
Michael G. Miller
Research Assistant

Department of Mechanical Engineering,

Clemson University,

Clemson, SC 29634-0921

e-mail: mm3@clemson.edu

Joshua D. Summers1

Professor

Department of Mechanical Engineering,

Clemson University,

Clemson, SC 29634-0921

e-mail: jsummer@clemson.edu

James L. Mathieson
Research Assistant

Department of Mechanical Engineering,

Clemson University,

Clemson, SC 29634-0921

e-mail: jmathie@clemson.edu

Gregory M. Mocko
Associate Professor

Department of Mechanical Engineering,

Clemson University,

Clemson, SC 29634-0921

e-mail: gmocko@clemson.edu

Manufacturing Assembly Time
Estimation Using Structural
Complexity Metric Trained
Artificial Neural Networks
Assembly time estimation is traditionally a time-intensive manual process that requires
detailed geometric and process information, which is often subjective and qualitative in
nature. As a result, assembly time estimation is rarely applied during early design itera-
tions. In this paper, the authors explore the possibility of automating the assembly time
estimation process while reducing the level of design detail required. In this approach,
they train artificial neural networks (ANNs) to estimate the assembly times of vehicle sub-
assemblies using either assembly connectivity or liaison graph properties, respectively,
as input data. The effectiveness of estimation is evaluated based on the distribution of
estimates provided by a population of ANNs trained on the same input data using varying
initial conditions. Results indicate that this method can provide time estimates of an as-
sembly process with 615% error while relying exclusively on the geometric part infor-
mation rather than process instructions. [DOI: 10.1115/1.4025809]
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1 Assembly Time Estimation

With the evolution of the Ford manufacturing system and the
Toyota Production System in the 1950’s, managers focused their
efforts on eliminating waste by emphasizing a streamlining of the
work sequence to reduce the duration of that employees, machines
and materials were idle. This focus became the foundation for
lean manufacturing, which resulted in an emphasis on identifying
and eliminating waste, while increasing production and quality
[1–3]. This trend, which required the standardization of assembly
time estimation procedures in turn led to the development of
many methods for predicting product assembly times [4–7].

Assembly time estimation is the first step in most design-for-
assembly methods, by which designers can predict, with varying
degrees of accuracy, not only how long it takes to assemble a product
but also to compare assembly times between different design solu-
tions [8, 9]. The marked increase in global competition has forced
manufacturing enterprises to compete in terms of quality, cost, and
time to market of their products [10, 11]. Consequently, in order to
operate efficiently and competitively, manufacturers must understand
all the costs they incur with the manufacture of their goods.

It is increasingly apparent elucidating these costs must be achieved
earlier in the design phase. The possibility of influencing a product’s
cost substantially decreases early in the product’s life cycle while the
cost of modifications increases drastically as the project advances.
Thus, although decisions made early in a product’s life cycle signifi-
cantly impact the overall costs of the product, the bulk of such
expenses are incurred upon completion of the design phase as shown
in Fig. 1 [12]. Though nearly 80% of the costs a product incurs
throughout its life cycle occur within the design phase, this phase of
production consumes less than 15% of the budget [8, 12–14].

As a product moves from the design phase to production, more
information about the product and the assembly process becomes
available, which in turn increases in certitude. The availability of

more information, in turn results in more accurate assembly time
estimates. For example, little information is available during con-
ceptual design, often only requirements and conceptual sketches.
As the design process continues, more data is collected, including
information regarding the connectivity of parts to each other.

Previous research has shown that assembly time estimates for
consumer products can be predicted to within 16% of Boothroyd
and Dewhurst assembly time estimates using only information
about the part connectivity of the product [15]. Here, the authors
seek to determine if this approach can be adapted and applied to
the automotive industry as illustrated in Fig. 2. Here, a typical V-
diagram with system level design and requirements are evolved to
the component level with subsequent validation and detailing,
resulting in assembly process planning. Often, the assembly time
estimation is only done late in the process after all the design deci-
sions have been determined, limiting engineers in justifying
design decisions based on assembly time improvements.

Assembly time estimates made at early stages of a product life-
cycle are not expected to be as accurate as that conducted during
production because there is substantially less information avail-
able to analyze. As a result, the estimates sought in this research
are not intended to replace full scale assembly time studies which
occur during production, but to supplement them by providing in-
formation earlier in the product life cycle. Figure 3 illustrates a
typical vehicle development timeline, starting with the solid mod-
els of parts for the vehicle being defined approximately 20 months
before launch, progressing to prelaunch assembly plans where the
work instructions are defined approximately 16 months before
launch, to prototype build nearly 6 months before launch when
final time studies with both assembly fixtures and assembly asso-
ciates are defined. The work presented in this paper addresses the
connectivity assistance where the parts and assemblies are
defined. In a parallel research effort, the authors report on using
the process instruction sets to predict assembly times [16].

