Direct observation of 90° domain switching in lead zirconate titanate thick films using x-ray diffraction

Satoko Osone; Yoshiro Shimojo; Kyle Brinkman; Takashi Iijima; Keisuke Saito

https://doi.org/10.1063/1.2752104

Articles You May Be Interested In

Double-peak switching current in soft ferroelectric lead zirconate titanate

J. Appl. Phys. (August 2007)

Grain size effect on the switching current in soft ferroelectric lead zirconate titanate

J. Appl. Phys. (November 2007)

A high energy synchrotron x-ray study of crystallographic texture and lattice strain in soft lead zirconate titanate ceramics

Direct observation of 90° domain switching in lead zirconate titanate thick films using x-ray diffraction

Satoko Osone, Yoshiro Shimodo, Kyle Brinkman, and Takashi Iijima
National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, Tsukuba 305-8565, Japan

Keisuke Saito
Burke AXS K.K., Moriya 3-9, Kanagawa, Yokohama, Kanagawa 221-0022, Japan

(Received 28 March 2007; accepted 2 June 2007; published online 26 June 2007)

Using an x-ray diffraction with reciprocal space mapping, 90° domain switching in tetragonal lead zirconate titanate (PZT) thick films under an applied field was studied. An increase in the c-axis lattice constant and a decrease in the a-axis lattice constant due to the piezoelectric effect and switching from a domain to c domain (90° domain switching) were observed under an applied field. The contribution from 90° domain switching to the total strain was estimated to be 60%–100%, which is almost the same as that for bulk PZT. High value is consistent with the intrinsic nonlinearity in a tetragonal film. © 2007 American Institute of Physics. [DOI: 10.1063/1.2752104]

Ferroelectric films are widely studied because of their high potential applicability in piezoelectric actuators, micro-mirrors, optical waveguides, ferroelectric random access memories, infrared sensors, and resonators. Lead zirconate titanate (PZT) is the leading ferroelectric material due to its high Curie temperature and high piezoelectric constant of $d_{33} \approx 223 \text{ pm/V}$ at the morphotropic phase boundary for the bulk PZT. However, thin films with a thickness of several hundred nanometers often exhibit low $d_{33} \approx 50 \text{ pm/V}$. Therefore, there is an increased interest in thick films of thickness in microns that have a $d_{33}$ value comparable with bulk PZT. There is a high demand for thick films for applications and the study of piezoelectric properties is a requirement for thick films.

Piezoelectric properties comprise the intrinsic effect of piezoelectricity and the extrinsic effect of 90° domain switching in tetragonal films. The 90° and 180° domain switchings have been indirectly observed with the temperature dependence of the dielectric constant and a decrease in the c-axis lattice constant due to the piezoelectric effect and switching from a domain to c domain (90° domain switching) were observed under an applied field. The 90° domain switching to the total strain was estimated to be 60%–100%, which is almost the same as that for bulk PZT. High value is consistent with the intrinsic nonlinearity in a tetragonal film.
When an XRD spectrum of the initial state was fitted with a reciprocal space mapping peak intensities for a switching from c axis. When an electric field of 120 kV/cm was applied, the confidence level statistical error from the model fit. The changes in the lattice constants for a axis and c axis were calculated from the peak shifts of (200) and (002), as shown in Fig. 3. A 68% confidence level statistical error is observed in the model fit. When an electric field was applied, the lattice constant of a axis decreased and that of c axis increased.

There are two types of strains: one from 90° domain switching and the other from piezoelectricity. Here, the strain from 90° domain switching is calculated with a c-domain volume ratio deduced from (200)/(002). The (111) does not contribute to a strain by 90° domain switching because 90° domain wall has the same projection along the applied field. The schematic view of the strain from 90° domain switching is shown in Fig. 4. The initial state, the state under an electric field, and the state in which the electric field is removed are denoted by A, B, and C, respectively. These symbols correspond to those shown in Fig. 2. At first, when an electric field was applied to the initial state (A → B), a strain from the initial state S(B − A) was calculated. Next, when the electric field was removed (B → C), a strain from the initial state S(C − A) was calculated. The subtraction of these two strains S(B − A) − S(C − A) was obtained as the strain at which the on-off cycle of the electric field was repeated (B ↔ C). We have used the idea of the average length of the lattice in the voltage was removed, the switched c domain did not return to the initial state and the c-domain volume ratio became 39.1% ± 0.4%. When the applied field was less than the coercive field, \( E_c = 67.5 \text{ kV/cm} \), there was no significant increase in the c-domain volume ratio, as shown in Fig. 2. This result is consistent with the domain switching theory. The changes in the lattice constants for a axis and c axis were calculated from the peak shifts of (200) and (002), as shown in Fig. 3. A 68% confidence level statistical error is observed in the model fit. When an electric field was applied, the lattice constant of a axis decreased and that of c axis increased.

