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ABSTRACT 

Assembly time estimation is traditionally a time intensive 

manual process requiring detailed geometric and process 

information to be available to a human designer. As a result of 

these factors, assembly time estimation is rarely applied during 

early design iterations. This paper explores the possibility that 

the assembly time estimation process can be automated while 

reducing the level of design detail required. The approach 

presented here trains artificial neural networks (ANNs) to 

estimate the assembly times of vehicle sub-assemblies at 

various stages using properties of the connectivity graph at that 

point as input data. Effectiveness of estimation is evaluated 

based on the distribution of estimates provided by a population 

of ANNs trained on the same input data using varying initial 

conditions. Results suggest that the method presented here can 

complete the time estimation of an assembly process with +/-

15% error given an initial sample of manually estimated times 

for the given sub-assembly. 
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1  ASSEMBLY TIME ESTIMATION 

With the evolution of the Ford manufacturing system and 

the Toyota Production System in the 1950’s, managers became 

more focused on eliminating waste and therefore paying 

attention to every work sequence and to every second that 

people, material, and machines were idle.  This focus became 

the foundation for lean manufacturing, which resulted in an 

emphasis on identifying and eliminating waste, while 

increasing production and quality [1].  This trend however 

required the standardization of assembly time estimation 

procedures and has led to the development of many methods 

for predicting product assembly time [2,3,4].   

Assembly time estimation is important to the field of 

design for assembly because it allows designers to predict, with 

varying degrees of accuracy, not only how long a product will 

take to assemble but also to compare assembly times between 

different design solutions.  Increasingly stiff global competition 

requires manufacturing enterprises to compete in terms of 

quality, cost, and time to market of their products [5,6,7].  It is 

essential for these firms to understand the costs associated with 

the manufacture of their products in order to operate efficiently 

and competitively [7].   

It is increasingly apparent that this understanding must be 

achieved earlier into the design phase. The possibility of 

influencing a product’s cost substantially decreases early in the 

product’s life cycle while the cost of modifications increases 

drastically as the project advances.  Thus, decisions made early 

in a product’s life cycle have a significant impact on the overall 

costs of the product, although the bulk of the expenses are 

incurred after the design phase has been completed as shown in 

Figure 1 [8].  Studies have shown that the design phase is often 

responsible for defining up to 80% of the costs a product incurs 

throughout its life cycle, but the design phase itself consumes 

less than 15% of the budget [8,2,9].   

As a product moves from the design phase to production, 

more information about the product and the assembly process 

becomes available.  In addition, the available information 

increases in certitude.  It is expected that as more information 
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becomes available, assembly time estimates should become 

more accurate.  For example, little information is available 

during conceptual design, often only requirements and 

conceptual sketches.  As the design process continues, more 

data is collected, including information regarding the way parts 

are connected to each other.  

 

Figure 1: Cost engagements and expense occurrences 

throughout lifecycle [8] 

Previous research has shown that assembly time estimates 

for consumer products can be predicted to within 16% of 

Boothroyd and Dewhurst assembly time estimates using only 

information about the part connectivity of the product [4].  This 

paper explores whether this approach can be adapted and 

applied to the automotive industry as illustrated in Figure 2. 

 

Figure 2: Automotive manufacturing product life-cycle, 

adapted from [10] 

Assembly time estimates made at early stages of a product 

life-cycle are not expected to be as accurate as those which are 

conducted during production because there is substantially less 

information available to analyze.  As a result, the estimates 

sought in this research are not intended to replace full scale 

assembly time studies which take place during production, but 

to supplement them by providing information earlier in the 

product life cycle.  

1.1 Assembly Time Estimation Methods 

In any effort to develop an assembly time estimation 

method, a means of assessing the assembly time of any given 

system must be employed. In the case of most traditional, late-

stage assembly time estimation methods this takes the form of 

time studies requiring the direct observation of physical system 

assembly processes to a statistically significant replication 

count. However, for the development of an early-stage 

assembly time estimation method with an acceptable degree of 

inaccuracy, such exhaustive methods are both impractical and 

unnecessary. Rather, existing assembly time estimation 

methods can be used to acquire assembly time information 

which does not vary significantly enough from observed 

assembly time to skew results. In this paper, three assembly 

time estimation methods are discussed:  methods-time 

measurement (MTM), Boothroyd and Dewhurst (B&D), and 

connectivity. 

1.1.1 Methods-Time Measurement 

Methods-time measurement, MTM, is a predetermined 

time study system in which operations are described by MTM 

“elements” [3]. The original MTM technique was time-

consuming; however the method has since evolved to reduce 

the time required for analysis.  It first became MTM-2 followed 

by MTM-3 and most recently MOST and MTM-UAS [11].   