1.1 Assembly Time Estimation Methods. In any effort to
develop an assembly time estimation method, a means of assess-
ing the assembly time of a system must be employed. In most tra-
ditional, late-stage assembly time estimation methods this takes
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the form of time studies requiring the direct observation of physi-
cal system assembly processes to a statistically significant replica-
tion count. For the development of an early stage assembly time
estimation method with an acceptable degree of inaccuracy, how-
ever, such exhaustive methods are both impractical and unneces-
sary. Rather existing assembly time estimation methods can be
used to acquire assembly time information which does not vary
significantly from the observed assembly time to skew results. In
this paper, three assembly time estimation methods are discussed:
methods-time measurement (MTM), Boothroyd and Dewhurst
(B&D), and connectivity.

1.1.1 Methods-Time Measurement. Methods-time measure-
ment, MTM, is a predetermined time study system in which oper-
ations are described by MTM “elements” [5, 17]. Though
originally time-consuming, this MTM technique has since evolved

to reduce the time required for analysis, with the first iteration
MTM-2 followed by MTM-3, MOST and MTM-UAS [18].

MTM analysis requires the analysis of each motion of an opera-
tion, which on this level allows the user to easily identify obvious
problems and nonvalue added motions [19]. The predetermined
times associated with specific motions have been determined in
advance by statistical analysis. As an example, MTM-UAS
defines seven basic motions: take and place, place, helper equip-
ment use, running (machine or equipment), motion cycles, body
motions, and visual control [19].

Though an MTM style method is effective and relatively objec-
tive, the application of the method is labor intensive, requiring a
significant amount of time to discretize an operation into its indi-
vidual motions. On the other hand, the objectivity and accuracy of
the method lend MTM and MTM derivatives to application in
industry. The majority of assembly time estimates used as targets
in this research is the result of a custom MTM derivation devel-
oped by an automotive OEM.

1.1.2 Boothroyd and Dewhurst. The Boothroyd and Dewhurst
method examines the difficulties of handling and insertion a part
when assigning an appropriate assembly time. A series of tables is
used to determine an appropriate time for both handling and inser-
tion of each part. The individual times within the tables have been
developed from numerous time studies. The handling and inser-
tion times selected from each set of tables are summed for each of
the parts to determine the estimated assembly time for the prod-
uct. Though beneficial, this time consuming method includes sub-
jective inputs [8, 20]. Additionally, the information required for
this analysis is often only present after the design is complete or
near completion.

For example, to determine a handling time, the user must
decide if the part is easy or difficult to handle as well as the free-
dom of the part to rotate both parallel and perpendicular to its
insertion point [8]. For insertion time, the user must determine if
holding down is required to maintain orientation, if the part is
easy or difficult to align, and if resistance is present when insert-
ing the part. Additionally, users must select if the part and tool
can easily access the desired location, as well as if access is either
obstructed or vision is restricted.

The major deficiencies of both the tabular and software based
Boothroyd and Dewhurst assembly time estimation methods
include the (i) need for significant amounts of information about
both the product and the process and (ii) the number of subjective
inputs required for analysis.

1.1.3 Connectivity Assembly Time Estimation Method. The
connectivity based assembly time estimation technique allows for
the estimation of assembly time relying strictly on part connectiv-
ity information [15, 21]. Though tested only on consumer applian-
ces, it is likely that this method can be expanded to the
automotive manufacturing industry. For example, it may be possi-
ble to extend connectivity based assembly time to an automotive
subassembly and its part connectivity graph (Fig. 4). Detailed
examples of the bipartite graph and tabular representations used
can also be seen in Figs. 5 and 6.

The current connectivity method predicts an assembly time
based on a surrogate function on the properties of the part connec-
tivity graph. This proposed model was developed using a manual
pattern recognition approach, by comparing and combining
regression trends of average path length, the number of elements,
and the path length density plotted against Boothroyd and Dew-
hurst assembly time estimates [15]. Though successful for con-
sumer appliances as compared to Boothroyd and Dewhurst
predicted assembly times, this method has yet to be fully applied
to products in different industries. The method could be fully
objective with further definition of connections and has the poten-
tial to be fully automated.

