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ABSTRACT 
Assembly time estimation is an important aspect of 

mechanical design and is important for many users throughout 

the life-cycle of a product.  Many of the current assembly time 

estimation tools require information which is not available until 

the product is in the production phase.  Furthermore, these tools 

often require subjective inputs which limit the degree of 

automation provided by the method.  The assembly of a vehicle 

depends on information about the product and information 

describing the process.  The research presented in this paper 

explains the development and testing of an assembly time 

estimation method that uses process language as the input for 

the analysis. 

Keywords: Process Sheets, Automotive, Assembly, Time 

Estimation 

1  ASSEMBLY TIME ESTIMATION 
Manufacturing enterprises are competing in increasingly 

competitive global markets, requiring them to compete in terms 

of quality, cost, and time to market of their products[1-3].  In 

order to operate efficiently and competitively these firms must 

understand the costs associated with the manufacture of their 

products[3].  It is increasingly important for this understanding 

to be developed earlier in the life-cycle of a product.  It has 

been shown that the design phase often defines up to 80% of 

the costs of a product while the phase itself only consumes less 

than 15% of the budget[4-6].   

Assembly time estimation has been shown to help 

everyone including managers, workers, and consumers in four 

ways[7].  Assembly time estimation assists methods 

improvement, the process of making assembly tasks more 

efficient, thus reducing the cost to produce.  Secondly, 

assembly time estimation allows for a standard of performance 

that allows for rational management of operations.  Third, a 

consistent standard of measurement allows manufacturers to 

reward exceptional performance resulting in reduced labor 

costs and improved employee pay.  Lastly, the cost of the 

product to the consumer is reduced while the employer is more 

competitive in the marketplace and the employee’s job is 

protected[7].   

Efficiency has become an important focus with the 

evolution of the Ford manufacturing system and the Toyota 

Production System in the 1950’s concentrating efforts on 

eliminating waste.  This focus led to the development of lean 

manufacturing, resulting in an emphasis on eliminating waste 

while increasing production and quality[8].  This trend also 

required the development and standardization of assembly time 

estimation methods.   

Assembly time estimation is used by designers, process 

planners, line balancing personnel, ergonomics analysts and 

others.  Designers use this information to evaluate between 

different designs and to improve their designs in terms of 

assembly.  Process planners and line balancing personnel use 

this information to efficiently lay out the assembly line.  

Ergonomics analysts use this information to understand the 

ergonomic implications of specific assembly tasks.  Assembly 

time estimates can be used more effectively if it is available 

earlier.   

Current assembly time estimates often require information 

about how parts are to be handled and inserted into an 

assembly.  Unfortunately, this information is often not available 

until later in the product life-cycle.  For this reason, other 

means of estimating assembly times must be explored to 
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provide assembly time estimates earlier in the product life-

cycle.   

The assembly of a product depends on information about 

the process and information about the product.  As a product 

moves further along in the development life-cycle, more 

information is available about the product and the assembly 

process.  Furthermore, the available information increases in 

certitude as the process is furthered.  It is expected that as more 

information becomes available assembly time estimates can be 

more accurate.  Figure 1 shows a portion of the automotive 

development timeline.  The right end of the timeline represents 

the point at which the vehicle goes into production.  Generally, 

a prototype build is performed several months prior to the start 

of full scale production.  This is likely the first chance for 

existing time studies to be performed.  Pre-launch assembly 

plans are available well before the prototype build.  At this 

point the process instructions describing how the vehicle is to 

be assembled are available.  Therefore, assembly time 

estimation based on process instructions can be performed at 

this time, often 16 or more months prior to production.   

 
Figure 1:  Automotive development timeline 

The goal of this research is to explore the ability of process 

language to be used as an input for assembly time estimates.  

Assembly time estimates made at early stages of a product life-

cycle are not expected to be as accurate as those which are 

conducted during production because there is substantially less 

information available at this stage.  Therefore, the estimates 

sought in this research are not intended to replace full scale 

assembly time studies which take place during production, but 

to supplement them by providing information about assembly 

time earlier in the product life cycle.   

2  INSTALLATION PROCESS INSTRUCTIONS 
Process instructions are intended to explain specific 

assembly processes to the associates who assembly vehicles.  

These instructions are often available sixteen or more months 

prior to the start of full-scale production.   

