3D Printing Enabled Highly Scalable Tubular Protonic Ceramic Fuel Cells

Minda Zou, Jacob Conrad, Bridget Sheridan, Jiawei Zhang,* Hua Huang, Shenglong Mu, Tianyi Zhou, Zeyu Zhao, Kyle S. Brinkman, Hai Xiao, Fei Peng, and Jianhua Tong*

Cite This: ACS Energy Lett. 2023, 8, 3545−3551

ABSTRACT: Protonic ceramic fuel cells (PCFCs) are clean and efficient power generation devices operating at intermediate temperatures. However, manufacturing difficulties have limited their commercialization, especially for promising tubular PCFCs. Herein, we report a cost-effective 3D printing technique for manufacturing large-area tubular PCFCs (e.g., 15.7 cm²), featured with the use of commercial raw materials, a small amount of binder, and a CO₂ laser for rapid in situ drying. The technical advantages enable low-cost material preparation and efficient achievement of exemplary shape/dimension-controlled uniform microstructures in porous anode support, dense electrolyte, and porous cathode. The 3D-printed tubular PCFC (~12.5 cm²) exhibits a power output of 2.45 W at 650 °C. Meanwhile, the long-term stability is confirmed during 200 h of operation. This novel 3D printing offers great potential to advance PCFCs from the laboratory to larger scales for realistic applications.

To build a low-carbon modern society, it is imperative to develop renewable energy devices that directly utilize clean and sustainable energy sources rather than pollution-intensive fossil fuels, such as coal and petroleum. Over the past decade, protonic ceramic fuel cells (PCFCs) have been leading energy devices in light of their high efficiency and low emissions for direct conversion of various renewable fuels, including H₂, hydrocarbons, ammonia, and alcohols, into electric power at intermediate temperatures (400 to 700 °C).¹,² To date, impressive progress has been achieved in discovering novel component materials, tuning their chemical performances and durability for PCFCs’ applications. However, several prevailing challenges limit the scaleup with desirable microstructures and decent electrochemical performance and durability.³,⁴ Nevertheless, these achievements are substantially limited to the laboratory scale and have not been broadly commercialized.

Generally, the typical geometries of PCFCs can be divided into two categories: planar and tubular types. The planar type is popular in laboratory tests due to the advantages of cheap material preparation and efficient achievement of exemplary shape/dimension-controlled uniform microstructures and superior scalability.⁵ However, several prevailing challenges limit the scaleup and stacking of planar PCFCs, such as poor thermal stress tolerance,⁶ unsatisfactory brittleness, and sealing issues.⁷,⁸ Alternatively, tubular PCFCs are appealing candidates with great potential for commercialization. First, tubular geometry can help diminish thermal—chemical expansion effects and the rising stress concentration. Therefore, fast startup/shutdown and better thermal cycling stability can be realized.⁹ Second, the high-temperature sealing issue can be mitigated by putting the sealing parts outside the high-temperature heating region.¹⁰,¹¹ Third, tubular geometry can offer greater mechanical strength than planar geometry with the same thickness so that portable characteristics and higher volumetric power densities can be achieved.¹²,¹³ So far, several techniques have been utilized for manufacturing tubular supports of PCFCs, such as extrusion,¹⁴−¹⁷ dip coating,¹⁸−²⁰ slip casting,¹¹,²¹−²³ and phase inversion.²⁴−²⁹ Nonetheless, these techniques encounter a dilemma in scaling up with desirable microstructures and decent electrochemical performances and durability for PCFCs’ applications. For example, the extrusion method can only produce simple symmetric geometries, and there is a shape-keeping issue during the drying process, bringing about reduced dimensional uniformity.³⁰ The dip coating technique needs to be improved with the problems of inconsistent coating thickness and erratic edge coverage. To utilize slip casting, uniquely designed and fabricated molds are needed, which increase the cost. Meanwhile, phase inversion process manufactured tubes usually have poor mechanical strength because of the highly

Access Metrics & More | Article Recommendations | Supporting Information

Received: July 5, 2023
Accepted: July 25, 2023
Published: July 28, 2023
anisotropic structure, tending to result in cell failure during their operation. Hence, more applicable techniques capable of precise, reproducible, and customized manufacturing for large multilayered tubular cell structures are urgently required to be developed for PCFCs.