1.1.4 Summary of Time Estimation Methods. With the excep-
tion of the connectivity method, currently available assembly time

Fig. 3 Typical Vehicle Development Timeline

Fig. 1 Cost engagements and expense occurrences through-
out life cycle [12]

Fig. 2 Automotive manufacturing product life cycle, adapted
from [15]

011005-2 / Vol. 14, MARCH 2014 Transactions of the ASME

Downloaded From: http://asmedl.org/ on 03/12/2015 Terms of Use: http://asme.org/terms



estimation methods rely heavily on information that is not avail-
able until late in the design phase (e.g., required body movements;
difficulty of handling and inserting parts; part size, weight and
stickiness; and required order of connection). This poses a prob-
lem when users need information about assembly times earlier in
the product’s life cycle. For this reason, the authors propose that
assembly time estimation can be obtained using part connectivity
which is available earlier in the product life cycle. Hence, a major
purpose of this research is to perform the analysis using informa-
tion more readily available early in a product’s life cycle. Table 1

summarizes the information required in each of the assembly time
estimation methods discussed thus far. The objective information
(in shaded boxes) is obtained through automated and algorithmic
software, whereas the subjective information requires human
interpretation and judgment.

The connectivity method has shown promise in estimating as-
sembly times for consumer products based on time estimates
derived from Boothroyd and Dewhurst time analysis. The research
presented in this paper addresses the possibility of refining this
method for use in the automotive manufacturing industry.

2 Product Connectivity Information

Information about the part connectivity of a product can be gen-
erated manually by reverse engineering a product or studying 3-D
models and 2-D drawings [10, 22, 23]. Significant research has
also been conducted on the ability to extract part connectivity in-
formation from computer-aided design models [24, 25]. Connec-
tivity may also have various connotations, however.

Fig. 4 Bipartite graph and tabular equivalent of automotive subassembly

Fig. 5 Connectivity graph after first set of assembly tasks

Fig. 6 Tabular view of connectivity graph after one process

Table 1 Questions asked of the designers for existing assem-
bly time estimation techniques

MTM
Boothroyd and

Dewhurst Connectivity

What movements are
necessary to perform
assembly actions?

What order are parts
connected in?

Which parts are con-
nected to each other?

How difficult are parts
to handle?

How difficult are parts
to handle?

How many connec-
tion instances are
present between
parts?

How difficult are parts
to insert?

How difficult are parts
to insert?

Part attributes such as
envelope size, weight,
stickiness, etc.

Part attributes such as
envelope size, weight,
stickiness, etc.
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One such connotation, which used for analysis in the connectiv-
ity method, entails dealing with parts in contact with other parts
and the number of contact points between them [15]. Another
form of part connection information is mating relationships
defined in CAD models. Though related, these two information
types are not identical. Consequently, the authors seek to elucidate
connectivity in terms of physical part connections which may not
have explicit mate conditions defined in the CAD environment. In
that there are many permutations for fully constraining parts in an
assembly, different designers, or even the same designer, may
constrain assemblies differently. For these reasons, we emphasis
the connections of physical parts here rather than the modeling of
mates in CAD, which is reserved for other work [21].

3 Data Collection

To begin the process of evaluating and refining the connectivity
method, the connectivity graphs and associated MTM-based time
estimates for a sample of systems are required. As discussed ear-
lier, there are currently no automated means of generating connec-
tivity information although current research in this field is
ongoing [20, 21, 26]. Therefore, we obtain the connectivity graphs
using a combination of observation of the assembly process, infor-
mal interviews with process associates, and information contained
within CAD models.

Information collected for this analysis originates from the suc-
cessive tasks performed in the assembly of one subassembly area
for one specific vehicle. The assembly tasks are all within the
instrument panel and take place between the attachment of the
first part to a fixture and the completed subassembly’s marriage to
the vehicle.

One observation noted during information collection was that
the graph did not change after the completion of every assembly
task. Though a perceived limitation, it also has obvious advan-
tages. The limiting factor is obvious; the method is incapable of
estimating an assembly time for tasks that do not result in changes
in the connectivity of the parts. However, those tasks not captured
by the connectivity graphs are not truly value added activities.
This finding, which may be the subject of our future research,
may allow for automated connectivity analysis to identify non-
value added activities. Some examples of these tasks types are:

• Place cockpit subassembly broadcast sheet to the AGC with
magnet

• Remove two transport covers from upper flaps of the heater/
aircon low

• Place in the recycle bin

In that these three tasks do not affect the connectivity graph of
the product, an assembly time cannot be estimated for these steps
using an analysis of the connectivity graph.

The first process in the subassembly that changes the connectiv-
ity graph is the attachment of the second part to the base part. The
connectivity graph upon completion of this step is shown in
Fig. 5. This process involves attaching Part B to Part A and secur-
ing with two bolts (bolt A and bolt B) and two screws (screw A
and screw B).