2.1. Origin of Process Instructions 
Process instructions in the automotive industry are 

generally authored prior to the start of production, but after the 

completion of most of the design work[9].  At this stage of the 

product life-cycle, other assembly time estimation techniques 

are not able to be performed because they often require 

information about how parts are to be handled and inserted into 

assemblies and this information is not yet available.  Process 

instructions are required to plan the assembly process so no 

additional effort is required to obtain this information.  This is 

another benefit of developing an assembly time estimation tool 

that uses process language as input for the analysis.   

2.2. Composition of Process Instructions 
Process instructions usually include a verb, an object or 

part, and a number of objects or parts.  This is often followed 

by a phrase that further describes the process.  This may 

describe where the part is to be installed or what tool is to be 

used.  Variation between process instructions is likely due to 

different authors and different areas of the vehicles being 

described.  This variation must be considered when evaluating 

the results of an assembly time estimation method based on 

inputs from process instructions.   

It is likely that the three most semantically important 

aspects of the process instruction are the verb, the object or 

part, and the quantity of objects.  These three components 

should allow for a basic understanding of the assembly task to 

be performed.  These components of the instruction tell what 

action should be performed, what the action is to be performed 

on, and finally the number of times the action is to be 

performed.  A few examples of process instructions from an 

automotive manufacturer are shown in Table 1.  The values in 

parenthesis represent a quantity that is not explicitly stated in 

the process instruction.  In this case, the default quantity is one.   

Table 1: Examples of process instructions 

Instruction Verb Qty. Object Remainder 

1 Retrieve (1) Harness From line side parts rack 

2 Position (1) Harness Into channel 

3 Tighten 2 Screws - 

For the purposes of the research presented in this paper, the 

components of the process instructions that are analyzed 

include verb, quantity, object, and volume of object. The 

process instructions used in this research were collected from 

one automotive assembly plant and include processes from nine 

different vehicle areas.  Furthermore, process instructions used 

in the analysis were written by ten different process planners.  A 

summary describing the process sheets used in the analysis is 

shown in Table 2.  The process instructions were collected from 

different authors and vehicle areas so that the analysis is not 

based on a specific authoring style or area of the vehicle.  In the 

next, section, the specific combinations of inputs used in the 

analysis will be addressed.   
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Table 2: Process instruction collection information 

 Process Planners 

Vehicle 

Areas 
1 2 3 4 5 6 7 8 9 10 

Instrument 

Panel 
55 0 0 0 0 0 0 0 0 0 

Insulating 
Panel 

0 4 20 0 0 0 0 0 0 0 

External 

Fittings 
0 0 0 15 0 0 0 0 0 0 

Trim/mats 0 0 20 0 0 0 0 0 0 0 

Rear Light 
Cluster 

0 0 0 0 23 0 0 0 0 0 

Test 

Electrics 
0 0 0 0 0 1 1 0 0 0 

Process 
Supply  

0 0 0 0 0 0 0 3 4 0 

Assembly 

Processes 
0 1 0 0 8 0 0 0 0 0 

Doors 0 0 0 0 0 0 0 0 0 68 

3  LINEAR REGRESSION ANALYSIS 
The first study performed to determine the ability of 

process instructions to be mapped to assembly times is a linear 

regression analysis.  This analysis is focused on determining an 

assembly time that best represents the time to perform a 

specific action represented by a verb.   

At a minimum, a work instruction can be written as an 

action verb followed by a phrase as shown in the two examples 

below. 

“Align the two tabs on the bottom of the hood 

insulation to the slots in the hood.”  

“Insert a push pin to hold the insulation.”  

It should be noted that the interest is placed on the main 

action verb of the phrase and not the additional verbs which 

may be located inside prepositional phrases.   

The analysis described in this paper considers 223 process 

sheets which include 665 process instructions.  Each of the 

instruction considered in the analysis was written, or could be 

written as an action verb followed by a descriptive phrase.  An 

example of how some of the process instructions were re-

written for the analysis is shown below.   

Original: “Using tool X, fasten part A to part B.” 

Re-write: “Fasten part A to part B using tool X.” 

A standard format allows for easier authorship of process 

instructions and permits the automation of process based 

assembly time estimates.   

3.1. Verb List 
The first step in the analysis is to identify an appropriate 

and adequate set of verbs to be used in the analysis.  Two steps 

are performed to identify this set.  First, a stability analysis is 

performed to determine the degree to which the verb list grows 

as each new process sheet is analyzed.  The relationship 

between the number of process sheets analyzed and the number 

of distinct verbs discovered is shown in Figure 2.   