Additive manufacturing, also termed 3D printing (3DP), is a promising technique that offers significant opportunities in fabricating solid oxide fuel cells (SOFCs) due to the advantages of robotization, flexible customization, high accuracy, and high reproducibility. In the past decade, great efforts have been devoted to manufacturing the components of planar oxygen-ion conducting solid oxide fuel cells (O-SOFCs) via 3DP, such as inkjet printing, aerosol jet printing, digital light processing—stereolithography, binder jetting, and fused filament fabrication. Recently, Huang et al. reported 3D-printed microtubular O-SOFCs with high performance and excellent long-term durability. Notably, we directly used commercial raw materials (i.e., metal oxides, carbonates, and organics) to prepare the paste. It can effectively reduce manufacturing costs compared to other 3D printing techniques. In comparison, inkjet printing and aerosol jet printing require ultrafine powders (submicrometer size) and low solid contents to prepare printable low-viscosity inks, leading to an increased cost; digital light processing—stereolithography needs expensive and special photosensitive resin in the slurry as well as lengthy debinding (hours to days). Furthermore, during the conventional methods (extrusion, dip coating, and phase inversion) and fused filament fabrication, a high amount of binder (e.g., mass ratios of binder/ceramics are 10–25 wt %) is usually required, which may cause severe deformation issues during the postdrying/sintering processes. In our case, the binder content (e.g., hydroxypropyl methylcellulose) in the paste is only 0.31 wt %, ensuring the feasible viscosity for printing and mitigating the deformation issues. Moreover, to further achieve good shape retainability of the anode and ensure good adhesion between printed layers without requiring high paste viscosity, a CO$_2$ laser was used for rapid in situ drying of the printed green body after printing each layer of the anode support. As such, we can achieve higher printing accuracy, especially when compared with binder jet printing, which tends to have poor accuracies and surface finishes. Third, after obtaining the tubular anode support via alternating printing and laser drying processes, spray coating was used for printing the thin

Figure 1 represents the manufacturing process of a complete tubular PCFC via 3DP. An entire single cell, including tubular anode support, electrolyte thin film, and cathode thin film, was successively printed via digital microextrusion and spray coating in our 3D printer. First, the anode paste, prepared by mixing the anode precursor powder, dispersant, deionized water, and binder, was fed to the microextruder through a plastic syringe. Second, the microextruder printed the anode paste on the printing platform with precise moving speed, dispensing, and trajectory following the sliced patterns from imported tubular 3D models on our house-made software. Microextrusion was used to print the tubular anode support because it can efficiently build bulk support, and offer far higher printing productivity than inkjet printing and aerosol jet printing techniques. Notably, we directly used commercial raw materials (i.e., metal oxides, carbonates, and organics) to prepare the paste. It can effectively reduce manufacturing costs compared to other 3D printing techniques. In comparison, inkjet printing and aerosol jet printing require ultrafine powders (submicrometer size) and low solid contents to prepare printable low-viscosity inks, leading to an increased cost; digital light processing—stereolithography needs expensive and special photosensitive resin in the slurry as well as lengthy debinding (hours to days). Furthermore, during the conventional methods (extrusion, dip coating, and phase inversion) and fused filament fabrication, a high amount of binder (e.g., mass ratios of binder/ceramics are 10–25 wt %) is usually required, which may cause severe deformation issues during the postdrying/sintering processes. In our case, the binder content (e.g., hydroxypropyl methylcellulose) in the paste is only 0.31 wt %, ensuring the feasible viscosity for printing and mitigating the deformation issues. Moreover, to further achieve good shape retainability of the anode and ensure good adhesion between printed layers without requiring high paste viscosity, a CO$_2$ laser was used for rapid in situ drying of the printed green body after printing each layer of the anode support. As such, we can achieve higher printing accuracy, especially when compared with binder jet printing, which tends to have poor accuracies and surface finishes. Third, after obtaining the tubular anode support via alternating printing and laser drying processes, spray coating was used for printing the thin
electrolyte, which allows for accurate control of the thickness in the micrometer scale. Again, we still used pristine materials with no specific phase-formation process. The tube was rotated on a motor during the spray coating to ensure a homogeneous and efficient coating of the large-area thin films. Subsequently, the obtained half-cells were cofired through a cost-effective solid-state reactive sintering method without prefiring the green anode to provide adequate mechanical strength for the following processing. Finally, the cathode thin green film was printed with a spray coating process similar to that of the electrolyte, followed by annealing in an external furnace to obtain single cells.

