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ABSTRACT 

This paper presents an approach to defining and 

quantifying the complexity of systems as represented in mixed 

(directed and non-directed) bipartite graphs through the 

presentation of a central example as well as other applications.  

The approach presented defines nine measurements of different 

properties of the graph system.  These measurements are 

derived from the representation of the system into a three 

dimension relational design structure matrix as well as the 

projections and transformations of this matrix.  The metrics 

generated address dimensional and connective size, shortest 

path properties, and the decomposability of the system.  Finally, 

a normalization and aggregate approach of these metrics is then 

given.  This aggregation is visualized with spider graphs that 

facilitate viewing multiple aspects of complexity within a 

single perspective. 

 

Keywords: Complexity measurement, mixed graphs, systems 

modeling 

1  COMPLEXITY IN DESIGN 

Complexity is an aspect of engineering design that is often 

addressed directly with the principle that “designs should be 

simple” [1,2].  However, such a principle fails to offer an 

effective means of quantifying the complexity of a given design 

for comparison and decision making [3].  The judgment of a 

design’s complexity is often simply left to the individual 

perception of the designer.  This, in turn, results in the 

possibility that the designs selected during the design process as 

being less complex by the designers may be considered more 

complex by the end user. 

1.1. Definition of Complexity 

Complexity is most often defined in the terms of systems.  

A system is a set of interrelated elements which, through these 

interrelations, manifest a behavior which the individual 

elements would not display independently [4].  The elements of 

the system can be anything capable of interaction, including 

molecules, consumer products, and people [5].  The foundation 

of complexity is the human attempt to quantify our 

understanding of these elements and interrelations which are 

counterintuitive [6].  

Most definitions of complexity relate back to a measure of 

understanding.  This leads to many views of complexity [7].  

For example, a designer may be prone to defining the 

complexity of a product in terms of its physical components, 

while an end user may define complexity according to ease of 

use.  This would suggest that the subjective definition of 

complexity is less of a definition and more of a perception.  

However, this does not mean that either of these two 

perceptions is incorrect.  Rather, the designer here has defined 

the complexity by the system within the product and the user 

has defined complexity by the system of the product interacting 

with the environment.  This represents the same definition of 

complexity, but for different system views and boundaries.  

Thus, complexity can be defined as the effort required to 

understand the properties of a given system [8,4]. 

It is for this reason that previous work has suggested the 

existence of multiple distinguishable factors of complexity 

[9,10,7].  This includes the presence of multiple attributes of 

complexity within a single system representation as well as 

multiple system representations.  A system representation is 

defined here as the level of abstraction used in the system 

model and the system boundaries.  The attributes of complexity 

take the form of various possible analytical measurements for 

complexity.’ 

This system structure approach to complexity differs from 

the fields of computational and information complexity. 

Computational complexity focuses on processes which occur 

within the design, requiring that connections have 

directionality. [11,12,13] In the opposite case, information 

complexity work has well established the measurement of 

structural complexity content within a given representation 

irrespective of directionality. [14,15,16]. However, the systems 
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addressed here may have both directed connections, such as 

function or process models, and non-directed connections, such 

as physical architecture. This implies a need for metrics which 

capture connections in a mixed graph environment. 

1.2. Matrix-Based Tools 

Matrix-based system modeling techniques such as the 

Design Structure Matrix [17] are based on the creation of two 

dimensional binary matrices to represent the interrelationship 

that exists within a system of elements. The binary and two 

dimensional nature of these matrix tools does not allow for the 

easy distinction of relationships being represented, the 

possibility that two elements may be related through multiple 

relationships, nor that multiple elements may be related through 

the same relationship. The issue of relationship classification is 

addressed by Multiple-Domain Matrices through the use of a 

third “dependency type” dimension [18]. Graph-based system 

modeling techniques, such as those used by different 

engineering design representations including boundary 

representations, bond-graphs, and bi-partite graph based design 

exemplar [19], are capable of capturing all of the desired 

relationship information but are difficult to use in visualizing 

the connective properties of the system due to multiple node 

types [20]. 

An approach is developed here to measure and compare 

the complexity of systems in a succinct manner. First, a method 

for the translation of graph-based system models into a matrix-

based regime is developed to facilitate complexity analysis of 

systems with per-instance relational details. The complexity 

metrics utilized capture several distinct properties of the system 

complexity that is present in graph-based system 

representations addressing both size and interconnective 

structure. An aggregate approach to the consideration these 

measures is developed. This allows for the rapid visualization 

of connective properties, particularly following a change in 

system structure. 

2  EXAMPLE CASE 

For the purposes of illustration, we will address an 

example system throughout this paper. The example system is a 

hypothetical group of eight designers working on a project. 

This hypothetical scenario is used for illustrative purposes.  