 
Figure 2:  Relationship between process sheets sampled 

and verbs identified 

Secondly, the master verb list shall be reduced to exclude 

repetitive and non-value added verbs.  It is critical to prevent 

excluding verbs that are similar yet suggest additional 

information to users.  As an example, “clip” and “fasten” are 

synonyms, however, clip can be a more descriptive verb than 

fasten as it explains how to fasten.  Therefore, there is a 

tradeoff between having a minimum set of verbs, allowing for 

maximum repetition in the analysis and having a large set of 

verbs with little repetition.  For these reasons, the pruning of 

the verb list must be done carefully and with these 

considerations in mind.  The preliminary reduced verb set is 

shown in Table 3.  

Table 3:  Verb set used for process instruction analysis 

Align Disconnect Install Pull Rotate Tuck 

Apply Ensure Loosen Push Scan Turn 

Assemble Fasten Maneuver Put Seat Unplug 

Attach Feed Move Read Secure Use 

Bring Fix Open Receive Set Verify 

Check Flip Operate Release Slide Walk 

Clean Get Pick Remove Snap Write 

Close Guide Place Re-open Start  

Compare Hand Position Restock Take  

Confirm Hand Start Prep Retrieve Tear off  

Connect Insert Press Return Tighten  

This current master verb list is being refined through 

interviews with process planners, through a top-down approach 

in examining the verbs used in time analysis worksheets at the 

automotive OEM, through linguistic analysis of parts of speech 

patterns and synonym analysis, and through statistical analysis 

on larger sets of instruction worksheets.  This paper presents 

the preliminary results and the direction of investigation that 

demonstrates the promise associated with this approach.   
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3.2. Analysis 
After a standard reduced set of verbs has been identified 

and the formatting of work instructions allows for easy 

identification of the verb, the analysis can be performed.  In the 

analysis, the time study estimates as provided by time study 

personnel analyzing the process on the line are used as targets.  

The linear regression analysis uses an average time associated 

with each occurrence of the verb in the observed process 

instructions assuming an equal share of time for each verb in 

the process sheet.  Figure 3 provides an example of a process 

sheet. 

 

Figure 3:  Process sheet example 

The verbs associated with the process sheet shown in 

Figure 3 include Get, Install, and Position.  The quality checks, 

shown in bold in Figure 3, generally consist of a brief glance to 

determine whether a part is in place or connected properly.  Due 

to their brevity and unsubstantial portion of the total process 

time, quality checks are not considered in this analysis.  The 

target assembly time estimate is shown as 0.138 minutes.  

Therefore each of the 3 action verbs is associated with .138/3 or 

.046 minutes.  This process is repeated for 200 process sheets.  

The average time associated with each verb is considered the 

estimated time for each of the verbs in the list. 

After each of the process sheets have been analyzed and 

appropriate times have been determined for each of the verbs, 

the results are tested both internally and externally.  During 

internal validation, the model is tested against process sheets 

that were used in the analysis.  The external validation consists 

of testing the model against process sheets that were not a part 

of the training set.  The internal validation shows errors in the 

range of -87 to +138 percent.  The external validation resulted 

in errors ranging from -53% to 850%. 

The results of the analysis show that a linear regression 

style analysis is not sufficient for the desired mapping.  

However, artificial neural networks are good at pattern 

classification and recognition and are able to learn from 

experience[10].  Artificial neural networks work best for 

problems in which the solutions require knowledge that is 

difficult to specify but there exists a significant amount of 

observations[10].  Due to the vast number of process sheets 

which can be used to train a neural network, this type of 

analysis is employed in the next section.   

4  ARTIFICIAL NEURAL NETWORK ESTIMATION 
TOOL 
Artificial neural networks (ANN) have been shown to be 

useful in estimating assembly time [11], product market costs 

based on function structures [12, 13], and project team 

performance metrics [14, 15] when using structural complexity 

metrics.  This section explores the potential to use ANNs in 

linguistic analysis of installation instructions for predicting 

assembly time.   

Two of the important factors for artificial neural network 

analysis are the inputs and the targets.  The information used in 

the analysis presented here is collected from existing process 

sheets.  The targets used in the analysis are the results of formal 

time studies.  These estimates are the result of a formal study 

performed by time study personnel.  The studies are conducted 

using a company specific adaptation of MTM-UAS.  The goal 

of this study is not to replace these formal time studies, but to 

provide information much earlier in the product life-cycle.  The 

existing time studies occur after the vehicle has entered 

production and take up to an hour per process sheet.   