As the process evolves, the connectivity graph continues to
grow in size with the inclusion of more parts to the system and the
incorporation of more connection instances. The properties of the
graph also change with the completion of more assembly proc-
esses. In this paper, the authors attempt to elucidate this trend for
purposes of mapping the properties of connectivity graphs to as-
sembly times. The growth of the connectivity graph is shown in
that tables in Figs. 6 and 7.

Figure 7 shows an increase in graph size after the completion of
the first three assembly processes.

The data collection process continued for each of the nonoption
related tasks associated with the subassembly of the instrument
panel. In total, 24 connectivity graphs and the associated assembly
times for each activity were collected to be used in the analysis.

4 Graph Property Analysis

The original connectivity method proposes that the properties
of product connectivity graphs could be used to estimate assembly
times for a given product [15]. The properties of a bipartite graph,
such that shown in Fig. 4, are the basis for the analysis proposed
here and in the authors’ previous research [27–29]. The graph
properties used here are based on the same as that proposed in the
original assembly time estimation research based on connectivity
[15]. These have been expanded to 29 properties, each falling into
one of four main categories: size, interconnectivity, centrality, and
decomposition.

5 Performance Evaluation of Existing Connectivity

Method

The original connectivity method, designed and mapped to
model assembly times for consumer products, was mapped to con-
nectivity graphs to Boothroyd and Dewhurst assembly time esti-
mates to within 16% [15]. Prior to establishing a new mapping
scheme that can be applied to automotive industry assembly proc-
esses a study was conducted to determine the extent to which the
original method could predict these times. The results of this study
on 24 connectivity graphs show an average error of 26% with a
range in errors between �134% and 352%. The plot of MTM-
based assembly time estimates for these 24 graphs and the original
connectivity estimates are shown in Fig. 8. As the function devel-
oped in the original model is not capable of accurately estimating
assembly times in the automotive industry, the authors propose

Fig. 7 Tabular view of connectivity graph after three
processes

Fig. 8 MTM-based estimates and original connectivity-based
estimates
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exploring other, more complex techniques to develop an appropri-
ate mapping for this application.

6 Artificial Neural Networks

The next step involves mapping the connectivity graph proper-
ties to the MTM-based assembly time estimates. Artificial neural
networks were chosen to explore this relationship due to their
ability to perform nonlinear statistical modeling [30]. Other
machine learning approaches, such as support vector machines
and decision trees are ill-suited to this problem as they primarily
perform a classification or clustering function and therefore do not
provide for a continuous differentiable output. The advantages of
neural networks include requiring less formal statistical training,
the ability to detect complex nonlinear relationships between in-
dependent and dependent variables, the ability to discover all pos-
sible interactions between predictor variables, and the ability to
use multiple training algorithms [30]. Artificial neural network
analysis also has its disadvantages, most notably in its “black
box” nature, the greater computational expense, the tendency to
“over-fit,” and the empirical nature of the model development
[31]. As the purpose of this research entails developing a model
which reliably generalizes between the input graph properties and

the assembly time, thus obviating the need for physical meaning
between them, the black-box nature is acceptable. The issue of
over-fitting is addressed in training by instituting an early stopping
algorithm as well as withholding samples from training entirely to
test generalization on nontraining data. Table 2 summarizes the
results of several studies concerning the applicability and per-
formance of artificial neural networks as compared to other analy-
sis methods. For a more comprehensive assessment of the
literature see Ref. [31].

Two critical factors for this analysis are the inputs and the tar-
gets. The input for the analysis is the vector of graph properties
for each connectivity graph. It should be noted that the connectiv-
ity graph at any time represents all of the connections made up to
that point in time. This includes the execution of all assembly
tasks that are required to make all of the connections present in
the connectivity graph. Therefore, the graph property vector for a
connectivity graph is to be mapped to the total assembly time up
to that point. To determine the time for an isolated assembly step
or steps the estimated assembly time prior to that step must be
subtracted from the total estimated time including the step.

The target for the mapping is the MTM-based assembly time
estimate provided by an automotive OEM. These estimates, the
result of a formal study performed by time study personnel, were
conducted using a company specific adaptation of MTM-UAS.
Again, the aim of the methods proposed here is not to replace the
formal, late-stage time study, but rather to provide an assembly
time estimate much earlier in the product life cycle to enable the
automation of such a method. In that formal time studies come
late in the product life cycle, after production has begun, the
added level of detail and analysis time yields a more accurate esti-
mate. Therefore, the assembly time estimates provided by the
OEM implementation of MTM-UAS are used as target values in
this study.