Thus, we will use the approaches and metrics presented in this 

paper to model and analyze the work interactions of this group.  

A system of social interactions is selected because this presents 

a common and easily understood situation in which a single 

interaction may involve multiple elements and a pair of 

elements may be related in more than one interaction.  Other 

examples of graphs of interest in engineering design may be the 

constraint problems of the design exemplars [19], function 

structures [2], or component and assembly representations [10].   

The interactions of the design group are modeled in terms 

of both meetings and workspaces.  This is done to keep the 

example system sufficiently simple for illustration and 

discussion.  There are three weekly meetings scheduled.  

Designers one, three, and five attend the first meeting; 

designers four, five, seven, and eight attend the second meeting; 

and designers two, six, and seven attend the third meeting.  The 

design group occupies two distinct workspaces.  Designers one 

through four work in the first workspace and designers five 

through eight work in the second workspace. 

This can be modeled mathematically by considering the 

designers to form the set  𝐸 =  𝑒1, 𝑒2, 𝑒3, 𝑒4 , 𝑒5, 𝑒6, 𝑒7, 𝑒8  and 

the five interactions form the set  𝑅 =  𝑟1 , 𝑟2 , 𝑟3 , 𝑟4, 𝑟5  where 𝑟1 

through 𝑟5 are defined by Equations 1through 5. 

Meeting 1:  𝑟1 =  𝑒1, 𝑒3, 𝑒5    (1) 

Meeting 2:  𝑟2 =  𝑒4, 𝑒5, 𝑒7 , 𝑒8    (2) 

Meeting 3:  𝑟3 =  𝑒2, 𝑒6, 𝑒7    (3) 

Workspace 1:  𝑟4 =  𝑒1 , 𝑒2, 𝑒3 , 𝑒4    (4) 

Workspace 2:  𝑟5 =  𝑒5, 𝑒6, 𝑒7 , 𝑒8    (5) 

This representation demonstrates the limitation of 

traditional relationship tracking tools in that the modeling of 

this system requires each relationship to be considered as a set 

of elements, rather than a singular link between elements.  One 

approach used to handle this contradiction is to treat the 

relationships as nodes of a different class from those of the 

elements [19,21]. This is used to create a bi-partite graph 

representation such as that in Figure 1. 

 

Figure 1: Bi-partite Graph 

The bi-partite graph representation displays each 

relationship set as a series of links between the elements in the 

set and the relationship node. This creates a robust method of 

visualization for systems such as this. However, the use of two 

different node types and many overlapping links makes the 

analysis of large bi-partite graphs difficult [22].  For this 
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reason, the system is treated as a relational design structure 

matrix hypergraph. 

3  RELATIONAL DSM 

Using sets to define each relationship necessitates the use 

of hypergraph representations.  The relational design structure 

matrix (rDSM) is an array based hypergraph representation 

capturing relationships between multiple elements through a 

single instance and element pairs that are related through 

multiple relationship instances [9].  A third dimension is added 

to the traditional design structure matrix to represent the 

relationships as hyperedges within the hypergraph, thereby 

converting the hyperedge sets into design structure matrix 

planes along the additional dimension. 

The method of construction for the hypergraph varies 

depending on the behavior of the interactions being modeled.  

If the interactions are considered to be bi-directional or without 

direction information, the connections modeled in each 

hyperedge plane will be symmetric about the diagonal as per 

Definition 1. 

Definition 1 

Given a set of elements 𝐸 =  𝑒1, 𝑒2, 𝑒3 ,… , 𝑒𝑁𝐸
  and a set of bi-

directional relationships 𝑅 =  𝑟1 , 𝑟2 , 𝑟3,… , 𝑟𝑁𝑅
  where 𝑟𝑖  ⊆ 𝐸, 

there exists a 𝑁𝐸 × 𝑁𝐸 × 𝑁𝑅  array 𝐴 where 𝐴 𝑟𝑖 , 𝑟𝑖 , 𝑖 = 1 for 

𝑖 = 1:𝑁𝑅. 

Here, it can be seen from Figure 2 that a 3D array is 

constructed where each plane along the third dimension of the 

array is a design structure matrix of the connections within that 

hyperedge set. In the bi-directional case, the intersection of all 

possible  combinations of set elements are assigned a value of 

one for each hyperedge set present in the system. 

 

Figure 2: Translation of bi-partite graph to rDSM  

This changes when the possibility of directional links is 

considered. This would be the case when modeling flows such 

as in electrical circuits, functional modeling, and 

manufacturing, among others. Given in Definition 2, the 

directional nature of the links is captured by dividing each 

relationship into sets of source and sink elements. The resulting 

rDSM can be considered to be source elements by sink 

elements by relationships. Directionality is modeled with the 

asymmetry of the matrices; a relation is found between source 

ei to sink ej but not found between source ej to sink ei. It should 

be noted that the diagonal is to be filled for all participating 

elements as elements are assumed to interact with themselves 

during any instance, such as a designer’s thoughts during a 

meeting.  