MTM analysis requires each motion of an operation to be 

analyzed.  Analyzing an operation on this level allows for the 

user to easily identify obvious problems and non-value added 

motions [12].  The pre-determined times associated with 

specific motions have been determined in advance by statistical 

analysis.  As an example, MTM-UAS defines seven basic 

motion take and place, place, helper equipment use, running 

(machine or equipment), motion cycles, body motions, and 

visual control [12]. 

An MTM style method is effective and relatively objective. 

However, the application of the method is labor intensive.  The 

breakdown of an operation into its individual motions can take 

a significant amount of time.  On the other hand, the objectivity 

and accuracy of the method lend MTM and MTM derivatives 

to application in industry.  The majority of assembly time 

estimates used as targets in this research are the result of a 

custom MTM derivation developed by an automotive OEM.   

1.1.2 Boothroyd and Dewhurst  

The Boothroyd and Dewhurst method examines a part’s 

handling and insertion difficulties when assigning an 

appropriate assembly time.  A series of tables is used to 

determine an appropriate time for both handling and insertion 

of each part. The individual times within the tables have been 

developed from numerous time studies.  The handling and 

insertion times selected from each set of tables are summed for 

each of the parts to determine the estimated assembly time for 

the product.  This method has been proven to be beneficial, but 
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is time consuming and includes subjective inputs [2,13].  

Additionally, the information required for this analysis is often 

only present after the design is complete or near completion.   

 For example, to determine a handling time, the user must 

decide whether the part is easy or difficult to handle as well as 

the freedom of the part to rotate both parallel and perpendicular 

to its insertion point [14]. For insertion time, the user must 

determine whether holding down is required to maintain 

orientation, whether the part is easy or difficult to align, and 

whether or not resistance is present when inserting the part.  

Additionally, users must select whether the part and tool can 

easily access the desired location, as well as whether access is 

obstructed or vision is restricted.  

The major drawbacks of both the tabular and software 

based Boothroyd and Dewhurst assembly time estimation 

methods include the need for significant amounts of 

information about both the product and the process and the 

number of subjective inputs required for the analysis. 

1.1.3 Connectivity Assembly Time Estimation Method 

The connectivity based assembly time estimation technique 

allows for the estimation of assembly time relying strictly on 

part connectivity information [4].  This method has only been 

tested on consumer appliances. However, it is likely that its use 

could be expanded to other industries including automotive 

manufacturing. For example, it may be possible to extend this 

method to an automotive sub-assembly and its part connectivity 

graph, such as those shown in Figure 3. 

 

 

 

Figure 3: Bi-partite graph and tabular equivalent of 

automotive sub-assembly 

 The current connectivity method predicts assembly time 

based on a surrogate function on properties of the part 

connectivity graph he proposed model was developed using a 

manual pattern recognition approach, comparing and 

combining regression trends of average path length, number of 

elements, and path length density plotted against Boothroyd 

and Dewhurst assembly time estimates [4].  This regression 

based mapping was shown to be successful for consumer 

appliances as compared against Boothroyd and Dewhurst 

predicted assembly times. However, it has not been applied to 

products in different industries.  The method could be fully 

objective with further definition of connections and has the 

potential to be fully automated.  

1.1.4 Summary of Time Estimation Methods 

With the exception of the connectivity method, the 

assembly time estimation methods which are currently 

available rely heavily on information that is not available until 

late in the design phase.  This information includes required 

body movements, difficulty of handling and inserting parts, part 

size, part weight, part stickiness, and required connection order 

of parts. This poses a problem when users need information 

about assembly time earlier in the product’s life cycle.  For this 

reason, it is proposed that assembly time estimation could be 

obtained using part connectivity which is available earlier in the 

product life-cycle. One of the major motivations for this 

research is to use information more readily available early in a 

product’s lifecycle to perform the analysis.  Table 1 summarizes 

the information required in each of the assembly time 

estimation methods discussed so far. The information which 

can be obtained objectively has been shaded. This information 

can be obtained through automated and algorithmic software.  

The other, subjective information requires human interpretation 

and judgment.  

Table 1: Questions asked of the designers for existing 

assembly time estimation techniques 

MTM 
Boothroyd and 

Dewhurst 
Connectivity 

What movements are 

necessary to perform 
assembly actions? 

What order are parts 

connected in? 

Which parts are 

connected to each 
other? 

How difficult are parts 
to handle? 

How difficult are 
parts to handle? 

How many connection 

instances are present 

between parts? 

How difficult are parts 

to insert? 

How difficult are 

parts to insert? 
 

Part attributes such as 

envelope size, weight, 
stickiness, etc. 

Part attributes such as 

envelope size, weight, 
stickiness, etc. 