The process of building the model scheme is shown in more
detail in Fig. 9. The graph property vectors representing 19 con-
nectivity graphs and their associated assembly times are used as
inputs and targets. Graph property vectors for five connectivity
graphs and their associated assembly times are withheld from
training for later validation, however. One hundred simulations
are then performed for each of 189 different ANN architectures,
followed by a probability density function generated for each of
the architectures. The architectures are then evaluated based on
the probability of predicting assembly times to within fifteen per-
cent of the target time. This is calculated by integrating the area
under the probability density plot between the upper and lower
15% bounds. Finally, a combination of the 100 predicted assem-
bly times from the five best performing neural networks is used to
generate a probability density plot. It is expected that the

Table 2 Artificial neural network comparisons in the literature

Application
of ANN

What
ANN was

compared to Conclusions Reference.

Predict dynamic
nonlinear systems

Statistical
Models

ANNs provide sat-
isfactory perform-
ance in
forecasting

[32]

Forecasting Box-Jenkins
automatic
forecasting
expert system

Similar Results [32]

Nonlinear statisti-
cal modeling of
medical outcomes

Logistic
regression

Neural networks
preferred when
primary goal is
outcome
prediction

[31]

Cost estimation of
steel pipe bending

Linear
regression

Neural Network [33]

Prediction of com-
modity prices

Logistic
regression

ANNs are consis-
tently better and
find more turning
points

[34]

Fig. 9 Model building process
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combination of the top performing architectures will enable the
model to more accurately predict assembly times for different ve-
hicle areas.

Once the model is built and tested to understand the degree of
accuracy, it can be used to estimate assembly times. The process
of using the model is illustrated in Fig. 10. Here, a graph property
vector representing a connectivity graph is used as the input to the
model. Then, the model is simulated using the five top-performing
ANN architectures. Finally, a probability density function is gen-
erated using 500 ANN replications (100 from each of the five
architectures). This probability density function can be used to
gain an understanding of the predicted assembly time.

Roughly 20%, or 5 of the 24 graphs, are omitted from training
for external testing, leaving 19 of the 24 data points for use as
inputs and targets for the analysis. The remaining five are used af-
ter the appropriate ANN architectures are selected to determine
the accuracy to which the network was capable of mapping con-
nectivity graphs to MTM-based assembly time estimates.

One hundred and eighty nine different ANN architectures, rang-
ing from a single layer with a single neuron to three layers with
five neurons in each layer, were simulated to identify the most
appropriate for this mapping. Architectures with one layer were
simulated with a neuron count ranging from one to fifteen and
architectures with two layers were simulated with one neuron,
each of which had up to seven neurons in each layer. Finally,
architectures with three layers were simulated with combinations
of up to five neurons. This capping of the number of hidden layer
units at 15, places the hidden unit count between the input unit
count and output unit count, thus promoting generalization of the
output [35].

An ANN will not generate the exact same mapping even when
given the same inputs and outputs due to the different initial con-
ditions in each training instance. The most notable of these varia-
tions is the use of an early stopping validation algorithm, which
withholds a 15% subset of the training data for use in testing that
while training progresses generalization also continues to
improve. Without this measure, the network could be expected to
consistently over-fit to the training data. As the subset of the train-
ing data to be used for early stopping is selected at random, each
architecture is trained for 100 replications of the ANN, enabling
the generation of probability density functions describing the typi-
cal behavior of the 189 ANN architectures. A probability density
plot for an ANN architecture consisting of three layers with five
neurons in the first two layers and one neuron in the third layer
evaluated for one connectivity graph is shown in Fig. 11. An
equivalent plot is generated for all combinations of ANN architec-
tures and connectivity graphs.

The next step entails analyzing where the probability function
lies in relation to the target value and acceptable range of assem-
bly times. Figure 12 shows the probability density plot as well as
the target value and associated 15% range of the target values for

the assembly. The mean predicted value is shown by the red dot-
ted line, while the black dotted line shows the target assembly
time value. Note that the predicted values fall well within the 15%
acceptable range.

Next, the artificial neural network architecture with the highest
probability of estimation to within fifteen percent of the target is
identified for use in future assembly time estimation. This proba-
bility is based on the assembly time estimation for the five

Fig. 10 Process of using the model

Fig. 11 Probability density plot for connectivity graph #5 and
ANN structure 134

Fig. 12 Probability density plot with target value and 15%
range

011005-6 / Vol. 14, MARCH 2014 Transactions of the ASME

Downloaded From: http://asmedl.org/ on 03/12/2015 Terms of Use: http://asme.org/terms



connectivity graphs which are omitted from training. Note that
four of the ANN architectures resulted in probabilities of greater
than one, the result of integration errors in computation. To deter-
mine the probability, the area under the probability density plot
between the upper and lower limits was calculated using trapezoi-
dal approximate integration. Also note that some of the architec-
tures result in a probability of zero, suggesting that none of the
simulated assembly times fall within a 15% range of the target
times.