Definition 2 

Given a set of elements 𝐸 =  𝑒1, 𝑒2, 𝑒3 ,… , 𝑒𝑁𝐸
  and a set of 

uni-directional relationships 𝑅 =  𝑟1 , 𝑟2 , 𝑟3 ,… , 𝑟𝑁𝑅
  where  

𝑟𝑖 =   ⊆ 𝐸𝑠𝑜𝑢𝑟𝑐𝑒 ,⊆ 𝐸𝑠𝑖𝑛𝑘  , there exists a 𝑁𝐸 × 𝑁𝐸 × 𝑁𝑅  array 𝐴 

where 𝐴 𝑟𝑖 ,𝑠𝑜𝑢𝑟𝑐𝑒 , 𝑟𝑖 ,𝑠𝑖𝑛𝑘 , 𝑖 = 1 for 𝑖 = 1:𝑁𝑅. 

Each hyperedge represents a single interaction instance, 

rather than an interaction classification domain, such as 

meetings or workspaces, which the hyperedge may belong to. 

This differentiates the rDSM from existing expansions on the 

DSM method which address domains and classes.  

In Figure 2, the connections within the bi-partite graph are 

assumed to represent bi-directional links as social interactions 

are not uni-directional. The resulting rDSM is symmetric 

according to Definition 1. However, the capability exists to 

capture uni-directional and mixed connections, such as in this 

case an email, according to Definition 2.  

The ability of the rDSM to capture multiple paths between 

element pairs is seen when the matrix is collapsed into a single 

plane to form a multigraph projection of the rDSM hypergraph. 

This projection is achieved by summing the rDSM along the 

relationships dimension according to Equation 6. 

  𝐷𝑂𝐹 =  𝐴𝑘
𝑁𝑅
𝑘  (6) 

The resulting matrix will no longer differentiate between 

distinct relationships and will not be a binary set of inter-

relationships, but rather the number of edges linking each 

element pair. This can be considered to be the degree of 

freedom (DOF) matrix, as seen in Figure 3. The term Degree of 

Freedom in this case refers to the number of interaction 

parameters which are available for change, rather than referring 

to mechanical movement. 
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Figure 3: Degree of Freedom Matrix 

4  COMPLEXITY MEASUREMENT 

The rDSM representation enables the measurement of 

several complexity metrics regarding size and interconnectivity. 

Size can be measured in terms of elements, relationships, and 

connections. Interconnectivity can be evaluated through 

degrees of freedom [7], all-pairs shortest path analysis [23], and 

the coupling complexity algorithm proposed by [10]. It has 

been argued that measuring complexity is critical to support 

informed comparisons between design problems, products, and 

processes [7]. 

4.1. Size Measurement 

Size is the most common type of measurement used in 

complexity measurement today [10,7,24]. The size of any given 

object is based on the count of some classification of object 

within the system. It follows intuitively that if the number of 

elements or connections in a system increases, so does the 

system complexity. [25] This holds true for many different 

count-based metrics such as elements, relationships, 

connections, and classification types. However, while counts 

are the most intuitive form of complexity measurement it 

should be noted that their contribution to complexity is non-

linear.[5] When the count is low, the addition of one more is 

significant, while the opposite is true of high-count systems. 

This can be modeled using information theory to define a 

number of bits present.[26] 

4.1.1. Dimensional Size 

Here, size measurements are taken by evaluating properties 

of the rDSM. Elements and relationships are defined through 

dimensional size. Elements represent the x-axis and y-axis size, 

while relationships represent the z-axis. For example, the rDSM 

presented in Figure 2 has eight elements and five relationships.  

This results in three measures for the dimensional size of 

the system.  The first two measures, as stated, are the number of 

relationships and elements within the system, given by 

Equations 7 and 8.  

 𝐷𝑆𝑅 ≝ 𝑁𝑅    (7) 

 𝐷𝑆𝐸 ≝ 𝑁𝐸  (8) 

The third measure given is the volume of the system space 

defined by the rDSM. This volume represents the total number 

of connections that could exist within the system, excluding the 

area of self connection along the diagonal plane as defined by 

Equation 9. 

 𝐷𝑆𝐸𝑅 ≝ 𝑁𝐸
2𝑁𝑅 − 𝑁𝐸𝑁𝑅  (9) 

4.1.2. Connective Size 

The diagonal plane is addressed in measuring the 

connective size of the system. Connective size is defined by the 

number of arcs within the bipartite graph. This is measured by 

the sum of the degrees of the element nodes in the bipartite 

graph through the projected diagonal plane of the rDSM seen in 

the DOF multigraph projection as given by Equation 10.   

