Geometric Path-finding Algorithm in Cluttered 2D Environments

Nafiseh Masoudi Advisor: Dr. Georges Fadel Committee: Dr. Margaret Wiecek, Dr. Joshua Summers, and Dr. Gang Li

Department of Mechanical Engineering, Clemson University

<u>nmasoud@clemson.edu</u> <u>http://www.clemson.edu/ces/cedar</u>

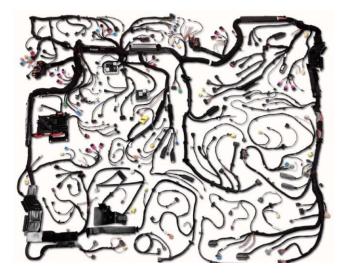
Outline

- Motivation
- Research Objectives
- Literature Review
- 2D Routing Problem
- Research Approach
- Conclusions
- References

Background

 Packaging Optimization: packaging of components in vehicle under-hood to achieve an optimum center of gravity, accessibility, survivability, dynamic behavior, etc.

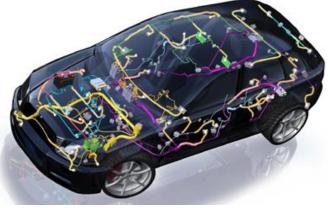
 Connecting the components in an optimal way using cables, wires, and harnesses + placing breakouts



<u>nmasoud@clemson.edu</u> <u>http://www.clemson.edu/ces/cedar</u>

Motivations

- Cable harnesses, the third heaviest and costliest component in a car (Matheus, 2015)
- Their layout is currently performed in CAD systems by human designers
- Current process lacks automation and the final solution often times is NOT optimal
- Routing is important in assembly planning, robot motion
 planning and geographic infor



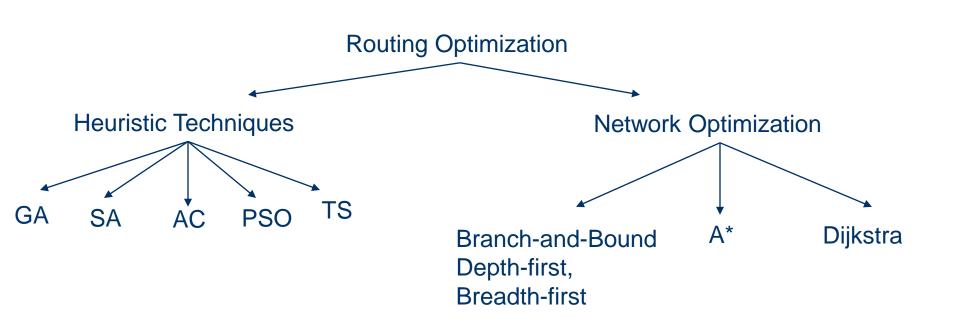
<u>nmasoud@clemson.edu</u> <u>http://www.clemson.edu/ces/cedar</u>

- Automate the routing process of wires, hoses, and cables (one dimensional components) in electromechanical systems → ultimate objective
- Avoid interference with other components of the environment
- Minimize the total weight of the harness (length) \rightarrow goal
- Improve the efficiency of the optimizer through the appropriate choice of a graphical representation for the workspace and the free space