The most appropriate ANN architecture was determined based
on the data presented in Table 3. Columns two and three represent
the probability that the minimum and mean of the estimation will
be within 15% of the target value for the five validation sets. In
the first column identifying the ANN architecture, it is clear that
each of these have a high probability of estimating the assembly
time to within 15% of the MTM-based assembly time estimate.
Since there is no significant difference for any of the cases
between performance on the predicted mean and minimum, the
ANN architectures with the highest mean probability are selected.
The top ANN architecture consists of three layers with three neu-
rons in the first layer, four in the second, and five neurons in the
third.

7 Results

As previously mentioned, five of the 24 data sets are omitted
from training for validation separate from any validation set gen-
erated by the training algorithm. These data points are used to test
the ability of the selected ANN architecture to generalize new
data. The top network is trained two additional times using the
selected architecture while omitting different sets of five data
points. During the original training and testing, the five largest
connectivity graphs are omitted for later use as test points, for pur-
poses of determining the forward prediction of the model. The
second training omits every fifth data point (when ranked in terms
of connectivity graph size) beginning with the smallest connectiv-
ity graph. The third validation set consists of every fifth connec-
tivity graph starting with the fifth. The second and third validation
sets are used to determine the applicability of the model to a wide
range of graph sizes after training on a representative sample. The
final validation set consists of using a combination of the top per-
forming architectures.

7.1 First Validation Set (Last Five Omitted). The ANN
population is trained using the first 19 data points as inputs and
targets and the top ANN architecture. This network was then
simulated with the input being the graph property vectors of the
final five data points. The results of the ANN validation simula-
tion, shown in Table 4, indicate the estimated time from the
MTM-based time study from the automotive OEM and the esti-
mated time by the ANN model for each data point. The estimate
from the model is the mean output from a population of 100 ANN
replications. The error represents the percentage error of the
model as compared to the formal time study estimate. The final
three columns show the probability of each of the 100 ANN

replications predicting a time to within a specified percentage of
the formal time study estimate, indicating the forward predicting
capability of this model within an area of the vehicle. In other
words, the ANN trained on a set of smaller connectivity graphs
can predict assembly times for graphs larger than those used in
the training.

The results of this validation set show a successful mapping
between the complexity of connectivity graphs and MTM-based
assembly time estimates for a specialized case. This validation,
however, is only applicable to forward prediction of assembly
times within a specific vehicle area, and does not imply any map-
ping of assembly times in other parts of a vehicle. This validation
also does not indicate the model’s ability to predict assembly
times for connectivity graphs that are smaller than the input
graphs or for a range of sizes of connectivity graphs. As such, the
authors performed a second validation, which is discussed in
Sec. 7.2.

7.2 Second Validation Set (Every Fifth Omitted Starting
with Graph 1). The second validation set seeks to explore the
model’s ability to predict assembly times for a wider range of con-
nectivity graph sizes for cases in which the model is trained on a
representative sample of the population. The ANN population for
this case was trained using 19 of the 24 collected data points as
inputs and targets and top performing ANN architecture. This
ANN population was then simulated with the input being the
graph property vectors of every fifth data point, or connectivity
graph, starting with the smallest.

The results of the second neural network validation simulation,
shown in Table 5 using the format established in Table 4, indicate
that the only connectivity graph which was not predicted with an
error of less than 15% was the first. This connectivity graph is the
smallest graph in any of the collected data and is consequently
smaller than the training set. This error, along with the low proba-
bility of estimation to within 10% highlights this procedure’s lack
of ability to predict assembly times for graphs smaller than those
used in the training.

Though the results of the second validation set show great
potential for the deployment of the method, it indicates a weak-
ness in the model’s ability to predict assembly times for graphs
smaller than those present in the network’s training. As a result,
the goal of the third validation set is to determine the model’s
applicability when trained on a representative sample of the popu-
lation with upper and lower bounded data.