 𝐶𝑆 =    𝐴𝑖𝑖𝑘
𝑁𝑅
𝑘  

𝑁𝐸
𝑖  (10) 

In our example case, we can refer back to Figure 3 to 

measure connective size and make observations about the 

system. Most of the designers participate in two relationships, 

one meeting and their workspace, while two designers 

participate in three relationships, indicating an additional 

meeting, for a connective size of 18. Additionally, it can be 

observed that the designers with more interactions are possibly 

leaders within the design group. These measures can be 

confirmed visually by reviewing the original bi-partite graph.  

Degree of freedom serves as a compliment to connective 

size through a statistical approach.  Degree of freedom refers to 

the number of parameters which may vary in the system. In the 

sense of the rDSM representation, this represents the number of 

element pairs which are connected through each of the 

relationship instances. Element pairs are evaluated irrespective 

of directionality in this measurement. As such, each 

relationship plane is transposed upon itself and the upper 

triangular taken one off the diagonal to cancel out 

directionality. The sum count of these upper triangular matrices 

is then taken for all non-zero element pairs as given be 

Equation 11.  

 𝐷𝑂𝐹 =      𝑈𝑘=1 𝐴𝑖𝑗𝑘 + 𝐴𝑖𝑗𝑘
𝑇  ≥ 1 

𝑁𝐸
𝑖

𝑁𝐸
𝑗

𝑁𝑅
𝑘  (11) 

 As the example case we are exploring here is purely 

bidirectional, the transpose and non-zero operations are not 

necessary to achieve the same results. For an entirely 

bidirectional case, the degree of freedom measurement can be 

found as the sum of the first diagonal upper triangular of the 

Degree of Freedom multigraph projection. If one refers back to 

Figure 3, it can be readily derived that the design group has 24 

degrees of freedom, indicating 24 interaction parameters which 

are subject to change in the current system. 
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There exists a relationship between degree of freedom and 

connective size. If the system measured has no hyperedge 

relationships (each relationship contains only one connected 

element pair) then the system will have exactly one half the 

number of degrees of freedom as its connective size. This 

represents the minimum value for degree of freedom in any 

given system. It can be inferred then that the example case, 

having 24 degrees of freedom, represents a highly 

interconnected system with a high instance of hyperedge 

relationships. This is in fact the case, as all of the relationships 

identified in the case are hyperedges containing more than one 

connected element pair. 

 

 

The size measurements for the example problem of design 

team meetings are found in Table 1. However, it should be 

noted that size is not sufficient for fully capturing complexity 

[10]. 

Table 1:  Size Metrics 

Class Type Metric 
Design Group  

(Figure 1) 

S
iz

e
 

Dimensional 

Elements (DSE) 8 

Relationships (DSR) 5 

Connective 

Connective Size (CS) 18 

Degree of Freedom (DOF) 24 

4.2. Interconnectivity Measurement 

The size of the system fails to capture the construction of 

the system. Consider a deck of cards in a stack and the same 

deck assembled into a house of cards. While both of these 

systems are of the same size in terms of elements and the set of 

exhaustive possible relationships between elements, the house 

of cards is clearly more complex. This complexity is derived 

from the interconnective structure formed by the house of 

cards. It is for this reason that properties of this structure must 

be taken into account when evaluating complexity. 

Interconnectivity is measured through mathematical and 

algorithmic analyses applied to the rDSM and each represents a 

different aspect of the system complexity. Path length analysis 

evaluates the properties of information flow through the system 

and decomposability addresses how quickly the system may be 

disassembled in a systematic manner. These metrics complete 

the image of complexity. 

4.2.1. Path Length 

In this paper, we explore four specific path length based 

metrics.  However, there are additional metrics that can be 

derived from the path length view of graphs, such as the longest 

path between nodes.  These other metrics are deemed out of 

scope for this paper and are not considered here.  Path length 

measurements are based on the number of relationships which 

must be passed through to travel from one element to another 

[9,23]. For example, to travel through the system A>B>C from 

A to C is a path length of 2. Here, we focus on the measurement 

of the shortest available path between any two elements in the 

system. 

The measurement of shortest path length, like degree of 

freedom, is rooted in a matrix representation and the properties 

of this matrix. However, unlike degree of freedom, shortest 

path measurement is not derived from a projection of the rDSM 

but rather from a matrix resulting from an algorithmic treatment 

of the binary design structure matrix [17]. 

The design structure matrix is derived from the DOF 

multigraph projection by applying a logical test for all non-zero 

element pairs according to Equation 12.  