 

 

The connectivity method has shown promise in estimating 

assembly times for consumer products based on time estimates 

derived from Boothroyd and Dewhurst time analysis. The 

research presented in this paper addresses the possibility of this 

method’s refinement and application to the automotive 

manufacturing industry.  

2  PRODUCT CONNECTIVITY INFORMATION 

Information about the part connectivity of a product can be 

generated manually by reverse engineering a product or 

studying 3-D models and 2-D drawings [5,15,16]. Significant 

research has also been conducted on the ability to extract part 

connectivity information from computer-aided design models 

[17,18].  However, connectivity may be taken to mean different 

things.   



 4 Copyright © 2011 by ASME 

One type of connectivity, the kind used for analysis in the 

connectivity method, has to do with what parts are in contact 

with other parts and the number of contact points [4].  Another 

form of part connection information is mating relationships 

defined in CAD models.  These two types of information are 

related; however they are not the same thing.  The focus of the 

research in this paper is connectivity in terms of physical part 

connections which may or may not have explicit mate 

conditions defined in the CAD environment.  There are many 

ways to fully constrain parts in an assembly.  Furthermore, 

different designers, or even the same designer, may constrain 

assemblies differently.  For these reasons, physical part 

connections are considered in this research. 

3  DATA COLLECTION 

To begin the process of evaluating and refining the 

connectivity method, the connectivity graphs and associated 

MTM-based time estimates for a sample of systems are 

required.  As discussed earlier, there are currently no automated 

means of generating connectivity information although current 

research in this field is ongoing [13].  As a result the 

connectivity graphs are obtained using a combination of 

observation of the assembly process, informal interviews with 

process associates, and information contained within CAD 

models.   

Information collected for this analysis originates from the 

successive tasks performed in the assembly of one sub-

assembly area for one specific vehicle.  The assembly tasks are 

all within the instrument panel and take place between the 

attachment of the first part to a fixture and the completed sub-

assembly’s marriage to the vehicle. 

One observation noted while collecting the information 

was that the graph did not change after the completion of every 

assembly task.  This may be thought of as a limitation, but it 

could also be used advantageously.  The limiting factor is 

obvious; the method is incapable of estimating an assembly 

time for tasks that do not result in any change in the 

connectivity of the parts.  However, it is observed that the tasks 

that are not captured by the connectivity graphs are not truly 

value added activities.  Although not explored in this paper, this 

finding could allow for automated connectivity analysis to 

identify non-value added activities.  Some examples of these 

types of tasks are: 

 Place cockpit sub-assembly broadcast sheet to the AGC 

with magnet. 

 Remove two transport covers from upper flaps of the 

Heater/Aircon Low. 

 Place in the recycle bin. 

These three tasks do not affect the connectivity graph of 

the product.  As a result, an assembly time cannot be estimated 

for these steps using an analysis of the connectivity graph.   

The first process in the sub-assembly that results in a 

change to the connectivity graph is the attachment of the 

second part to the base part. The connectivity graph after the 

completion of this step is shown in Figure 4.  This process 

involves attaching Part B to Part A and securing with two bolts 

(Bolt A and Bolt B) and two screws (Screw A and Screw B). 

 

Figure 4: Connectivity graph after first set of assembly 

tasks 

As the process is furthered, the connectivity graph 

continues to grow in size as more parts are introduced to the 

system and more connection instances are incorporated.  The 

properties of the graph also change with the completion of 

more assembly processes.  This trend is the focus of this 

research with the aim to map the properties of connectivity 

graphs to assembly times. The growth of the connectivity graph 

is shown in tabular form in Figure 5 and Figure 6.   

 

Figure 5: Tabular view of connectivity graph after one 

process 

Figure 6 shows how the graph has increased in size after 

the completion of the first three assembly processes.   

 

Figure 6: Tabular view of connectivity graph after three 

processes 
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The data collection process continued for each of the non-

option related tasks associated with the sub-assembly of the 

instrument panel.  In total, 24 connectivity graphs and the 

associated assembly times for each activity were collected to be 

used in the analysis.   

4  GRAPH PROPERTY ANALYSIS 

The original connectivity method proposes that the 

properties of product connectivity graphs could be used to 

estimate assembly times for a given product [4]. The properties 

of a bi-partite graph, such as the one shown in Figure 3, are the 

basis for the analysis proposed in this paper as well as previous 

research [19].  The graph properties used in this research are 

based on the same as those proposed in the original assembly 

time estimation research based on connectivity [19].  These 

have been expanded to twenty nine properties, each falling into 

one of four main categories:  size, interconnectivity, centrality, 

and decomposition to match the scheme developed in [19]. 