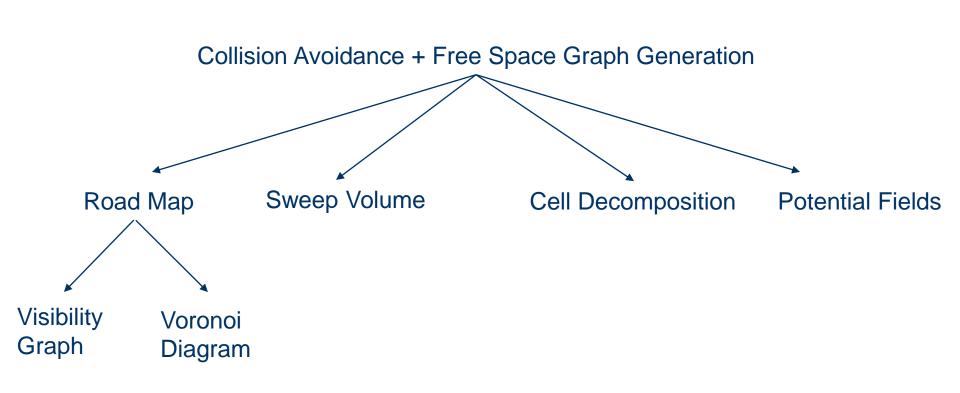
Path Planning Literature Review

- An automatic pipe router using approximate cell decomposition and A* search algorithm is described in [1]
- 3D pipe routing problem is solved in [3], using convex hulls of barriers and visibility graphs to find candidate segments
- Chen and Sandurkar [4] solve 3D pipe routing using tessellations of obstacles and Genetic Algorithms
- Conru [6] uses GA to find near-optimal solutions to the 3D cable harness routing problem with collision avoidance constraints using cell decomposition
- Automotive wire routing and sizing for weight minimization is addressed in [7] using the Minimal Steiner Tree algorithm

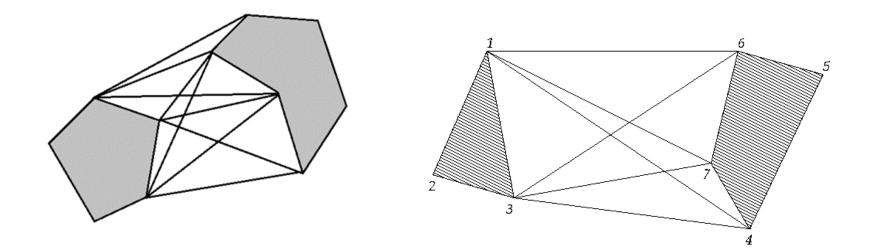
Summary



Summary

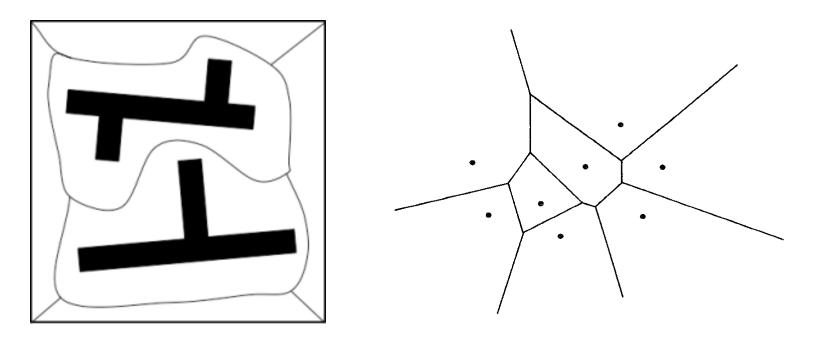


- A way to generate the collision free graph
- A Visibility graph: a finite set of nodes and edges. The nodes can "see" one another in the sense that the common edge does not meet the interior of any obstacles



Voronoi Diagram

 Voronoi diagram of n sites partitions the workspace into n convex regions such that any point on an edge is equidistant from exactly two sites, hence generating maxclearance path

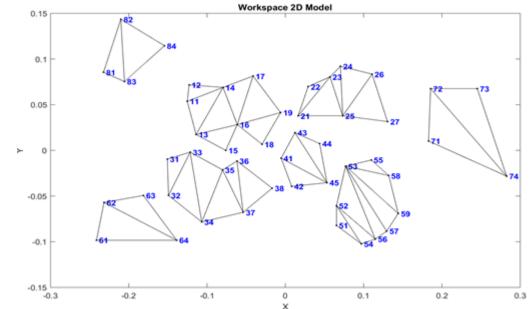


Issues with the previous work

- Visibility graph generates the graph of the visible nodes from a vertex through extensive search of the entire workspace
- Voronoi does not necessarily result in the shortest path
- Roadmaps that work well with 2D routing problems are not fast enough since they explore the entire workspace→ memory and time issues
- Non convex shapes are not well-addressed using the previous techniques.