  𝐷𝑆𝑀 =   𝐴𝑘 ≥ 1
𝑁𝑅
𝑘  (12) 

This results in the classical binary DSM that is needed for 

shortest path evaluation. In the example case this yields the 

matrix shown in Figure 4. All-pairs shortest path analysis 

develops a matrix map of the number of relationships required 

to relate any two elements within the given system. This is 

achieved through an algorithmic set of matrix transforms 

performed computationally. 

 

1 1 1 1 0 0 0

1 1 1 0 1 1 0

1 1 1 1 0 0 0

1 1 1 1 0 1 1

1 0 1 1 1 1 1

0 1 0 0 1 1 1

0 1 0 1 1 1 1

0 0 0 1 1 1 1

Element
El

em
en

t

 

Figure 4: Design Structure Matrix 

The design structure matrix is taken as the input to 

Algorithm 1, which is based on that developed by [27]. This 

algorithm transforms the DSM into a cube and adds the latter 

two dimensions of this cube together. The lowest values along 

the first dimension in the resulting array are then taken, 

resulting in a new matrix. This matrix is compared against the 

matrix which the iteration began with, once again taking the 

smallest values along the first dimension. This sequence is 

repeated until there is no change in the matrix from one 

iteration to the next.  

Two post processing steps remove the matrix identity and 

infinite distances. The identity is considered to not be relevant 

to the measurement as the distance between an element and 

itself is, by definition, zero. Infinite distances are set to zero 
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because the disconnection of elements is considered to be the 

least complex state possible as these elements will be incapable 

of manifesting higher order behavior between them. 

Algorithm 1: Kelder All-Pairs Shortest Path[27] 

Let  

 𝐵 =  𝐷𝑆𝑀    (13) 

 𝐵𝐵=0 =  ∞   (14) 

 𝐶1:𝑁𝐸 ,1:𝑁𝐸
= 1   (15) 

While 𝐶 ≠ 0, let  

 𝐶 = 𝐵   (16) 

followed by  

𝐵 =  min  𝐵, min𝑖  
 𝐵𝑖𝑗1 ,𝐵𝑖𝑗2 , . . ,𝐵𝑖𝑗 𝑁𝐸

  

+ 𝐵𝑖1𝑗 ,𝐵𝑖2𝑗 , . . ,𝐵𝑖𝑁𝐸 𝑗  
       (17) 

followed by  

 𝐶 = 𝐵 − 𝐶   (18) 

Then, let 

  𝐵1,1,𝐵2,2,… ,𝐵𝑁𝐸 ,𝑁𝐸
 = 0   (19) 

 𝐵𝐵=∞ = 0   (20) 

where  

  𝐴𝑆𝑃 =  𝐵   (21) 

When this algorithm is applied to the design group 

example, the result is the matrix shown in Figure 5. The value 

shown in each cell represents the number of relationships which 

must be traversed for information to travel from one designer to 

another. While there are a considerable number of direct 

interactions, denoted by the number one, there are paths of 

length two in the system, particularly between the two 

workspaces.  

1 1 1 1 2 2 2

1 1 1 2 1 1 2

1 1 1 1 2 2 2

1 1 1 1 2 1 1

1 2 1 1 1 1 1

2 1 2 2 1 1 1

2 1 2 1 1 1 1

2 2 2 1 1 1 1

Element

El
em

en
t

 

Figure 5: All-pairs Shortest Path Matrix 

An important observation which can be made in this case is 

that the path length results here contradict the conclusions 

based on connective size. While connective size would suggest 

that designers five and seven are the best connected to the rest 

of the group, the shortest path results suggest that it is in fact 

designers four and five which are best connected with only one 

other designer not directly connected to each of them. Designer 

four is actually the most efficiently connected member of the 

design group.  

In addressing the complexity of the system, the first metric 

which develops from the all-pairs shortest path matrix is the 

total path length. This measurement, given by Equation 22, is 

the sum of the matrix and represents the total number of 

relationships traversed in travelling from each element to every 

other element. 

 𝑇𝑃𝐿 =   𝐵𝑖𝑗
𝑁𝐸
𝑗

𝑁𝐸
𝑖    (22) 

The total path length value is a combination of both a size 

and interconnectivity measurement due to its replication over 

all of the possible element pairs. This can be illustrated by 

comparing the example system’s 24 degrees of freedom to its 

total path length of 74. While there are only 24 interaction 

parameters in the system, there are 74 unidirectional flows 

which these parameters influence. This is important as it is a 

measure of information exchange within the system.  

Abstracting the total path length to remove the exponential 

size effect of elements yields the average shortest path length of 

the system. This is done by dividing the total path length by the 

size of the matrix minus the unused diagonal as shown in 

Equation 23. As a measurement neutral of elemental size, 

resulting value can be used to make a number of different 

determinations regarding the interconnective properties of the 

system. 