5  PERFORMANCE EVALUATION OF EXISTING 
CONNECTIVITY METHOD 

The original connectivity method was designed and 

mapped to model assembly times for consumer products [4].  It 

was shown to map connectivity graphs to Boothroyd and 

Dewhurst assembly time estimates to within 16% [4].  Prior to 

establishing a new mapping scheme that could be applied to 

automotive industry assembly processes a study was conducted 

to determine the extent to which the original method could 

predict these times.  The results of this study on twenty-four 

connectivity graphs shows an average error of twenty six 

percent with a range in errors between -134% and 352%.  The 

plot of MTM-based assembly time estimates for these twenty-

four graphs and the original connectivity estimates is shown in 

Figure 7.  The function developed in the original model is not 

capable of accurately estimating assembly times in the 

automotive industry.  Therefore, it is proposed that other, more 

complex techniques be explored to develop an appropriate 

mapping for this application.   

 

Figure 7: MTM-based estimates and original connectivity-

based estimates 

6  ARTIFICIAL NEURAL NETWORKS 

The next step is the mapping of the connectivity graph 

properties to the MTM-based assembly time estimates.  

Artificial neural networks are chosen to explore this 

relationship due to their ability to perform nonlinear statistical 

modeling [20]. Other machine learning approaches, such as 

support vector machines and decision trees are ill-suited to this 

problem as they primarily perform a classification or clustering 

function and therefore do not provide for a continuous 

differentiable output. The advantages of neural networks 

include requiring less formal statistical training, the ability to 

detect complex nonlinear relationships between independent 

and dependent variables, the ability to discover all possible 

interactions between predictor variables, and the ability to use 

multiple training algorithms [20].  Artificial neural network 

analysis also has its disadvantages.  These include its “black 

box” nature, the greater computational expense, the tendency to 

“over-fit”, and the empirical nature of the development of the 

model [20,21]. As the purpose of this research is to develop a 

model which reliably generalizes between the input graph 

properties and the assembly time without a need for physical 

meaning between them, the “black-box” nature is acceptable. 

The issue of over-fitting is addressed in training by instituting 

an early stopping algorithm as well as withholding samples 

from training entirely to test generalization on non-training 

data.. Table 2 summarizes the results of a few studies about the 

applicability and performance of artificial neural networks as 

compared to other analysis methods.  For a more 

comprehensive assessment of the literature see [21] 

Table 2: Artificial neural network comparisons in literature 

Application of ANN 
What ANN was 

compared to 
Conclusions Ref. 

Predict dynamic 

nonlinear systems 
Statistical Models 

ANNs provide 

satisfactory 

performance in 
forecasting 

[21] 

Forecasting 

Box-Jenkins automatic 

forecasting expert 

system 

Similar Results [22] 

Nonlinear statistical 
modeling of medical 

outcomes 

Logistic regression 

Neural Networks 

preferred when primary 

goal is outcome 
prediction 

[20] 

Cost Estimation of Steel 

Pipe Bending 
Linear regression Neural Network [23] 

Prediction of 

Commodity Prices 
Logistic regression 

ANNs are consistently 
better and find more 

turning points 

[24] 

Two critical factors for this analysis are the inputs and the 

targets.  The input for the analysis is the vector of graph 

properties for each connectivity graph.  It should be noted that 

the connectivity graph at any time represents all of the 

connections made up to that point in time.  This includes the 

execution of all assembly tasks that are required to make all of 

the connections present in the connectivity graph.  Therefore, 

the graph property vector for a connectivity graph is to be 

mapped to the total assembly time up to that point.  To 
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determine the time for an isolated assembly step or steps the 

estimated assembly time prior to that step must be subtracted 

from the total estimated time including the step. 

The target for the mapping is the MTM-based assembly 

time estimate provided by an automotive OEM.  These 

estimates are the result of a formal study performed by time 

study personnel.  The studies are conducted using a company 

specific adaptation of MTM-UAS.  Again, the goal of the 

methods proposed in this paper is not to replace the formal, 

late-stage time study.  The aim of this research is to provide an 

assembly time estimate much earlier in the product life cycle 

and to enable the automation of such a method.  Formal time 

studies come late in the product life-cycle, after production has 

begun.  The added level of detail and analysis time results in a 

more accurate estimate.  Therefore, the assembly time estimates 

provided by the OEM implementation of MTM-UAS are used 

as target values in this study. 

The process of building the model scheme is shown in a 

more detailed manner in Figure 8.  The graph property vectors 

representing 19 connectivity graphs and their associated 

assembly times are used as inputs and targets. Graph property 

vectors for 5 connectivity graphs and their associated assembly 

times are withheld from training for later validation.  One 

hundred simulations are then performed for each of 189 

different ANN architectures.  Next, a probability density 

function is generated for each of the architectures.  The 

architectures are then evaluated based on the probability of 

predicting assembly times to within fifteen percent of the target 

time.  This is calculated by integrating the area under the 

probability density plot between the upper and lower fifteen 

percent bounds.  Finally, a combination of the 100 predicted 

assembly times from the five best performing neural networks 

is used to generate a probability density plot.  It is expected that 

the combination of the top performing architectures will enable 

the model to more accurately predict assembly times for 

different vehicle areas.    