Table 3 Evaluation of ANN structure performance

ANN architecture

Minimum probability
of estimation to

within 15% of target

Mean probability
of estimation to

within 15% of target

134-[3,4,5] 0.99991 0.99994
188-[5,5,4] 0.99990 0.99992
153-[4,3,4] 0.99983 0.99990
157-[4,4,3] 0.99983 0.99990
77-[1,3,3] 0.99985 0.99989
32-[3,3] 0.99977 0.99987
170-[5,2,1] 0.99966 0.99986
69-[1,1,5] 0.99970 0.99983

Table 4 Prediction results for first validation set

Probability of prediction within:

Graph MTM (s) ANN (s) Error 10% 5% 1%

20 352.92 350.30 �0.7% 1 1 0.52
21 362.64 370.18 2.1% 1 0.99 0.27
22 366.96 384.45 4.8% 1 0.53 0
23 376.62 386.09 2.5% 1 0.72 0.18
24 392.94 386.94 �1.5% .99 0.58 0.12

Table 5 Prediction results for second validation set

Probability of prediction within:

Graph MTM (s) ANN (s) Error 10% 5% 1%

1 39.3 45.73 16.4% .23 .11 .03
6 187.38 202.29 8.0% 1 0 0
11 226.26 225.10 �0.5% 1 .96 .02
16 318.78 315.40 �1.1% 1 1 .47
21 362.64 372.90 2.8% 1 1 0
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7.3 Third Validation Set (Every Fifth Omitted Starting
With Graph 5). The third validation set omits every fifth graph
in terms of size but starts with graph 5. This validation seeks to
examine the capabilities of the method when trained on a repre-
sentative sample which contains the upper and lower bounded
graph sizes. Here, the graphs omitted for validation are between
the largest and smallest graphs used in the training of the ANN
population.

The results of the third ANN validation set, shown in Table 6 in
a format similar to the previous validation sets, shows that 100%
of the predictions for this validation fall within 25% of the target
value. Similarly, for every graph except graph 5, all simulations
are within 15%.

The third and final validation set demonstrates that an ANN
population can successfully predict assembly times when trained
on a representative sample of the population and when the
extreme data points in terms of graph size are included in the
training.

7.4 Fourth Validation Set (Every Fifth Held Back Starting
with Graph 5) Using Best Five Architectures. In the final vali-
dation set within the instrument panel area of the vehicle a combi-
nation of the top five performing artificial neural networks (134,
188, 153, 157, and 77) is used. An ANN population with equal
members of each of the five architectures is simulated for the test
cases to obtain the analytical results. For each architecture, 100
replications exist within the population, resulting in 500 predicted
times for each test case. Finally, a probability density plot is gen-
erated using the 500 assembly times. Table 7 shows a summary of
the results of the fourth validation set, the results of which are
quite accurate. The mean predicted values for each of the test
points are within 2.5% of the target assembly time, indicating that

the use of a combination of top performing architectures is helpful
in successfully mapping the complexity of connectivity graphs to
assembly times.

Table 8 shows a summary of the validation results, the results
of which within a particular vehicle area are also accurate. The
best results are obtained when the five top-performing neural net-
works are used to simulate the assembly times, however, as shown
in the last column where the maximum error is less than 2.5%t.

8 External Generalization

The results in Sec. 7 show that the capability of the connectivity
method in predicting assembly times when tested on the vehicle
area used for the ANN training. The application of this mapping
to other areas of the vehicle or to nonautomotive assemblies has
yet to be explored, however.

8.1 Application to Vehicle Subsystems. The first question to
be addressed in the external generalization is if the ANN trained
only on the instrument panel is capable of predicting assembly
times for other vehicle parts. The insulating panel will serve as
the other vehicle area for this analysis.

The ANN developed in Sec. 7 was simulated to predict assem-
bly times for the graph property vectors of the insulating panel’s
connectivity graphs, the results of which are shown in Table 9.
The errors in this validation set range from negative 42% to
435%, a lack of consistency indicating the difficulty of using a
model trained on one specific vehicle area to estimate assembly
times for another.

The results shown in Table 9 elucidated the second question
which the authors used to determine if a neural network trained on
complexity vectors and times from multiple vehicle areas can pro-
duce accurate estimates for the different vehicle areas. An ANN
population 7 is trained on the instrument panel as performed in
Sec. 7 and three of the eight connectivity graphs collected from
the insulating panel.

The results of this analysis, presented in Table 10, clearly show
the possibility of determining with some degree of accuracy, as-
sembly times for multiple vehicle areas. The results are not as
accurate as those within the same vehicle area as the training set,
however. This lower level of accuracy is likely because a much
larger number of instrument panel processes was used than insu-
lating panel processes.