 𝐴𝑃𝐿 =  
  𝐵𝑖𝑗

𝑁𝐸
𝑗

𝑁𝐸
𝑖

𝑁𝐸
2−𝑁𝐸

   (23) 

The average shortest path length represents the linearity of 

the system. A higher average shortest path length value will 

indicate a more linear system, while a lower value will indicate 

a more interconnected system. For a system without uncoupled 

components, the lowest possible average shortest path length 

will be one, representing a system in which all elements are 

directly connected to all other elements. An average shortest 

path length less than one can only occur if the system contains 

uncoupled components. The largest possible average shortest 

path length will occur when the system is purely linear.  

For the example case, the average shortest path length is 

1.3214 relationships per element pair. This indicates how close 

this system is to being fully interconnected, with many 

designers directly linked to one another. This level of 

interconnection is bolstered by the maximum shortest path 

length of the system, given by Equation 24. 

 𝑀𝑃𝐿 =  max𝑖 max𝑗 𝐵𝑖𝑗    (24) 

As the value of the maximum shortest path length must be 

an integer, it can be treated as a classification of the system. 

This classification represents the highest number of 

relationships which may be needed to relate any element to any 

other element. The example design group is of maximum 
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shortest path length of two. This places this system in the 

lowest bracket of linearity short of being fully interconnected. 

The final path length metric, shortest path length density is 

similar to that of average shortest path length but in this case 

applied to the broader rDSM representation as the size in 

question. As such, the formulation for shortest path length 

density multiplies the element pair size of the traditional DSM 

by the number of relationship planes in the rDSM 

representation as shown in Equation 25. 

 𝑃𝐿𝐷 =  
  𝐵𝑖𝑗

𝑁𝐸
𝑗

𝑁𝐸
𝑖

𝑁𝑅 𝑁𝐸
2−𝑁𝐸 

   (25) 

Shortest path length density serves as a test for the level of 

interconnection created on average by each relationship. For 

example, a system having only a single relationship connecting 

all elements will have an average shortest path length of one as 

well as a shortest path length density of one. If a second 

relationship is added to such as system, the shortest path length 

density falls to one half. As most systems will have many 

relationships, the typical shortest path length density will be 

very low such as in the case of the design group where the 

value is 0.2643.  

The behavior of this measurement allows it to be 

considered as the interconnective efficiency of the system. 

Thus, the design group’s interconnection is about 26% efficient. 

This addresses the use of multiple relationships to connect the 

same two elements. For example, it may not be necessary for 

two designers to attend the same two meetings or for designers 

who are already working together in the same workspace to 

have a meeting together at all. 

4.2.2. Decomposability 

The final measurement to be explored in this paper is that 

of decomposability. This addresses the steps which must be 

taken to disassemble the system in a structured manner. As a 

measure of complexity, the decomposability score increases 

with ever larger and more complex systems, thus what we are 

measuring is how difficult it is to take apart the system piece by 

piece. 

It is the iterative reduction of the system which the Ameri-

Summers decomposability algorithm [10] seeks to measure. 

Each step consists of removing those relationships that link to 

the elements with the fewest connections. Each additional step, 

relationship set, or relationships per separated element required 

to decompose the system is considered to increase the 

complexity.  

Algorithm 2: Ameri-Summers Decomposability [10] 

1. Eliminate Unary Relations  

(do not contribute to connectivity) 

2. Initialize values: level = 1; total = 0; 

3. For each graph to be searched 

a. Initialize set size = 1 

b. For all combinations of relations in a set size 

i. Remove set size relations from the graph 

ii. Check for separation 

iii. If separated graphs, mark the relation set removed 

c. If no relation set removed, increment set size and return 

to 3.b 

d. For all relation sets marked, find the combination of sets 

that remove the most relations without removal of 

elements  of degree greater than set size (number of sets) 

e. Calculate score: level * set size * number of sets = total 

f. Submit each distinct graph to 3 

Here, the Ameri-Summers decomposability algorithm has 

been amended slightly. This pertains to step 3.d and disallows 

the removal of a relationship if it will disconnect elements 

which have a degree higher than that of the removal set size. 

This corrects anomalies in the original algorithm which would 

lead to instances of the entire system being reduced in a single 

step due to auxiliary connections to the relationships to be 

removed beyond the least connected elements.  

This would have been the case with the design group 

example presented here. The large number of elements 

connected to two relationships would result in all of the 

relationships being removed in a single step without capturing 

the two elements which are connected to three relationships.  

The additional requirement proposed here changes this 

such that the first step will remove the first and fourth relations 

as indicated in Figure 6. 

 
 

 

Elements Relationships 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

6 

7 

8 



 8 Copyright © 2010 by ASME 

Figure 6: Ameri-Summers Decomposition Level 1 

This removes the first and third elements as these elements 

shared the removed relationships as their only connections. 