Geometric representation

- Using tessellations, STL data of the workspace
- Efficient handling of convex as well as non convex shapes

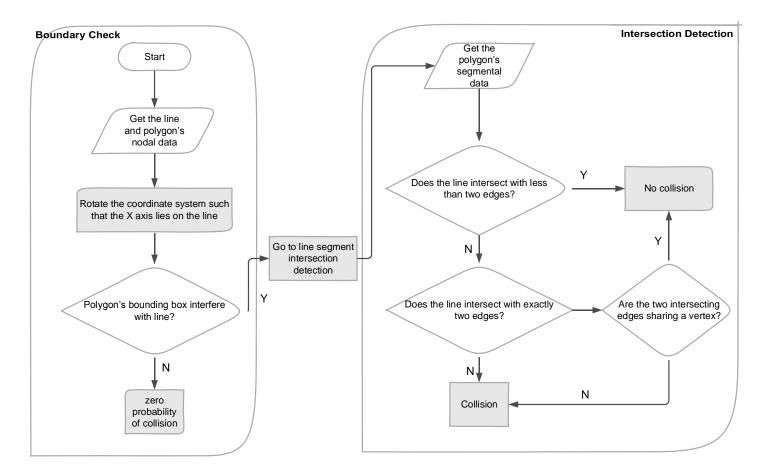


Node numbering:

- first digit=object number
- Other digits=vertex number

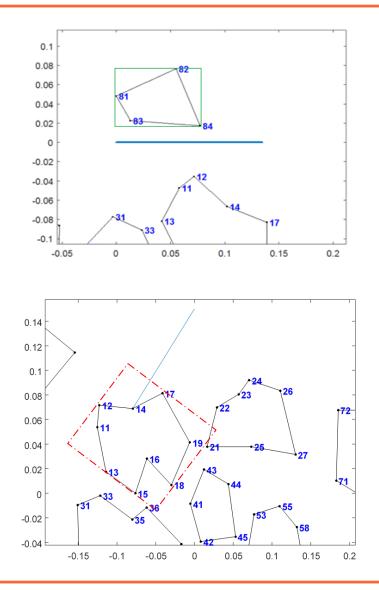
Intersection Detection

• Bi-level Intersection detector



- Bi-level intersection detector:
- 1. Filtering out the out-of-bound obstacles
- 2. Checking the intersection between line segments for inbound obstacles

Out-of-bound Example



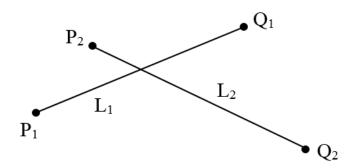
Line segment intersection detection

• Determining intersection point of the two line segments

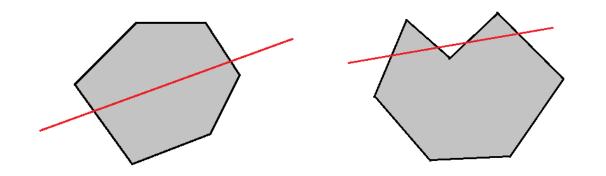
 $L_2 = (1 - \mu)P_2 + \mu Q_2$ $L_1 = (1 - \lambda)P_1 + \lambda Q_1$

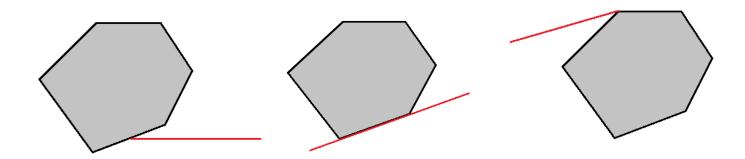
$$(1-\lambda)X_{P_1} + \lambda X_{Q_1} = (1-\mu)X_{P_2} + \mu X_{Q_2}$$
$$(1-\lambda)Y_{P_1} + \lambda Y_{Q_1} = (1-\mu)Y_{P_2} + \mu Y_{Q_2}$$