The inputs for this analysis are different combinations of 

process instruction components.  The components that were 

considered include the verb, object, number of objects, and 

volume of objects.   

4.1. Initial ANN Results 
The next step in performing analysis with artificial neural 

networks is determining the most appropriate architecture.  One 

hundred eighty-nine different artificial neural network 

structures are simulated in order to identify the most 

appropriate for this application.  The neural network 

architectures examined consist of one to three layers.  Single 

layer architectures include a neuron count of one to fifteen.  

Architectures with two layers were used with neuron 

configurations ranging from one neuron each up to seven 

neurons in each layer.  Finally, architectures with three layers 

were explored with neuron counts of up to five neurons in each 

layer.   

The original analysis was performed using a training of 93 

process instructions and their respective time study results as 

targets.  The input data from the process instructions included 

the following combinations of verb, object and number of 

objects:  (verb, object, and quantity), (verb and object), (verb 

and quantity), and (verb).  After the neural network has been 

trained, the performance of the architectures is evaluated using 

21 process sheets that were not included in the training.  The 

neural network is simulated using these 21 inputs and the 

estimated times for each set of process sheets is determined.   

The neural network is then simulated 100 times for each 

set of inputs resulting in 100 simulated assembly times for each 

input set.  Next, the performance of each of the architectures is 

determined by calculating the percentage of the twenty-one test 

cases in which the estimated time is within 100% of the target 

assembly time.  The results of this analysis for the top 

performing architectures are shown in Table 4.  The 
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percentages in this table represent the confidence that a 

simulated assembly time value will be within 100% of the 

target time.   

Table 4: Results from original ANN training 

Architecture 

Verb + 

Object + 

Quantity 

Verb + 

Object 

Verb + 

Quantity 
Verb 

9 - [9] 95.24% 76.19% 4.76% 19.05% 

20 – [1,5] 90.48% 4.76% 42.86% 4.76% 

27 – [2,5] 66.67% 66.67% 14.29% 14.29% 

61 – [7,4] 4.76% 23.81% 42.86% 9.52% 

91 – [2,1,2] 85.71% 9.52% 47.62% 23.81% 

151 – [4,3,2] 23.81% 9.52% 33.33% 19.05% 

The best results are obtained when an artificial neural 

network architecture of one layer with nine neurons is used and 

the input vector contains the verb, object, and quantity.  When 

this setup is used, roughly 95% of the test cases are estimated to 

within 100% (-100% to +100%) of the target assembly time.  

Table 5 shows the results using these inputs and architecture #9 

for four test cases.   

Table 5: Results of initial artificial neural network analysis 

Test Case Target Time (min) Predicted Time (min) Error 

1 .224 .221 -1.3% 

7 .081 .049 -39.5% 

14 .078 .001 -98.7% 

20 .069 .049 -29.0% 

The probability density graph for one of the 21 test cases is 

shown in Figure 4.  For each of these test cases, the inputs 

represent the verb, object, and quantity of objects, and the 

architecture used is a one layer network with nine neurons.  In 

the figure, the target value is shown by the red dotted line while 

the mean predicted value is shown by the black dotted line.  

The x-axis range in the figure includes all values within 100% 

of the target value. 

 
Figure 4: Test # 20, Architecture 9, Inputs=[verb, 

object, quantity] 

The results displayed in Table 4 and Figure 4 show that the 

estimated times are not as accurate as expected.  Two reasons 

are presented for this observation.  First, the data set is 

relatively small considering the number of verbs and objects 

that are used to describe vehicle assembly.  A relatively small 

number of repetitions of verbs and objects are available to be 

used in the artificial neural network training with the small 

training set.  Due to the high number of objects particularly, a 

significantly higher number of process instructions must be 

analyzed to obtain a representative sample.  It is suggested in 

statistics that sample size be based on a minimum subject-to-

variables ratio of five to ten [16].  This would suggest that a 

minimum number of samples be large enough to contain five to 

ten repetitions of each variable.  A histogram showing the 

repetitions of each of the distinct verbs in the analysis is shown 

below in Figure 5.  The black dotted line in the figure 

represents the number of repetitions of each verb that would be 

required to meet the recommendation of ten repetitions of each 

variable.  If the performed sampling is representative, 1,115 

process sheets must be analyzed to reach the minimum 

recommendation of five repetitions of each variable.   