 

Figure 8: Model building process 

Once the model is built and tested in order to understand 

the degree of accuracy, it can be used to estimate assembly 

times.  The process of using the model is illustrated in Figure 9.  

This figure shows that a graph property vector representing a 

connectivity graph is used as the input to the model.  Then, the 

model is simulated using the five top-performing ANN 

architectures.  Finally, a probability density function is 

generated using 500 ANN replications (100 from each of the 

five architectures).  This probability density function can be 

used to gain an understanding of the predicted assembly time.   

 

Figure 9: Process of using the model 

Roughly 20%, or 5 of the 24 graphs, are omitted from 

training for external testing.  This leaves 19 of the 24 data 

points to be used as inputs and targets for the analysis.  The 

remaining five are used after the appropriate ANN architectures 

are selected to determine the accuracy to which the network 

was capable of mapping connectivity graphs to MTM-based 

assembly time estimates.   

One hundred and eighty nine different ANN architectures 

were simulated in order to identify the most appropriate for this 

mapping.  These architectures range from a single layer with a 

single neuron to three layers with five neurons in each layer.  

Architectures with one layer were simulated with a neuron 

count ranging from one to fifteen.  Architectures with two 

layers were simulated with one neuron each up to seven 

neurons in each layer.  Finally, architectures with three layers 

were simulated with combinations of up to five neurons.  This 

caps the number of hidden layer units at 15. This places the 

hidden unit count between the input unit count and output unit 

count, thus promoting generalization of the output [25].  

An ANN will not generate the exact same mapping even 

when given the same inputs and outputs due to different initial 

conditions in each training. The most notable of these variations 

is the use of an early-stopping validation algorithm which 

withholds a 15% subset of the training data for use in testing 

that while training progresses generalization also continues to 

improve. Without this measure, the network could be expected 

to consistently over-fit to the training data.  As the subset of the 

training data to be used for early-stopping is selected at 

random, the training of each architecture is executed for 100 

replications of the ANN.  This allows for the generation of 

probability density functions describing the typical behavior of 

the 189 ANN architectures.  A probability density plot for an 

ANN architecture consisting of three layers with five neurons 

in the first two layers and one neuron in the third layer 

evaluated for one connectivity graph is shown in Figure 10.  An 
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equivalent plot is generated for all combinations of ANN 

architectures and connectivity graphs.   

 

Figure 10: Probability density plot for connectivity graph 

#5 and ANN structure 134 

The next step is to analyze where the probability function 

lies in relation to the target value and acceptable range of 

assembly times.  Figure 11 shows the probability density plot as 

well as the target value and associated 15% range of the target 

values for the assembly.  The mean predicted value is shown by 

the red dotted line while the black dotted line shows the target 

assembly time value.  It is noted that the predicted values fall 

well within the 15% acceptable range.  

 

Figure 11: Probability density plot with target value and 

15% range 

Next, the artificial neural network architecture with the 

highest probability of estimation to within fifteen percent of the 

target is identified to be used for future assembly time 

estimation. This probability is based on the assembly time 

estimation for the five connectivity graphs which are omitted 

from training. It should be noted that four of the ANN 

architectures resulted in probabilities of greater than one, the 

result of integration errors in computation.  To determine the 

probability, the area under the probability density plot between 

the upper and lower limits was calculated using trapezoidal 

approximate integration.  It should also be noted that some of 

the architectures result in a probability of zero.  This suggests 

that none of the simulated assembly times fall within a fifteen 

percent range of the target times.   

The most appropriate ANN architecture was determined 

based on the data presented in Table 3.  Columns two and three 

represent the probability that the minimum and mean of the 

estimation will be within 15% of the target value for the five 

validation sets.  The first column identifies the ANN 

architecture.  It can be seen that each of these have a high 

probability of estimating the assembly time to within 15% of 

the MTM-based assembly time estimate.  Since there is not a 

significant difference for any of the cases between performance 

on the predicted mean and minimum, the ANN architectures 

with the highest mean probability are selected.  The top ANN 

architecture consists of three layers with three neurons in the 

first layer, four in the second, and five neurons in the third 

layer. 