Figure 1b shows a large-scale uniform green anode tube with a cone-shaped end possessing an outer diameter of ∼13.5 mm and a height of ∼7.3 cm. After sintering, the half-cell retained the uniform tubular geometry, and the diameter decreased by ∼18.5% to ∼11 mm. The completed tubular PCFC has a uniform cathode thin film with a large effective area of ∼12.5 cm². The results indicate that the common dimensional errors observed in conventional extrusion methods from deformation...
or cracks during processing can be readily avoided in the 3DP technique. In addition, precise control and reproducibility of electrolyte thickness were demonstrated with eight half-cells as shown in Figures S3 and S4, respectively. These advantages of our 3DP approach could enable the cost-effective manufacturing of scalable tubular PCFCs with precise and flexible geometry control.

Figure 2 shows the cross-sectional microstructure of the large-scale tubular PCFC with a 12.5 cm² effective area after testing. In Figure 2a, the cell has an anode support electrolyte cathode sandwich structure, where the anode, electrolyte, and cathode thickness are 1 mm, ~12 µm, and ~11 µm, respectively. The porous anode support, BaCe₀.₇Zr₀.₃Y₀.₁O₂−δ (BCZY27)−Ni, reveals a homogeneous and defect-free microstructure with a pore size of several microns, as shown in Figure 2a,b. This microstructure facilitates gas diffusion in the anode and has good mechanical strength. The as-printed BCZY27 electrolyte is uniform and dense without visible pinholes or cracks. It adheres well to the porous electrodes with no delamination, as shown in Figure 2c. Figure 2d shows a uniform cathode, BaCo₀.₅9Ni₀.₄₁O₂−δ (BCZY0.1), with fine porosity and nanosized grains, contributing to rapid gas transport and lots of triple-phase boundary sites, thus leading to an excellent electrochemical performance. X-ray diffraction measurements verified the electrolyte's and electrodes' phase structures (Figure S5). Therefore, the as-expected phase structures, compositions, and microstructures can be accurately controlled by the 3DP.

The as-fabricated single tubular PCFCs demonstrate encouraging electrochemical performances under a hydrogen/air gradient from 650 to 400 °C. We first took an example of a single tubular PCFC with an effective area of 3.0 cm². Figure 3a shows the corresponding current–voltage (I–V) curves. The tubular cell's open-circuit voltages (OCVs) were 1.028, 1.072, 1.105, and 1.135 V at 650, 600, 550, and 500 °C, respectively. These OCVs are close to the theoretical values, indicating that electronic leakage in the electrolyte is negligible and that the printed electrolyte is free of cracks and pinholes, achieving high gas tightness. The single tubular cell yielded maximum power densities (MPDs) of 375, 281, 218, and 164 mW cm⁻² at 650, 600, 550, and 500 °C, respectively. These MPDs are comparable with reported results on tubular PCFCs fabricated by the conventional methods, for example, extrusion (312 mW cm⁻² with an effective area of 2.07 cm² at 600 °C), slip casting (170 mW cm⁻² with an effective area of 1.79 cm² at 600 °C), and phase inversion (260 mW cm⁻² with an effective area of 0.65 cm² at 600 °C) methods. Although some single tubular cells showed slightly higher MPDs, their effective areas were below 2.5 cm². This tubular PCFC, however, needs to be further optimized (electrode and electrolyte materials) before it can compete with these systems.