The XRD spectrum obtained by the conventional \( \theta-2\theta \) scans from 20° to 50° is shown in Fig. 1. The PZT thick film is entirely randomly oriented. The integrated XRD spectrum with \( \psi \) obtained by reciprocal space mapping for (200) and (002) is also shown in Fig. 1. The peaks for (200) and (002) can be distinguished. A decrease in the peak intensity of (200) and an increase in the peak intensity of (002) under an applied voltage are observed in Fig. 1. This demonstrates 90° domain switching from a domain to c domain. The shift in the (200) peak to a higher diffraction angle on application of a voltage can also be observed in Fig. 1. A decrease in the lattice constant of a axis can be attributed to the piezoelectric effect.

Cu K\( \alpha_1 \) and K\( \alpha_2 \) were used as x-ray source in the detector. For each of the peaks of both (200) and (002), two functions were used as K\( \alpha_1 \) and K\( \alpha_2 \). These functions were connected with intensity and diffraction angle. Peaks of (200) and (002) were simultaneously fitted with four functions. When an XRD spectrum of the initial state was fitted with a Gaussian function, \( X^2/\text{degree of freedom} \) (DOF) was 3.61. When this spectrum was fitted with a PsdVoigt2 function, which is defined in the analysis tool origin, \( X^2/\text{DOF} \) was 1.27. When the spectrum was fitted with a PsdVoigt1 function, \( X^2/\text{DOF} \) improved as 1.15. Therefore, a PsdVoigt1 function was used.

The intensity of the peak exhibits a multiplicity of four for a axis and two for c axis. Considering this, the volumes of the a domain \( V_a \) and c domain \( V_c \), which removed the multiplicity were calculated. The c-domain volume ratio \( V_c/(V_a + V_c) \) is given by \( 2I_c/(I_a + 2I_c) \). Here, \( I_a \) and \( I_c \) are the peak intensities for a axis and c axis, respectively. The c-domain volume ratio is shown in Fig. 2. The error is a 68% confidence level statistical error from the model fit. The c-domain volume ratio at the initial state was 36.3% ± 0.4%. When an electric field of 120 kV/cm was applied, the c-domain volume ratio increased up to 42.7% ± 0.4% due to the switching from a domain to c domain. When the applied

![FIG. 1. XRD spectrum from 20° to 50° taken by conventional \( \theta-2\theta \) scans (outer figure) and integrated XRD for (200) and (002) with \( \psi \) taken by reciprocal space mapping (inner figure).](image)

![FIG. 2. c-domain volume ratio with the electric field \( E \).](image)

![FIG. 3. Lattice constants of a axis and c axis with electric field. The lattice constant of a axis is 3.96 Å and that of c axis is 4.13 Å for the bulk PZT.](image)
The lattice at the initial state domain and $c_A$ follows:

The average lattice constant from the initial state is given as

$$L(A) = (1 - V(A))a(A) + V(A)c(A).$$

Here, $a(A)$ and $c(A)$ are the lattice constants of $a$ axis and $c$ axis at the initial state, respectively, and $V(A)$ is the $c$-domain volume ratio at the initial state. When an electric field is applied, the change in the average length of lattice from the initial state upon the removal of the electric field. However, the electric field is removed, the change in the average lattice constant constant of $a$ axis and $c$ axis are expected to return to the initial state upon the removal of the electric field. However, it did not and this requires further study. The total strain was measured by an atomic force microscope (AFM) or laser displacement, and the total strain versus the calculated strain from $90^\circ$ domain switching were compared. When a dc electric field of 120 kV/cm was applied to a 5 μm thick Pb(Zr$_{0.52}$Ti$_{0.48}$)$_3$O$_3$, a strain of 0.15% ± 0.00% was measured using laser displacement for the film with an electrode with dimensions of $9 \times 9$ mm$^2$ and a strain of 0.08% ± 0.00% was measured by the AFM for a film with an electrode of 20 μm diameter. Poling was performed for 2 min before the measurement. Errors are introduced by different electrodes of the same film. The contributions of domain switching to the total strain were estimated to be 60% and 100%. The correspondence value for Pb(Zr$_{0.52}$Ti$_{0.48}$)$_3$O$_3$ bulk was 68% from an indirect observation of the $90^\circ$ domain switching at room temperature. The high value obtained for the thick film is almost the same as that for bulk PZT. In addition, this high value for thick film is consistent with the suppression of piezoelectricity by intrinsic nonlinearity in tetragonal films.

---