Table 3: Evaluation of ANN structure performance 

ANN 

Architecture 

Minimum Probability 

of Estimation to within 

15% of Target 

Mean Probability of 

Estimation to within 

15% of Target 

134-[3,4,5] 0.99991 0.99994 

188-[5,5,4] 0.99990 0.99992 

153-[4,3,4] 0.99983 0.99990 

157-[4,4,3] 0.99983 0.99990 

77-[1,3,3] 0.99985 0.99989 

32-[3,3] 0.99977 0.99987 

170-[5,2,1] 0.99966 0.99986 

69-[1,1,5] 0.99970 0.99983 

7  RESULTS 

As previously mentioned, 5 of the 24 data sets are omitted 

from training for validation separate from any validation set 

generated by the training algorithm. These data points are used 

to test the ability of the selected ANN architecture to generalize 

new data.  The top network is trained two additional times 

using the selected architecture while omitting different sets of 

five data points.  During the original training and testing, the 

five largest connectivity graphs are omitted to use later as test 

points.  This test is used to determine the forward prediction of 

the model.  The second training omits every fifth data point 

(when ranked in terms of connectivity graph size) beginning 

with the smallest connectivity graph.  The third validation set 

consists of every fifth connectivity graph starting with the fifth.  

The second and third validation sets are used to determine the 

applicability of the model to a wide range of graph sizes after 

training on a representative sample. The final validation set 

consists of using a combination of the top performing 

architectures.   

7.1 First Validation Set (Last Five Omitted) 

The ANN population is trained using the first 19 data 

points as inputs and targets and the top ANN architecture.  This 

network was then simulated with the input being the graph 

property vectors of the final five data points.  The results of the 

ANN validation simulation are shown in Table 4. This table 

shows the estimated time from the MTM-based time study 

provided by the automotive OEM and the estimated time by the 
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ANN model for each data point.  The estimate from the model 

is the mean output from a population of 100 ANN replications.  

The error represents the percentage error of the model as 

compared to the formal time study estimate.  The final three 

columns show the probability that each of the 100 ANN 

replications predict a time to within a specified percentage of 

the formal time study estimate.  The results in Table 4 show that 

this model is capable of forward prediction within an area of 

the vehicle.  In other words, the ANN trained on a set of smaller 

connectivity graphs is capable of predicting assembly times for 

graphs larger than those used in the training. 

Table 4: Prediction results for first validation set 

Graph MTM [s] ANN [s] Error 

Probability of prediction 

within: 

10% 5% 1% 

20 352.92 350.30 -0.7% 1 1 .52 

21 362.64 370.18 2.1% 1 .99 .27 

22 366.96 384.45 4.8% 1 .53 0 

23 376.62 386.09 2.5% 1 .72 .18 

24 392.94 386.94 -1.5% .99 .58 .12 

The results of this validation set show a successful 

mapping between the complexity of connectivity graphs and 

MTM-based assembly time estimates for a specialized case.  

This validation is only applicable to forward prediction of 

assembly times within a specific vehicle area.  This validation 

does not imply anything about mapping of assembly times in 

other parts of a vehicle.  In addition it does not speak to the 

model’s ability to predict assembly times for connectivity 

graphs which are smaller than the input graphs or for a wide 

range of sizes of connectivity graphs.  For this reason, a second 

validation is performed and discussed in Section 7.2. 

7.2 Second Validation Set (Every Fifth Omitted 
Starting with Graph 1) 

The second validation set seeks to explore the model’s 

ability to predict assembly times for a wider range of 

connectivity graph sizes for cases in which the model is trained 

on a representative sample of the population.  The ANN 

population for this case was trained using 19 of the 24 collected 

data points as inputs and targets and top performing ANN 

architecture.  This ANN population was then simulated with the 

input being the graph property vectors of every fifth data point, 

or connectivity graph, starting with the smallest. 

The results of the second neural network validation 

simulation are shown in Table 5 using the format established in 

Table 4. As shown in the table, the only connectivity graph 

which was not predicted with an error of less than 15% was the 

first.  This connectivity graph is the smallest graph in any of the 

collected data, and is consequently smaller than the training set.  

This error, along with the low probability of estimation to 

within 10% highlights this procedure’s lack of ability to predict 

assembly times for graphs which are smaller than those used in 

the training.   

Table 5: Prediction results for second validation set 

Graph MTM [s] ANN [s] Error 

Probability of prediction 

within: 

10% 5% 1% 

1 39.3 45.73 16.4% .23 .11 .03 

6 187.38 202.29 8.0% 1 0 0 

11 226.26 225.10 -0.5% 1 .96 .02 

16 318.78 315.40 -1.1% 1 1 .47 

21 362.64 372.90 2.8% 1 1 0 

The results of the second validation set show great 

potential for the deployment of the method.  However, it also 

identifies a weakness in the model’s ability to predict assembly 

times for graphs which are smaller than those present in the 

network’s training.  As a result of this observation, the goal of 

the third validation set is to determine the model’s applicability 

when trained on a representative sample of the population with 

upper and lower bounded data. 

