chaining completion?

At what level of completion do the chaining methods yield a significant difference in
their ability to accurately and precisely answer specific query like Market Price?

Can guidelines be developed to select the chaining method based on amount of
completion and computational accuracy?
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The three different levels of completion in this study were chosen for each chaining
method: 10%, 40% and 80%

Some of the smaller function models may not be able to add even a single a block if
the completion percentages are placed too close to each other

Twenty different electro mechanical consumer products were chosen from the
Oregon State University Design Repository

These function structure were recreated using the following chaining methods and
completion rate combinations: F-10, F-40, F-80; B-10, B-40, B-80; N-10, N-40, N80

29 complexity metrics were calculated for each of these function structures and
ANNSs were trained using these inputs
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Nucleation 2017.3.10
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Computational Procedure 2017.3.10
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Percentage Completion

Results & Interpretation 2017.3.10
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Interpretation and Conclusion 2017.3.10

The study also runs counter to the previous understanding that the more function
blocks and flows are added, the more amount of information a function structure
has and consequently should end up with better prediction capability as compared
to a function structure that has a lesser amount of information

Possible Explanation: for 10% completion, there is a lot more homogeneity in the
way that the chaining methods select the function blocks. There is a loss of this
homogeneity as the completion percentage reaches 40%. Some of this
homogeneity is again visible as the function structure is almost complete at 80%

There is also a lot more room for how the user chooses to grow a function structure
while using nucleation

Inherent bias in the construction of the function models used

Future work: Quantify and understand the effort involved in construction of the
function structure; develop tradeoffs
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