• Intersected if $0 \le \lambda$, $\mu \le 1$



Intersection Examples





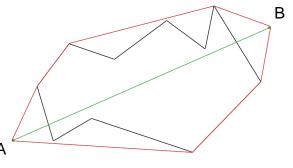
<u>nmasoud@clemson.edu</u> <u>http://www.clemson.edu/ces/cedar</u>

Finding the free space graph

- W is the workspace; $W \subseteq \mathbb{R}^2$
- there are n polygonal obstacles in the workspace: P1,..,Pn
- Known: geometry and location of all obstacles+ start and end points
- Assume: obstacles are stationary and disjoint

$$C_{free} = W \setminus \bigcup_{i=1}^{N} P_i$$

n



Find the graph G such that:

 $\mathsf{G}=\{\mathsf{V},\mathsf{E}\}\subseteq C_{free}$

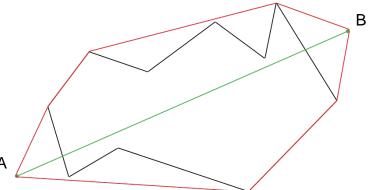
<u>nmasoud@clemson.edu</u> <u>http://www.clemson.edu/ces/cedar</u>

Assume there is one polygonal obstacle P in the workspace
 W: P ⊆ W ⊆ ℝ² and the start and end points are denoted by
 A,B ∈ ℝ², and if:

 $\partial Conv(A,B) \cap P \subseteq \operatorname{Int}(\mathsf{P}) \cup \partial(P)$

Where:

- $Conv(r_1, \ldots, r_n)$: convex hull
- Int(P): interior of set P
- $\partial(P)$: boundary of set P



There is an intersection between line segment AB and the polygon P. otherwise:

 $Conv(A,B) \cap P \subseteq \partial(P)$

Define *Conv*(*A*, *B*, *P*) such that:

 $\partial Conv(A,B,P) \cap P \subseteq \partial(P)$

Graph Definition

- G = {V,E} Graph of the free space
- V: set of all nodes of the free space graph $v_i \epsilon V \Leftrightarrow v_i \epsilon \partial Conv(A, B, P), \quad \exists v_{i,i+1} \text{ or } v_{i-1,i} \epsilon E$
- E : set of all segments/edges of the free space graph $e_{ij}\epsilon E \Leftrightarrow e_{ij}\subseteq \partial Conv(A, B, P), \quad e_{ij}\cap P\subseteq \partial(P)$

Optimization Problem

- Given graph G={V,E}, find the shortest path between nodes i,j, i≠j;
- Problem formulation:

$$\min\sum_{(i,j)\in G}C_{ij}X_{ij}$$

Where:

 $C_{ij}: \text{ cost, the L2 norm (Euclidean) of arc } e_{ij}$ $X_{ij} = \begin{cases} 1 & if e_{ij} \text{ is in the path} \\ 0 & otherwise \end{cases}$

s.t.

$$\sum_{\{j:(i,j)\in G\}} X_{ij} - \sum_{\{i:(i,j)\in G\}} X_{ji} = \begin{cases} 1 & i=1\\ 0 & i\neq 1, m\\ -1 & i=m \end{cases}$$

<u>nmasoud@clemson.edu</u> <u>http://www.clemson.edu/ces/cedar</u>

Dijkstra's Algorithm

- Originated from Dynamic Programming (DP); solving an optimization problem by breaking it into multiple sub-problems
- Starting from s, in a given graph, at each step i, the node with the minimum distance from node among all adjacent nodes is added to the path until it reaches t (explain step by step)

Dijkstra

Dijkstra's Algorithm (Sneidovich, 2006)

• Initialization:

 $j = 1; F(1) = 0; F(i) = \infty, i \in \{2 \dots, n\}; U = C = \{1, \dots, n\};$

j :current node, F(j): the objective value assigned to node j.