7.3 Third Validation Set (Every Fifth Omitted Starting 
With Graph 5) 

The third validation set omits every fifth graph in terms of 

size, but starts with graph 5.  This validation seeks to examine 

the capabilities of the method when trained on a representative 

sample which contains the upper and lower bounded graph 

sizes.  In this validation, the graphs omitted for validation are 

between the largest and smallest graphs used in the training of 

the ANN population.  

The results of the third ANN validation set are shown in 

Table 6, in a format similar to that established in the previous 

validation sets.  As shown in the table, 100% of the predictions 

for this validation are within 25% of the target value.  Similarly, 

for every graph except graph 5, all of the simulations are within 

15%. 

Table 6: Prediction results for third validation set 

Graph 
MTM 

[s] 
ANN 

[s] 
Error 

Probability of prediction to 

within: 

 
25% 15% 10% 5% 1% 

5 138.24 122.67 -11.3% 1 .67 .44 .22 .04 

10 223.20 228.28 2.3% 1 1 1 .95 .29 

15 311.04 311.43 0.1% 1 1 1 1 .98 

20 352.92 351.65 -0.4% 1 1 1 1 1 

24 392.94 408.98 4.1% 1 1 1 .66 0 

The third and final validation set demonstrates that an 

ANN population can successfully predict assembly times when 

trained on a representative sample of the population and when 

the extreme data points in terms of graph size are included in 

the training.   

7.4 Fourth Validation Set (Every Fifth Held Back 
Starting with Graph 5) using best five 
architectures 

In the final validation set within the instrument panel area 

of the vehicle a combination of the top five performing 
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artificial neural networks (134, 188, 153, 157, and 77) is used.  

To obtain the results for this analysis, an ANN population with 

equal members of each of the five architectures  is simulated 

for the test cases.  For each architecture 100 replications exist 

within the population, resulting in 500 predicted times for each 

test case.  Finally, a probability density plot is generated using 

the 500 assembly times.  Table 7 shows a summary of the 

results of the fourth validation set. 

The results of the fourth validation set are very accurate.  

The mean predicted values for each of the test points are within 

2.5 percent of the target assembly time.  This suggests that 

using a combination of top performing architectures is helpful 

in successfully mapping the complexity of connectivity graphs 

to assembly times.   

Table 7: Prediction results for fourth validation set 

Graph 
MTM 

[s] 

ANN 

[s] 

% 

Error 

Probability of prediction to 

within: 

10% 5% 1% 

5 138.24 138.15 -0.1% .51 .08 .02 

10 223.20 223.20 0.9% 1 1 .37 

15 311.04 311.04 1.1% 1 1 .46 

20 352.92 352.92 -0.3% 1 .94 .94 

24 392.94 392.94 -2.2% 1 .81 .01 

Table 8 shows a summary of the validation results.  It is 

shown that the results within a particular vehicle area are 

accurate.  However, the best results are obtained when the five 

top-performing neural networks are used to simulate the 

assembly times.  This can be seen in the last column where the 

maximum error is less than 2.5 percent.   

Table 8: Summary of validation results 

Test 
Last 5 

graphs 

Every 5th 

graph, starting 

with #1 

Every 5th 

graph, starting 

with #5 

Every 5th 

graph, best 5 

architectures 

1 -0.7% 16.4% -11.3% -0.1% 

2 2.1% 8.0% 2.3% 0.9% 

3 4.8% -0.5% 0.1% 1.1% 

4 2.5% -1.1% -0.4% -0.3% 

5 -1.5% 2.8% 4.1% -2.2% 

8  EXTERNAL GENERALIZATION 

The results in Section 7 show that the connectivity method 

is capable of predicting assembly times when tested on the 

vehicle area used for the ANN training.  However, the 

application of this mapping to other areas of the vehicle or to 

non-automotive assemblies has not yet been explored.   

8.1 Application to other parts of the vehicle 

The first question to be addressed in external 

generalization is whether the ANN trained only on the 

instrument panel is capable of predicting assembly times for 

other parts of the vehicle.  The insulating panel will serve as the 

other vehicle area for this analysis.  

The ANN developed in Section 7 was simulated to predict 

assembly times for the graph property vectors of the insulating 

panel’s connectivity graphs.  The results from this analysis are 

shown in Table 9.  The errors in this validation set range from 

negative forty-two percent to 435%.  This lack of consistency 

suggests that it is difficult to use a model trained on one 

specific vehicle area to estimate assembly times for a different 

vehicle area.   

