Modeling lattice structured materials with micropolar elasticity

Accuracy of the micropolar model

Marcus Yoder

CEDAR presentation Spring 2017

Advisors: Lonny Thompson and Joshua D. Summers

- 1. Background and Motivation
- 2. Methods
- 3. Conclusions

1. Background and Motivation

- 2. Methods
- 3. Conclusions

- "Cellular materials are made of an interconnected network of solid struts or plates, which form the edges and faces of cells." (Gibson, 1999)
 - Strong and lightweight
 - Or weak and lightweight

Periodic Cellular Material - Honeycomb

Random Cellular Material – Aluminum Foam

- Alternative Analysis tools
 - Beam lattice model
 - Homogenized elasticity
 - Homogenized micropolar elasticity
- Focus of this work
 - Accuracy of different models
 - as applied to periodic cellular materials with thin walls

Honeycomb modeled with beam elements

- Beam Lattice Model
- Accepted as correct for purpose of this work

- Smears discrete lattice behavior over space.
- Young's Modulus and Poisson's ratio calculated from formulas
 - Referred to as Effective Properties
- Loses certain details
 - Are these details important?

Honeycomb lattice modeled with a homogenized elasticity model

- Beam theory variables are displacement and beam rotation
 - Beam rotation is lost in transition to homogenized elasticity
 - Fixed boundaries constrain beam rotation (and displacement)
 - Lattice model shows extra stiff behavior near fixed boundary
 - Homogenized model does not show this. (Diebels, 2002)
 - Boundary effects are constant in size

Three beam elements with the same displacement at their ends but different rotations

- Moments in lattice material from:
 - Distribution of stresses
 - Beam couples
- Homogenized elasticity leaves these out.
- Micropolar elasticity extends classical elasticity to include extra free variable.
 - micropolar rotation, φ
- Extra variables and extra equations.

	Classical Elasticity	Micropolar Elasticity
Constitutive Law	$\sigma_{ij} = A_{ijkl} \varepsilon_{kl}$	$\sigma_{ij} = A_{ijkl} arepsilon_{kl}$ and $m_{ij} = C_{ijkl} k_{kl}$
Strain Definition	$\varepsilon_{ij} = \frac{u_{i,j} + u_{j,i}}{2}$	$\varepsilon_{ij} = u_{j,i} - e_{kij}\phi_k$ and $k_{ij} = \phi_{j,i}$
Equilibrium Equations	$\sigma_{ji,j}=0$ and $\sigma_{ij}-\sigma_{ji}=0$	$\sigma_{ji,j} = 0$ and $m_{ji,j} + e_{ijk}\sigma_{jk} = 0$
Strain Energy Density	$w = \frac{\sigma_{ij}\varepsilon_{ij}}{2} = \frac{A_{ijkl}\varepsilon_{ij}\varepsilon_{kl}}{2}$	$w = \frac{A_{ijkl}\varepsilon_{ij}\varepsilon_{kl}}{2} + \frac{C_{ijkl}k_{ij}k_{kl}}{2}$

- Research Questions focus on accuracy of continuum models
 - When are continuum models accurate?
 - When is micropolar elasticity more accurate than classical elasticity?

- 1. Background and Motivation
- 2. Methods
- 3. Conclusions

- Set up a lattice model, equivalent micropolar model, equivalent classical model
 - Solve both using FEA.
 - Three FEA codes I wrote
 - Same overall size,
 - Same boundary conditions,
 - Continuum uses material properties for lattice

$$Error = \frac{L - C}{\sqrt{L C}}$$

- L, C are lattice, continuum results
 - For this presentation global strain energy
 - Any pair of comparable results possible

- Certain lattices have formulas for material properties
 - Simulations are limited to these lattice topologies

- 1. Background and Motivation
- 2. Methods
- 3. Conclusions

How do unit cell shape and topology, macro-size, and loading conditions affect the accuracy of continuum models when modeling lattice structures?

- My exploratory studies show accuracy influenced by
 - 1. Lattice type (e.g. Honeycomb, triangle, etc.)
 - 2. Number of unit cells relative to part dimensions
 - Generally more repeated unit cells means more accurate
 - 3. Boundary conditions
 - All patterns have exceptions

- All tested topologies can be accurate at large sizes.
 - Honeycomb is hit and miss.
 - MixedTriAold is not as good as the others.
 - I have hypotheses that explain why
- Certain boundary conditions are not accurate, regardless of size

	square	triangle	hexagon	mixedTriAnew	mixedTriAold	mixedTriBnew	mixedTriBold	diamondNew	diamondOld
stretch11	0.00%	-0.07%	-0.69%	0.10%	2.75%	0.47%	0.48%	0.20%	-0.36%
stretch22	0.00%	0.34%	1.60%	0.10%	2.75%	0.47%	0.48%	0.48%	-0.29%
shear12	-0.70%	-0.35%	-0.38%	-0.19%	1.82%	1.20%	0.03%	-0.11%	-0.55%
shear21	-0.70%	0.24%	1.37%	-0.19%	1.82%	1.20%	0.03%	0.11%	-0.56%
shear21hinge	-0.72%	0.22%	10.83%	-0.21%	1.77%	1.16%	-0.05%	0.10%	-0.58%
bend1free	-0.22%	-0.19%	-0.45%	0.07%	3.06%	0.85%	0.93%	0.37%	-0.43%
bend2free	-0.22%	1.47%	7.86%	0.07%	3.06%	0.85%	0.93%	0.68%	-0.03%
bend1allFree	-0.22%	-0.15%	-0.08%	0.12%	3.24%	0.91%	1.02%	0.45%	-0.29%
bend2allFree	-0.22%	1.63%	10.17%	0.12%	3.24%	0.91%	1.02%	0.76%	0.16%
curve1	0.35%	52.95%	-32.99%	48.84%	90.72%	94.98%	32.69%	94.63%	82.28%
curve2	0.35%	24.56%	161.95%	48.84%	90.72%	94.98%	32.69%	41.73%	33.09%
halfspace	-80.64%	-59.06%	-56.24%	-52.99%	-55.17%	-54.17%	-61.12%	-26.17%	-43.54%

- Certain boundary conditions cannot be accurate.
 - Simulations using boundary conditions that activate only local effects are not super accurate
 - For boundary conditions that activate local and global effects, local effects are a small part of total.