Additional relationships are not removed as any other removal 

of size two would result in the elimination of elements which 

are not of the lowest degree. 

 

Figure 7: Ameri-Summers Decomposition Level 2 

The results of the first level create the subgraph shown in 

Figure 7. Here, it can be seen that elements two and four are the 

least connected at degree one. Further, it can be seen that 

removing the relationships these elements are connected to, two 

and three, do not share an element that is connected to only 

these two relationships, therefore both may be removed in the 

second level of the decomposition. The third and final level of 

the decomposition now must only remove the fifth relationship 

to eliminate the remaining elements as shown in Figure 8 

 
 

 

Figure 8: Ameri-Summers Decomposition Level 3 

Decomposability value generated in this process is 

calculated as defined in Algorithm 2. The first level removes a 

single set of two for a value of two. The second level removes 

two sets of one for a value of four. The third level removes a 

single set of one for a value of three. Therefore, the Ameri-

Summers value for this system is nine. While this value does 

not have physical meaning to the system as the other metrics 

which have been presented do, it does serve as a tool for 

comparison between different systems. 

The interconnectivity measurements for the example 

problem of design team meetings are found in Table 3. 

Table 2:  Interconnectivity Metrics 

Class Type Metric 
Design Group  

(Figure 1) 
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Total Path Length  (TPL) 74 

Maximum Path Length (MPL) 2 

Average Path Length (APL) 1.3214 

Path Length Density (PLD) 0.2643 

Decomp. Ameri-Summers (ASA) 9 

5  MEASUREMENT AGGREGATION AND 
APPLICATION 

The comparison of systems is the basis behind the 

aggregate consideration of complexity measurements. As each 

metric presented here behaves in a unique manner and scale, 

the value for each metric may be desired to be larger or smaller 

depending on the type of system analyzed and the design goals 

being addressed. Therefore the calculation of a single value for 

the complexity of the system would be counter intuitive and of 

very little use. Rather, metrics are to be considered as a group 

based on the properties and goals related to each in order to 

make comparisons between systems. 

5.1. Function Structure Example 

There are several approaches to comparing systems. In 

order to demonstrate these, we will depart from the design 

group example and compare the function structures of two 

consumer products, a sander shown in Figure 9 and an electric 

screwdriver shown in Figure 10. These function structures were 

selected from those available in the Design Repository
1
.  In the 

modeling of these systems, the functions were considered to be 

elements and the flows considered relationships. An additional 

node was added to each system to represent the environment in 

order to capture the inputs and outputs. It should be noted that 

these systems carry direction, unlike the design group example. 

                                                           
1 http://function2.mime.oregonstate.edu accessed 2010.02.04 
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Figure 9: Sander Function Structure 

 

Figure 10: Electric Screwdriver Function Structure 

5.2. Aggregation Approaches 

The first of the aggregation approaches is the basic set of 

metric values. Comparing two sets of values pertaining to the 

properties of different systems is common practice in 

engineering discipline, such as in comparing the specifications 

of potential components. This is, however, a somewhat 

cumbersome approach at times, compounded by the varying 

scales and behaviors of the different metrics. For example, the 

function structures may be compared as in Table 3. Here, it is 

possible to see a general trend towards the sander being more 

complex, but it is difficult to grasp the extent. 

Table 3: Set Based Comparison of System Complexity 

Class Type Metric Sander Screwdriver 

S
iz

e
 

Dimensional 

Elements (DSE) 28 15 

Relationships (DSR) 43 19 

Connective 

Connective Size (CS) 86 38 

Degree of Freedom (DOF) 47 19 
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Total Path Length  (TPL) 2294 602 

Maximum Path Length (MPL) 6 5 

Average Path Length (APL) 3.0344 2.8667 

Path Length Density (PLD) 0.0706 0.1509 

Decomp. Ameri-Summers (ASA) 129 24 

 

The next approach is to arrange the metrics as the 

components of a 9-dimensional vector. This enables the 

comparison of systems based on Euclidian distance and other 

vector operations. However, this approach remains susceptible 

to the varied scales of the metrics. For example, the base 

Euclidian distance between the sander and screwdriver would 

be 1696.3, largely due to the total path length. To counteract 

this, each metric is normalized to the largest value for that 

metric across all of the systems to be compared. This results in 

a Euclidian distance of 1.63. With all values falling between 

zero and one, the metrics can then be compared on an equal 

footing and suggesting how different the complexity of one 

system is from another. 

The final approach is an extension to the normalized vector 

approach to visualize the vector elements in terms of the goals 

for each metric. This may be done in two ways. One way is to 

normalize metrics against desired values, creating a target value 

of one for all metrics. This requires a level of knowledge 

regarding what these target values should be which is not 

presently available. However, the other method is more straight 

forward in that the values may be subtracted from one if a 

larger value is considered desirable or left as is if a smaller 

value is better.  