Table 9: External Generalization Results 

Graph MTM [s] ANN [s] % Error 

1 20 69 231 

2 27 15 -42 

3 30 34 15 

4 34 184 435 

5 47 181 284 

6 60 201 235 

7 80 259 223 

8 95 301 214 

The results shown in Table 9 yield the second question 

which addresses whether a neural network trained on 

complexity vectors and times from multiple vehicle areas is 

capable of producing accurate estimates for the different 

vehicle areas. To address this question an ANN population 7 is 

trained on the instrument panel as performed in Section 7 as 

well as three of the eight connectivity graphs collected from the 

insulating panel.  Table 10 shows the results of this analysis. 

Table 10: Connectivity results for insulating panel assembly 

Graph MTM [s] ANN [s] % Error 

2 27.18 47.67 75% 

4 34.56 97.97 183% 

5 47.34 84.52 79% 

7 80.28 54.66 -32% 

8 95.94 67.12 -30% 

The results show that estimation of assembly times for 

multiple vehicle areas is possible with some degree of accuracy.  

However, the results are not as accurate as those within the 

same vehicle area as the training set.  This lower level of 

accuracy is likely due to the fact that a much larger number of 

instrument panel processes was used than insulating panel 

processes. 

Since the training set now includes data from the insulating 

panel, the accuracy of the estimation of instrument panel 

assembly times may have been reduced.  The assembly time 

estimation for the instrument panel processes both before and 

after the addition of insulating panel processes are presented in 

Table 11.  This shows that when the ANN population is trained 

on insulating and instrument panel assemblies the accuracy of 

the assembly time estimates for the instrument panel is not 

decreased.  This may suggest that a higher number of processes 

used in the neural network results in a higher degree of 

accuracy in assembly time prediction regardless of the vehicle 

areas analyzed.   
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Table 11: Connectivity results for instrument panel 

assembly 

Graph 
ANN 

[s] 

MTM 

[s] 

% 

Error 

% Error (IP-only 

Training) 

IPA-5 199 187 6% 12% 

IPA-10 244 226 8% -3% 

IPA-15 313 318 -2% -3% 

IPA-20 361 362 0% -2% 

8.2 Application to Consumer Products 

The next step is to determine the applicability of the newly 

developed ANN model to assembly time estimation outside of 

automotive assembly processes.  The original connectivity 

training was developed for use on consumer product assemblies 

[19].  To determine the new model’s ability to predict assembly 

times for consumer products, the model is tested on three 

products used in the initial connectivity research including a 

mixer, a chopper, and a Tweel™ prototype.   

The results of this analysis are presented in Table 12.  This 

shows that it is necessary to train the model on data specific to 

the application it is to be used for.  Furthermore, it is likely that 

different automotive OEMs would need to train the model 

specifically for application in the respective company.   

Table 12: Results of model application to non-automotive 

assemblies 

 Graph B&D [s] ANN [s] % Error 

Mixer 136 180 32% 

Tweel™ 13561 228 -98%  

Chopper 228 35 -84% 

9  CONCLUSIONS & FUTURE WORK 

This paper has explored the possibility that an automatable, 

early-stage assembly time estimation model based on part 

connectivity can be developed for the automotive industry. It 

has been found that existing regression based assembly time 

estimation methods using connectivity information are not 

extendable to automotive assemblies. To address this, an 

artificial neural network mapping approach incorporating 

populations of ANNs is proposed and evaluated. This 

evaluation has shown that the ANN approach is well suited to 

predicting assembly times for intermediate steps when trained 

on a representative sample containing the upper and lower 

bounds, suggesting its possible use as an accelerating 

supplement for formal time studies. Fair performance is also 

observed for predicting the assembly time of steps beyond the 

upper bound, indicative of progress towards the goal of an 

automated early-stage assembly time estimation tool. 

It is recommended that a model to be used for assembly 

time estimation be trained on a set of graph property vectors 

representing the upper and lower bounded connectivity graphs 

in addition to a representative sample of intermediate graphs.  

Additionally, a population consisting of five or more of the top 

performing network architectures should be used  to generate a 

probability density plot representing the estimated assembly 

time. It is shown that predictions generated from this model are 

only applicable to vehicle areas on which it has been trained 

and is not viable for direct use in other industries. Further, it is 

hypothesized that the model would also be company-specific 

and fail to generalize across automotive OEMs. 

The results of this study suggest that a higher number of 

training data points representing a sample of each of the vehicle 

areas may result in a model which is capable of accurately 

predicting assembly times for all areas of the vehicle.  The 

development of such a model will require significantly more 

effort due to the large number of samples required.  A definite 

rule does not exist for sample sizes, but the size of the training 

set depends on the network structure, training method, and the 

complexity of the problem [26].  However, it is possible that the 

result would be a product-based assembly time estimation 

model capable of providing accurate results early in the 

automotive product life-cycle. 
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