To assess the impact of resistance on the power densities, electrochemical impedance spectroscopy (EIS) measurement was performed under OCV conditions at 400–650 °C. The ohmic resistance can be obtained from the high-frequency intersection of the EIS arc on the real axis, which is related to charge conduction in the electrolyte and the contact between the electrolyte and electrodes; in contrast, the polarization resistance determined from the width of the intercepts on the real axis is associated with the electrode reactions. The areasppecific polarization resistances (ASRₚ) and ohmic resistances (ASRₒ) at 400–650 °C were obtained from the fitting of the EIS curves (Figures 3b and S6a) by Zview software. The ohmic resistance decreases from 1.09 to 0.56 Ω cm², while the polarization resistance reduces from 0.15 to 0.05 Ω cm² when increasing the temperature from 550 to 650 °C. They were then presented as Arrhenius plots in Figure 3c. The activation energy of ASRₚ and ASRₒ is ~0.95 and ~0.30 eV, respectively, consistent with previously reported results on similar electrolytes and electrodes. To gain further understanding of the reaction mechanism, the distribution of the relaxation time (DRT) technique was utilized to deconvolute the impedance response (Figure S6c). The DRT plot can be separated into three distinct frequency sections: high frequency (>10⁷ Hz), intermediate frequency (10⁶–10⁸ Hz), and low frequency (10⁻²–10 Hz), which is consistent with the reports on PCFCs. The high-, intermediate-, and low-frequency peaks correspond to the ion transfer across the electrolyte/electrode interface, surface exchange or ion transfer at the electrode bulk, and mass transfer in the electrode, respectively. Table S1 summarized the ASRs of tubular PCFCs fabricated by different methods at 650 °C. The ASRₒ of our 3D-printed tubular PCFC is far smaller than many reports on tubular PCFCs, even those achieving very high MPDs via phase inversion methods (0.11 Ω cm² at 650 °C). The low ASRₒ is attributed to the uniform porous microstructure of the electrodes and the nanoscale grain size in the BCZY0.1 cathode thin film, which could facilitate the gas diffusion in the electrodes and remarkably expand TPB sites for the cathode reaction. Generally, the tubular cell shows high ohmic losses due to the geometrical configuration of the current collectors, which reduces the overall performance. For the as-fabricated single tubular PCFCs, the ASRₒ values (0.56 Ω cm² at 650 °C for the 3.0 cm² tube, 0.63 Ω cm² at 650 °C for the 12.5 cm² tube) are comparable with those prepared by conventional methods (e.g., 0.94 Ω cm² at 650 °C for a 2.07 cm² tube via extrusion; 0.59 Ω cm² at 650 °C for a 1.6 cm² tube via slip casting; 0.27 Ω cm² at 650 °C for a 1 cm² tube via phase inversion). Although we used BCZY27 as the electrolyte. Generally, BCZY27 possesses much lower conductivity (~21 mS/cm under wet oxygen at 650 °C) than BaCe₀.₇Zr₀.₃Y₀.₁O₂−δ (BCZY0.1Yb) (~38 to 70 mS/cm under wet oxygen at 650 °C). However, BCZY27 has far better chemical stability against CO₂ and steam-rich environments. These results again highlight the excellent manufacturing ability of the 3DP technique in producing tubular PCFCs. On the other hand, the power densities of the 3D-printed tubular PCFCs could be further enhanced by utilizing electrolyte materials with higher ionic conductivities to alleviate the dominating ohmic losses.

In addition to the high ohmic losses deteriorating the overall electrocatalytic performances, the large cell size would introduce many other challenges, such as difficulty in achieving homogeneous microstructures, the elongated path of the current collection, and higher risk of exhibiting cracks/delamination. Due to these effects, relatively small-sized (<2.5 cm²) tubular PCFCs fabricated via conventional methods are often reported. In sharp contrast, this work demonstrates promising power output in large-scale single cells with an effective area of up to 12.5 cm². As shown in Figure 3d, the single tubular PCFC with an effective area of 12.5 cm² can achieve a power output as high as 2.45 W at 650 °C, the highest reported value among its counterparts in Table S2. In addition, much higher power densities (~197 mW cm⁻² at 650 °C, as shown in Figure S7) were achieved, compared with the tubular PCFCs (~78 mW cm⁻² with an effective area of 7.5
cm² at 700 °C) obtained via an extrusion method using the same BCZY27 electrolyte material. These results imply that our 3DP-printed single cells are uniform, mechanically robust, and highly scalable, all of which are difficult to realize by conventional methods.