 
Figure 5: Histogram of verb frequency 

Sample size is not the only issue that may lead to 

inaccurate results.  It is important to consider the high number 

of different terms for objects which are similar and are roughly 

the same in terms of assembly difficulty.  The analysis should 

be based on some characteristic of the object, not simply its 

name.  It is suggested that the volume of the object is one of the 

primary drivers of assembly difficulty.  The next section is a 

presentation of the analysis with volume used in place of 

object.  Other characteristics to consider may include mass, 

type of assembly required, and bulkiness.  The volume of an 

object is relatively easy to obtain and contains some degree of 

information representing other characteristics such as bulkiness 

and mass.  For this reason volume is the first characteristic 

explored to determine its applicability to the model.   

4.2. ANN Results Using Volume in Place of Object 
In order to refine the analysis, volume is used in place of 

object.  This serves two purposes.  First, by using four volume 

classes, more repetition is introduces into the input data set.  

The four general volume classes include golf ball sized items, 

baseball sized items, basketball size items and finally suitcase 

sized items.  Secondly, volume provides some additional 

information about the object that affects the difficulty of 

performing the task and likely the assembly time.  Other 

assembly time estimation techniques penalize parts for small 
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and large volumes[5].  Volume also often trends with mass and 

bulkiness, two additional factors that affect how difficult parts 

are to assemble.  A more refined volumetric delineation may be 

possible with integration to CAD modeling systems, but is out 

of scope for this research. 

4.2.1. Results with Fifty Input Samples 
The first analysis using verb and volume as inputs for each 

process step consisted of 50 inputs and targets.  The neural 

network was then simulated on 23 test cases that were held out 

of the training set.  The size of the test case set is held constant 

for training sizes of 50 through 200; it is approximately 10% of 

the maximum training size studied.  Table 6 shows the best 

performing neural network architectures as well as their 

associated probabilities of predicting assembly times to within 

100%.  The values in the right column of Table 6 are the 

percentage of the 23 test cases in which the mean predicted 

assembly time is within 100% of the target assembly time. 

Table 6: Results with 50 training data points 

Architecture Probability of estimation to within 100% 

122 – [3,2,3] .6957 

8 – [8] .6521 

101 – [2,3,2] .6087 

55 – [6,5] .5652 

154 – [4,3,5] .5652 

The best performing architecture is identified as one with 

three layers with three, two, and three neurons in each layer 

respectively.  However, this architecture only results in a 

confidence of prediction of the assembly time to within 100% 

of the target time.  This is likely due to the small set of input 

data points used in the training.  The results of five of the test 

cases are shown in Table 7. 

Table 7: Results of ANN prediction with verb and volume as 

inputs and 50 training points 

Test Case Target Time (min) Predicted Time (min) Error 

4 .13 .12 -8% 

8 .048 .278 479% 

12 .054 .247 357% 

16 .207 .061 -71% 

20 .021 .183 771% 

The results presented in this section show that to some 

degree process instructions, specifically the verb and volume 

can be mapped to assembly times.  However, this mapping 

lacks accuracy due in part to the minimal number of data points 

in which the neural network has been trained on thus far.  In 

order to more fully understand the ability of neural networks to 

map the verb and volume of a set of process instructions to an 

assembly time, the neural network training must be completed 

with a much higher number of data points.  Figure 6 shows that 

if the accuracy trend continues to increase linearly, 350 data 

points would be required to raise to 90% the confidence level of 

prediction to within 100%.  An analysis exploring the effect of 

training size on performance is presented in the next section. 

4.2.2. Improvement with Additional Input Samples 
The effect of sample size on the accuracy of assembly time 

estimation is examined in this section.  For the analysis 

presented here, the test points are held constant, while the 

number of process sheets used to train the neural network is 

increased.  Next, the top performing architectures as identified 

are evaluated.   

Figure 6 shows the performance trend, representing the 

confidence of prediction to within 100%, of five neural network 

architectures as the number of data points used in the training 

increases from 50 to 200.  A developing upward trend is shown 

by the orange dotted line.  This line represents the average 

performance of the five architectures.  It should be noted that 

200 data points is still a small data set for artificial neural 

network training.  However, the average performance of the 

neural network architectures trends from 62% to 75%.  This 

trend suggests improvement, but should be validated with a 

nearly tenfold increase in the number of training points.   

 
Figure 6: Architecture performance as a function of 

training size 

The results of architecture 122 after training on 50 data 

points were shown.  After training of the neural network using 

200 data points, architecture 122 is again evaluated to 

determine its ability to predict assembly times. 