- U: set of unvisited nodes
- Iteration:

```
While (j \neq n \text{ and } F(j) < \infty) Do:
```

```
Update U : U = U\{j\}
```

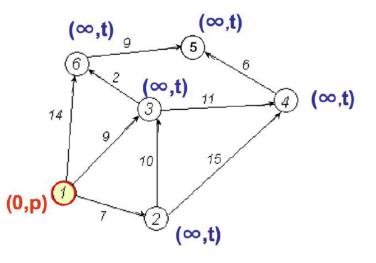
```
Update F : F(i) = min{F(i), F(j) + D(j, i)}, i \in A(j) \cap U
```

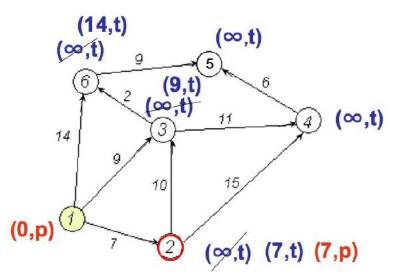
Update j : j = argmin{ $F(i) : i \in U$ }

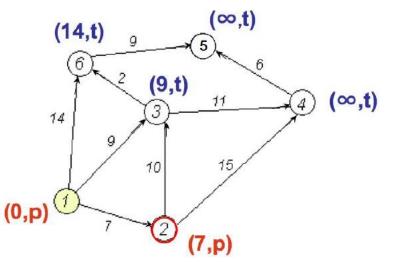
Where; A(j) denotes the set of node j's immediate successors

Dijkstra Example

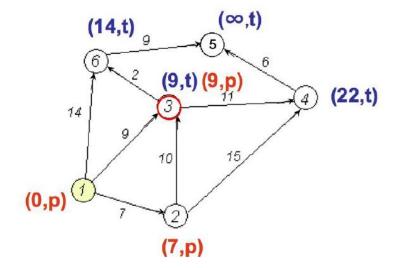
 $\begin{array}{c}
9 \\
6 \\
2 \\
14 \\
9 \\
10 \\
15 \\
7 \\
2
\end{array}$