5.3. Spider Graph Comparison 

Such a prioritized vector can then be visualized in a spider, 

or radar, graph. This graph presents each vector component as 

an axis, with all axes radiating from a common origin at equal 

intervals. The value of each metric is plotted as a point on its 

axis and these points are joined to form a filled area for each 

system. 
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Figure 11: Spider Graph Comparison of Sander and 

Electric Screwdriver 

For example, Figure 11 shows the spider graph for the 

sander and electric screwdriver.  Here, it has been decided that 

a higher shortest path length density is desirable and therefore 

should be shown as less complex by subtracting the normalized 

values from one. The resulting figure clearly shows the electric 

screwdriver to be much less complex than the sander, 

particularly in regards to system size and decomposability. 

However, this also quickly highlights that, despite the smaller 

system size and easier decomposition, the shortest path lengths 

through the system are not significantly reduced. This is not 

surprising as these are both power tools which, though they 

perform different tasks, operate in a very similar manner. 

This method of comparing the complexity of systems is 

much faster and more robust than the first approach of 

comparing sets of values. As more systems are added to the 

comparison, greater detail will be displayed in the spider graph. 

However it should be noted that the stacked view shown in 

Figure 11 cannot be used to compare more than two or three 

systems at a time. Additional systems will have to be plotted 

separately in order to be visible.  

To illustrate the comparison of multiple systems, we will 

return to the design group example of Figure 1. A comparison is 

made between the original construct of the design group’s 

activities and two proposed alternatives. Assuming that 

workspaces are unchangeable, the occurrence and attendance of 

meetings are altered.  

Meeting number two between designers four, five, seven, 

and eight connects both of the designers who participate in 

more than one meeting. Therefore, it is proposed that this 

meeting be eliminated from the schedule. However, this would 

result in designers four and eight having no meetings at all. So, 

a second alternative is proposed in which two designers from 

each workspace attend one meeting and the other two attend a 

different meeting. 

  

 

Figure 12: Spider Graph Comparison of (a) Original Design 

Group, (b) Removal of Meeting 2, and (c) Balanced 

Meetings 

When the resulting metric values of these systems are 

compared the resulting spider graphs are those shown in Figure 

12. Here, the assumption that higher shortest path length 

density is less complex has been carried over from the function 

structure example.  

It can be seen that the cancellation of the second meeting 

does indeed reduce the complexity of the system, particularly in 

regards to the size class. However, the path lengths in the 

system increase as a result of some designers not attending 

meetings. It could be considered that the increases in path 

length may be offset by the reduction in size and the 

improvement of path length density, until the third option is 

considered.  

The third option, in which two meetings of balanced 

attendance are scheduled, achieves the benefits of the second 

meeting being canceled without the negatives. The size of the 

system is reduced and the shortest path length density is 

improved while the path lengths are themselves either reduced 

or unchanged. Thus, it can be concluded that the third option is 

the preferable arrangement for the design group of the options 

considered here. This is an example of how this method can be 

used to quickly assess proposed system variations for their 

impact on complexity. 

6  CONCLUSIONS AND PATH FORWARD 

We have established in this paper that complexity is the 

effort required to understand a given system and that this effort 

is based on a collection of attributes rather than a single value. 

These attributes are divided into classes of size and 

interconnectivity. Size is in turn defined in terms of 
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dimensionality and connectivity in the system.  

Interconnectivity addresses the structural arrangement of the 

system through shortest path length analysis and systematic 

decomposition.  

These attributes of complexity are presented in a 

normalized graphical depiction for comparison of systems. The 

systems compared are normalized against the highest value 

presented for any given attribute and adjusted to reflect 

priorities for the given system type. The graphical depiction 

takes the form of a spider graph which presents each 

normalized attribute on an independent axis. This provides a 

quick approach to visually comparing the complexity of 

systems.  

However, there are several areas which remain to be 

addressed. Chief among these is the need for an empirical 

evaluation for the interpretability of the single visualization tool 

presented here. User studies may be conducted to fill this gap.  

Additional studies may also be used to establish whether 

these sets of metrics can be used to predict the performance of 

the systems modeled. An example of this would be utilizing 

these metrics to predict the cost or development time of a 

consumer product. This may be achieved through the direct 

relation of metrics to performance or the application of metrics 

as properties of distribution and trend curves. 

Some opportunity exists for improvement of the metrics, 

particularly with regard to path lengths and system domains. 

Path lengths have the potential for extension through the 

application of distances to what are presently only binary 

connections. This would allow for the capture of connections of 

varying strength. The approach here has thus far been restricted 

to elements of a single domain. An exploration of how this may 

be applied to multiple domains and the connections between 

those domains presents another possible avenue of 

investigation.  
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