Tab. 8: Results of ANN prediction with verb and volume as 

inputs and 200 training points 

Test 

Case 

Target Time 

(min) 

Predicted Time 

(min) 
Error 

4 .13 .220 69% 

8 .048 .076 58% 

12 .054 .092 70% 

16 .207 .447 116% 

20 .021 .240 1043% 
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While some improvement is shown as more data points are 

used to train the neural network, the accuracy is still limited 

and inconsistent.  However, the optimal neural network 

architecture has not been identified after 200 data points were 

used for the training.  It is likely that after adding an additional 

150 training points, a different architecture may be better suited 

for the mapping.  The identification of the best architecture 

with 200 training points and the resulting accuracies in then 

presented. 

4.2.3. Results with 200 Input Samples and Best 
Architectures 
The process of identifying the most promising artificial 

neural network architectures is performed in the same manner 

as discussed above.  The results of the artificial neural network 

training and simulation on the test data are collected and 

analyzed.  The test data consisted of the same 23 data points 

used to identify the most appropriate architecture after training 

on only fifty points.   

Table 9 shows the probabilities of estimation to within 

100% and 50% of the target time for the top performing 

architectures.  The probabilities greater than one are a result of 

errors in the integration approximation.  These values can be 

taken to be a 100% likelihood that prediction is within the 

100% of target range. 

Table 9: Results with 200 training data points 

Architecture 

Probability of 

Estimation to 

within 100% 

Probability of 

Estimation to 

within 50% 

182 – [5,4,3] 1.05 .34 

136 – [3,5,2] .90 .40 

17 – [1,2] .84 .50 

161 – [4,5,2] .83 .46 

The results of the analysis with the top performing 

architecture are shown in Table 10.  With 200 process sheets 

used in the training set and the top performing artificial neural 

network architecture selected, the average error is 80%.  While 

these accuracies are not ideal, it is shown that they continue to 

improve as more information is used in the training.   

Table 10: Results ANN prediction with verb and volume as 

inputs and 200 training points 

Test Case Target Time (min) Predicted Time (min) Error 

4 .13 .17 31% 

8 .048 .02 -58% 

12 .054 .044 -19% 

16 .207 .105 -49% 

20 .021 .072 243% 

These test cases show promise but are not yet capable of 

providing a reliable prediction of assembly time.  The next 

section provides a summary of the results and a discussion on 

how they can be used in future research. 

5  CONCLUSIONS AND INFERENCES 
The analysis as performed and presented in this paper does 

not provide for a conclusive estimation of assembly time.  

However, a process based assembly time estimation technique 

can provide some insight into assembly time.  It is also likely 

that with a significant increase in the size of the training set the 

accuracy of the model will improve.   

Several limitations of the analysis techniques presented in 

this paper may be causes for the high level of variation in the 

results.  First, a relatively small amount of data was used for the 

analysis process.  Only 200 process sheets were used for the 

artificial neural network training.  The assembly of a vehicle 

requires three to five thousand process sheets.  It is likely that a 

representative sample would consist of five hundred to one 

thousand process sheets including all areas of the vehicle.  The 

data collection for this is currently underway for different areas 

of the vehicle and authored by different process planners. 

Another cause of the variation may result from the 

inconsistency in the process instruction authorship itself.  A 

significant level of variation was noticed in different vehicle 

areas as well as between different process sheet authors.  This 

inconsistency could be reduced by enforcing a more strict 

authorship format.  Authorship could be performed solely by 

selecting the appropriate word from a pre-determined set of 

words.  This improved authoring process would reduce the 

variation in authorship and would also allow for automated data 

collection.  An easier method of collecting information from the 

process sheets would allow for the analysis of more process 

sheets in a shorter amount of time.  This would enable a more 

appropriate number of process sheets to be analyzed and used 

in the neural network training.  This limitation is being 

addressed by an on-going industry sponsored research program 

that is looking at developing appropriate information models to 

support installation and process worksheet authoring. 

Finally, additional information could be extracted from 

process sheets and used in the analysis.  For example, part 

information is likely related to the part number in an existing 

database or software.  For example information about a parts 

volume, mass, and material properties can be found in 

computer aided design software.  This additional information 

could be extracted automatically and could further refine the 

accuracy of the assembly time prediction.   

With the additional refinements to the analysis procedure 

presented here it is likely that a process based analysis will 

successfully compliment a product based assembly time 

estimation that will result in higher accuracies at an earlier time 

in the product life-cycle.   
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