To assess the long-term stability of the manufactured tubular PCFCs, we tested the single cell under a current of 200 mA cm⁻² for 200 h at 650 °C, as shown in Figure 4. During the first 15 h of operation, the power density and cell terminal voltage showed a negligible degradation rate of 0.00039 V h⁻¹, consistent with the reported work on tubular PCFCs. In addition, the cell maintained a desirable microstructure after the long-term test (Figure S9). The anode–electrolyte and electrolyte–cathode interfaces have no delamination or cracks. Moreover, the electrolyte exhibits excellent uniformity and is intact without any pinholes or cracks. The cathode thin film maintains the homogeneous nanoscale microstructure. These results demonstrate that printed tubular PCFCs show good long-term stability and are promising for practical applications.

In summary, we reported a facile and cost-effective 3DP technique for manufacturing scalable tubular PCFCs. The as-fabricated single tubular PCFC showed a well-controlled microstructure consisting of tubular BCZY27–NiO anode support, dense BCZY27 electrolyte thin film, and porous BCFZY0.1 cathode thin film. Although they possess larger active areas, their exhibited area-specific resistances are comparable to those of tubular PCFCs fabricated via state-of-the-art conventional methods. A high total power of 2.45 W was achieved in a large-scale (~12.5 cm²) single cell at 650 °C under a hydrogen/air gradient. This study suggested that the 3DP technique can manufacture PCFCs with high-power output and long life spans, ushering in new possibilities for commercializing scalable tubular PCFCs.

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsenergylett.3c01345. Experimental details and supplementary figures, including 3D printing system, fuel cell testing setup, crystallization phase structure, cell microstructure, and electrochemical performance (PDF)

Author Information

Corresponding Authors

Jiawei Zhang — Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States; orcid.org/0000-0001-9635-154X; Email: jiawei4@clemson.edu

Jianhua Tong — Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States; orcid.org/0000-0002-0684-1658; Email: jianhut@clemson.edu

Authors

Minda Zou — Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States

Jacob Conrad — Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States

Bridget Sheridan — Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States

Hua Huang — Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States

Shenglong Mu — Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States

Tianyi Zhou — Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States

Zeyu Zhao — Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States

Kyle S. Brinkman — Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States; orcid.org/0000-0002-2219-1253

Hai Xiao — Department of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina 29634, United States

Fei Peng — Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States; orcid.org/0000-0002-3924-9028

Complete contact information is available at: https://pubs.acs.org/10.1021/acsenergylett.3c01345

Author Contributions

M. Z., J. Z., and J. T. conceived of the experimental study and wrote the manuscript. M. Z. and J. Z. executed the experiments and did the data analysis. J. C., B. S., H. H., S. M., T. Z., and Z. Z. assisted in the preparation of the precursor powders, pastes,
and thin film coating. K. S. B., H. X., and F. P. provided technical support and scientific discussion. All authors discussed the results and commented on the manuscript.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
This material is based upon work supported by the US Department of Energy’s Office of Fossil Energy and Carbon Management (FECM) Award Number DE-FEE001871. This work was partly supported by the National Aeronautics and Space Administration (NASA) under Grant #80NSSC20M0233 (NASA).

REFERENCES

(15) Min, S. H.; Song, R. H.; Lee, J. G.; Park, M. G.; Ryu, K. H.; Jeon, Y. K.; Shul, Y. G. Fabrication of Anode–supported Tubular Ba(Zr0.1Ce0.9Y2O3−δ). *Ceram. Int. 2014*, 40 (1), 1513–1518.

Cells with a PrBa0.85Sr0.15Ce0.5Fe2O1.9 Cathode with Palladium-rich Interface Coating. *J. Power Sources* 2021, 482, 229043.