Since the training set now includes data from the insulating
panel, the accuracy of the estimation of instrument panel assembly

Table 6 Prediction results for third validation set

Probability of prediction to within:

Graph MTM (s) ANN (s) Error 25% 15% 10% 5% 1%

5 138.24 122.67 �11.3% 1 0.67 0.44 0.22 0.04
10 223.20 228.28 2.3% 1 1 1 0.95 0.29
15 311.04 311.43 0.1% 1 1 1 1 0.98
20 352.92 351.65 �0.4% 1 1 1 1 1
24 392.94 408.98 4.1% 1 1 1 0.66 0

Table 7 Prediction results for fourth validation set

Probability of prediction to within:

Graph MTM (s) ANN (s) Error 10% 5% 1%

5 138.24 138.15 �0.1% 0.51 0.08 0.02
10 223.20 223.20 0.9% 1 1 0.37
15 311.04 311.04 1.1% 1 1 0.46
20 352.92 352.92 �0.3% 1 0.94 0.94
24 392.94 392.94 �2.2% 1 0.81 0.01

Table 8 Summary of validation results

Test
Last

5 graphs
Every 5th graph,
starting with #1

Every 5th graph,
starting with #5

Every 5th graph,
best 5 architectures

1 �0.7% 16.4% �11.3% �0.1%
2 2.1% 8.0% 2.3% 0.9%
3 4.8% �0.5% 0.1% 1.1%
4 2.5% �1.1% �0.4% �0.3%
5 �1.5% 2.8% 4.1% �2.2%

Table 9 External generalization results

Graph MTM [s] ANN [s] % Error

1 20 69 231
2 27 15 �42
3 30 34 15
4 34 184 435
5 47 181 284
6 60 201 235
7 80 259 223
8 95 301 214

Table 10 Connectivity results for insulating panel assembly

Graph MTM [s] ANN [s] % Error

2 27.18 47.67 75%
4 34.56 97.97 183%
5 47.34 84.52 79%
7 80.28 54.66 �32%
8 95.94 67.12 �30%
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times may have been reduced. The assembly time estimation for
the instrument panel processes both before and after the addition
of insulating panel processes are presented in Table 11. When the
ANN population is trained on insulating and instrument panel
assemblies, the accuracy of the assembly time estimates for the
instrument panel is not decreased. This stasis may suggest that a
higher number of processes used in the neural network results in a
greater accuracy in assembly time prediction regardless of the ve-
hicle areas analyzed.

8.2 Application to Consumer Products. The next step
involves determining the applicability of the newly developed
ANN model to assembly time estimation outside of automotive
assembly processes. The original connectivity training was devel-
oped for use on consumer product assemblies [15]. To determine
the new model’s ability to predict assembly times for consumer
products, the model is tested on three products used in the initial
connectivity research including a mixer, a chopper, and a
TweelTM prototype.

The results of this analysis, presented in Table 12, clearly indi-
cate the necessity of training the model on data specific to the
application for which it is used. Furthermore, it is likely that dif-
ferent automotive OEMs must train the model specifically for
application in the respective company.

9 Conclusions and Future Work

The authors explored the possibility of creating an automatable,
early stage assembly time estimation model based on part connec-
tivity for the automotive industry. Though the existing regression
based assembly time estimation methods using connectivity infor-
mation were not extendable to automotive assemblies, an artificial
neural network mapping approach incorporating populations of
ANNs was proposed and evaluated. Subsequent evaluation indi-
cated the suitability of this ANN approach in predicting assembly
times for intermediate steps when trained on a representative sam-
ple with upper and lower bounds, suggesting its possible use as an
accelerating supplement for formal time studies. This ANN
approach also performed moderately in predicting the assembly
time of steps beyond the upper bound, indicative progress towards
creating an automated early stage assembly time estimation tool.

The authors recommend that a model used for assembly time
estimation be trained on a set of graph property vectors represent-
ing the upper and lower bounded connectivity graphs and a repre-
sentative sample of intermediate graphs. Additionally, a
population of at least five of the top performing network architec-
tures should be used to generate a probability density plot repre-
senting the estimated assembly time. Predictions generated from
this model are only applicable to vehicle areas on which it has

been trained and is not viable for direct use in other industries.
The authors further hypothesized that the company-specific nature
of the model would prevent its use across automotive OEMs.

Research results also indicate that a higher number of training
data points representing a sample of each of the vehicle areas may
result in a model that can accurately predict assembly times for all
vehicle areas. The development of such a model will require sig-
nificantly more effort due to the large number of samples required,
however. There is as yet no definite rule does for sample sizes; the
size of the training set depends on the network structure, training
method, and the complexity of the problem [31]. It is possible,
however, that the result would be a product-based assembly time
estimation model capable of providing accurate results early in
the automotive product life cycle.
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