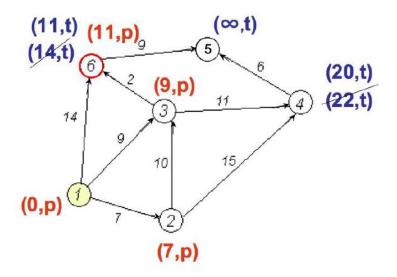


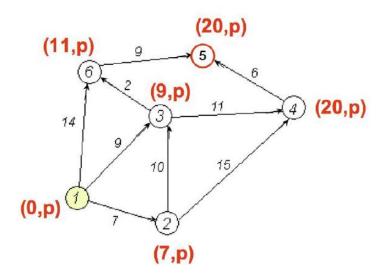




Example Cont'd





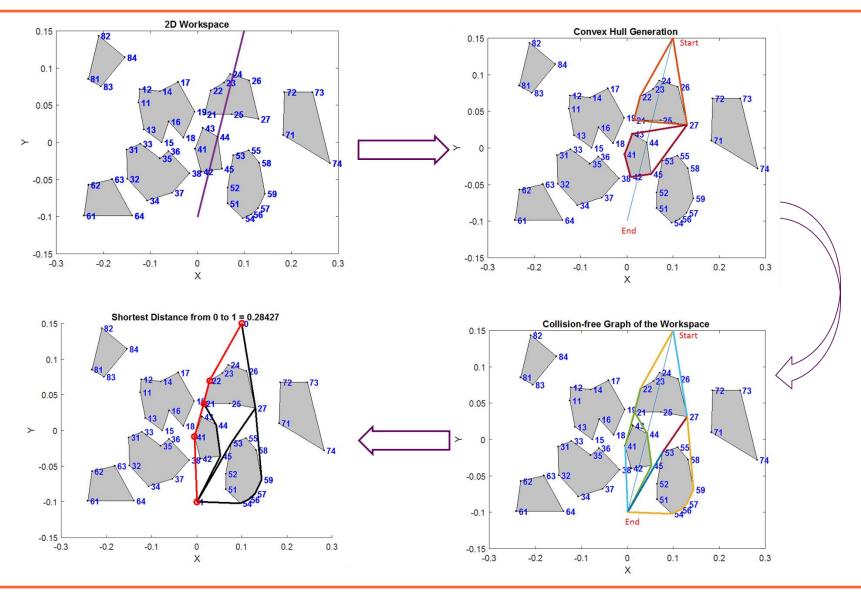


Shortest Path = $\{1,3,6,5\}$ Path Length = 20

A* Search Algorithm

- Similar to Dijkstra in finding the shortest path based on DP
- But, it also has a heuristic term which helps favoring vertices that are close to the goal
- Cost: f(n) = g(n)+h(n)
- Definition of the heuristic term is challenging.

Results



Results

- The algorithm is tested on different cases with varying number of objects, start and end points and various shaped objects(convex and non convex)
- The algorithm depends on the number of colliding obstacles while being independent of the total number of obstacles
- The algorithm is independent of the shape of the objects

Conclusions

- A two-level collision detection algorithm is developed that checks for intersections
- Instead of generating the entire visibility graph of the workspace, we find a portion of it using convex hulls of the intersecting objects
- A network optimization algorithm, Dijkstra, is implemented to find the global optimal solution of the SP problem (if one exists)

Future Work

- A sensitivity analysis will be deployed to analyze the changes of the path with respect to small changes in the workspace configuration
- The algorithm will be modified as needed and implemented on a 3D environment
- An optimizer will be developed to optimize the path of harnesses for automation of harness assembly process in manufacturing lines

References

[1] Zhu, D., Latombe, J., and Science, C., 1991, "Pipe Routing = P a t h Planning (with Many Constraints)," (April), pp. 1940–1947.

[2] Conru, A. B., and Cutkosky, M. R., 1993, "Computational Support for Interactive Cable Harness Routing and Design," Adv. Des. Autom., 1, pp. 551–558.

[3] Yin, Y. H., Zhou, C., and Zhu, J. Y., 2010, "A pipe route design methodology by imitating human imaginal thinking," CIRP Ann. - Manuf. Technol., 59(1), pp. 167–170.

[4] Sandurkar, S., and Chen, W., 1999, "GAPRUS - genetic algorithms based pipe routing using tessellated objects," Comput. Ind., 38(3), pp. 209–223.

[5] Szykman, S., and Cagan, J., 1996, "Synthesis of optimal nonorthogonal routes," J. Mech. Des., 118(3), pp. 419–424.

[6] Conru, A. B., 1994, "A genetic approach to the cable harness routing problem," leee, pp. 200–205.

[7] Lin, C. W., Rao, L., Giusto, P., D'Ambrosio, J., and Sangiovanni-Vincentelli, A. L., 2015, "Efficient Wire Routing and Wire Sizing for Weight Minimization of Automotive Systems," IEEE Trans. Comput. Des. Integr. Circuits Syst., 34(11), pp. 1730–1741.

[8] Lin, C., Rao, L., Ambrosio, J. D., and Sangiovanni-vincentelli, A., 2014, "Electrical Architecture Optimization and Selection - Cost Minimization via Wire Routing and Wire Sizing," pp. 502–509.

[9] Automatic, E., Electrical, A., and Interconnection, W., 1998, "S. A. F A W A Z Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands," 59(3), pp. 327–342.

[10] Nath, Pooja "Motion Planning in Robotics"

[11] http://www.24auto.ro/newsroom/O_noua_fabrica_Delphi_in_Romania.html

Thank You

Questions ?