- Certain boundary conditions cannot be accurate.
 - Simulations using boundary conditions that activate only local effects are not super accurate

 For boundary conditions that activate local and global effects, local effects are a small part of total.

Activating local and global effects

Activating local effects only

- All tested topologies can be accurate.
- Mixed Triangle topology Connected vs Disconnected
 - Indistinguishable node points
 - Kumar's method states that it only applies to lattices with one type of node point.
 - He breaks this rule.
 - I reworked his methods "fixing" this.

Indistinguishable

Distinguishable

Mixed Triangle A

Mixed Triangle B

Red and blue nodes are distinct. If beams pass through each other at blue points, blue points are no longer nodes.

22/25

- All tested topologies can be accurate.
- Mixed Triangle topology Connected vs Disconnected
 - Indistinguishable node points
 - Kumar's method states that it only applies to lattices with one type of node point.
 - He breaks this rule.
 - I reworked his methods "fixing" this.
 - My "fix" does not make a clear difference.
 - "Fixed" topologies are labeled new.

	mixedTriAnew	mixedTriAold	mixedTriBnew	mixedTriBold	diamondNew	diamondOld
stretch11	0.10%	2.75%	0.47%	0.48%	0.20%	-0.36%
stretch22	0.10%	2.75%	0.47%	0.48%	0.48%	-0.29%
shear12	-0.19%	1.82%	1.20%	0.03%	-0.11%	-0.55%
shear21	-0.19%	1.82%	1.20%	0.03%	0.11%	-0.56%
shear21hinge	-0.21%	1.77%	1.16%	-0.05%	0.10%	-0.58%
bend1free	0.07%	3.06%	0.85%	0.93%	0.37%	-0.43%
bend2free	0.07%	3.06%	0.85%	0.93%	0.68%	-0.03%
bend1allFree	0.12%	3.24%	0.91%	1.02%	0.45%	-0.29%
bend2allFree	0.12%	3.24%	0.91%	1.02%	0.76%	0.16%
curve1	48.84%	90.72%	94.98%	32.69%	94.63%	82.28%
curve2	48.84%	90.72%	94.98%	32.69%	41.73%	33.09%
halfspace	-52.99%	-55.17%	-54.17%	-61.12%	-26.17%	-43.54%

- Micropolar effects are usually small
 - Quantified in terms of global variables
 - Effects bigger on local variables?
- Micropolar effect size

$$- MPE = \frac{W_{MP} - W_{CL}}{\sqrt{W_{MP}W_{CL}}}$$

- When the micropolar effect is small, the classical model is about as accurate as the micropolar model for global comparisons.
 - Future work: Look more at local variables
- Micropolar effect is much larger for the boundary conditions that are never particularly accurate.

QUESTIONS?

- 41. Why displacement boundary conditions?
- 42. Experimental Methods
- 43. Detailed Derivation of Micropolar Mat'l Properties
- 44. Verification-Perano
- 45. Verification-Tekoğlu

- Lattice structures are relatively flexible
- Loads are applied by connected part assumed relatively rigid.
 - Tweel's boundary condition imposed by ground
 - Test samples boundary condition imposed by rigid steel plate
- Not appropriate for all situations

Experimental Methods

- Test stiffness of multiple cylindrical samples in bending and torsion
- Calculate micropolar properties from difference between experiment and classical behavior.
 - Imprecise measurements quickly mask micropolar behavior
- (Lakes, 91) describes methods for isotropic
 - My work focuses on transverse isotropic
 - I can follow his logic and adapt his methods

Fig. 2 Extraction of elastic constants from size effect data in torsion of a circular cylindrical rod. Rigidity/diameter squared versus diameter squared

Theoretical Graph (Lakes, 91)

Actual Experimental Results (Lakes, 94)

27/25

2017.2.24

- Equivalent energy
- Correct micropolar properties mean
 - lattice energy = continuum energy
 - Equivalent strain fields
 - Requires explicit definition of strain fields
 - Works for indistinguishable node points
 - Material properties from derivatives of strain energy with respect to strain

Perano

- Direct comparison of a lattice and continuum
 - Similar methods to mine
 - His results show higher accuracy than mine
 - Probably due to force controlled boundary conditions
- My results suggest that his choice of simulations might overstate the general accuracy
- Did not explain reasons for error

My most equivalent results

- Compared lattice to continuum with random foams in shear
 - Optimized material properties
 - Limited set of boundary conditions
 - Random foams limited ability to explain reasons for error

- Classical Elasticity shows scaling solutions
 - Changing size of a part changes the size of a stress pattern
- Micropolar elastic solutions have both scaling and non-scaling components.
 - Lame's constants and κ have units of pressure.
 - γ has units of pressure-length
 - Related to non-scaling compontents
- Run a number of simulations with increasing size.
- Figure on next slide looks at the stress patterns in red boxes

