
Techniques for Optimizing FEM/MoM Codes

Y. Ji, T. H. Hubing, and H. Wang
Electromagnetic Compatibility Laboratory

Department of Electrical & Computer Engineering
University of Missouri-Rolla

Rolla, MO 65401
yji@umr.edu, hubing@umr.edu, haoh@umr.edu

 Abstract - This paper presents techniques for optimizing the performance of FEM/MoM codes.
The process of computing MoM matrices can be accelerated by choosing the order of Gaussian
Quadrature calculations adaptively and taking advantage of the symmetric nature of the
impedance (or admittance) matrix. Optimizing loop index order and buffering loop indices can
significantly improve the performance of matrix operations. Unrolling techniques can be utilized to
exploit the power of high-speed cache memory and reduce data access time. Preconditioning
techniques can enhance the spectral properties of the FEM/MoM matrix equations and
dramatically improve the convergence rate of iterative solvers.

 Index Terms - Hybrid FEM/MoM, code performance, loop index order, unrolling, buffering,
preconditioned iterative solvers.

I. Introduction

The hybrid FEM/MoM method combines the finite element method (FEM) and the method of
moments (MoM) to model inhomogeneous unbounded problems. These two methods are coupled by
enforcing field continuity on the boundary that separates the FEM and MoM regions. Figure 1 shows the
structure of EMAP5, a FEM/MoM code developed at University of Missouri-Rolla [1,2]. Table 1 lists the
computation time required for EMAP5 to model a sample geometry with 579 FEM unknowns and 1,155
MoM unknowns. The performance bottlenecks are computing the MoM matrices, assembling and solving
the final matrix equation. The time spent on other tasks such as reading the input file and generating
output is minor, thus is not listed in Table 1.

This paper presents techniques that can be used to optimize FEM/MoM codes. Section II discusses
how to optimize routines. Section III describes how to optimize the computation of the MoM matrices.
Section IV shows that adjusting loop-index order, buffering loop indices, and unrolling techniques can
significantly improve the code efficiency. Section V presents preconditioning techniques that can greatly
improve the efficiency of iterative solvers. Finally, conclusions are drawn in Section VI. Sample
problems analyzed using the EMAP5 code running on a Sun workstation are used to illustrate the
improvements in run time that can be expected.

II. Optimizing Routines

Numerical codes are usually composed of routines (modules, functions). The length of a routine is not
only a maintenance concern, but also an efficiency concern. A very short routine is not efficient because
calling a routine involves expensive context switching operations (save the status of the current routine,
then load another routine). On the other hand, a long routine is not efficient if it does not fit in the code
cache. Therefore, it is best to divide codes into proper-size routines. The code length of each routine
should not exceed 200 lines, excluding comments and blank lines [3]. The most error-prone routines are
those larger than 500 lines of code [4].

Crucial routines must be examined, re-written and carefully tested to improve code performance. In
FEM/MoM codes, a large portion of computation time is spent on matrix operations. Matrix operations
should be put in separate routines that are optimized for the hardware they will run on. Although many

compilers support code optimization, well-written codes can be further optimized as shown in latter
sections.

III. Optimizing Computation of the MoM Matrices

The Gaussian Quadrature technique is generally used to numerically evaluate integrands over two
surface patches in MoM. The choice of Gaussian Quadrature order (1-point, 3-point, or 7-point) can be
determined adaptively depending on the distance between two patches. For example, suppose Rcp is the
distance between the centroids of the triangle pair in Figure 2, and MaxEdgeLen is the maximum edge
length of the source (or observing) triangular patch. The following procedure can be used to adaptively
determine the Gaussian Quadrature order of the source (or observing) triangular patch,

if (Rcp/MaxEdgeLen > 10)

 QuadType = 1; /* use 1-point Gaussian Quadrature */

else if (Rcp/MaxEdgeLen >5)

 QuadType = 3; /* use 3-point Gaussian Quadrature */

else QuadType = 7; /* use 7-point Gaussian Quadrature */

Furthermore, the impedance (or admittance) matrix in MoM is symmetric. Only half of the entries need to
be computed.

IV. Optimizing Matrix Operations

The structure of computer memory is typically organized in a hierarchy [5] as shown in Figure 3.
The higher-level media supports faster access but is more expensive. Performance data reported in this
paper is measured on a Sun Ultra-II 250MHz workstation in units of MFlops (million floating-point
operations per second). Figure 4 shows the code performance versus the size of problem being solved.
The code performs best when data fits in the data cache. The code performance drops when data is stored
in the primary cache and the first-level memory (DRAM/SDRAM). The code performance is 75% higher
when data is stored in primary cache than in DRAM. In typical numerical applications, most data is stored
in DRAM. The following two sub-sections present how to improve the performance of matrix operations
by utilizing cache memory efficiently.

A. Optimizing inner-product operations in the complex bi-conjugate gradient method

Iterative solvers are widely used to solve large-scale matrix equations. The complex bi-conjugate
gradient method (CBCG) introduced by Jacobs [6] can be used to solve the final complex matrix equation
generated by FEM/MoM, which is of the form

[A][x]=[b] (1)

where [A] is an N×N complex matrix, and [b] and [x] are N×1 complex column vectors. Both [A] and [b]
are known while [x] is unknown. As Table 1 indicates, solving the final matrix equation is one of the
bottlenecks of the EMAP5 code performance.

The most time-consuming portion of CBCG are the operations computing the product of kpA and

k
H pA , where [A] is the coefficient matrix, HA is the Hermitian of matrix A, kp is the direction vector,

and kp is the bi-direction vector. Both of these operations involve N2 complex number multiplications.
All other operations in CBCG only require O(N) complex multiplications. A natural implementation of
[C] N = [A]N,N*[P]N in the C programming language is shown below,

 for (i=0; i<N; i++)

 for (j=0; j<N; j++)

 C[i] = A[i][j]*P[j] ;

The above loop index order is defined as (i, j). This implementation works fine. A natural implementation
of [C] N = [A]H

N,N*[P]N is as follows,

for (i=0; i<N; i++)

 for (j=0; j<N; j++)

 C[i] = Conjugate(A[j][i]) *P[j] ;

The above implementation is inefficient because data in the C language is row-majored (row-indexed).
Whenever index j increases by one, the address of A[j][i] will jump N address spaces. If the next A[j][i]
is not in the data cache, a cache miss occurs. The next A[j][i] and its neighbor units (a cache block) will
be swapped from DRAM into the data cache. Frequent cache misses can significantly degrade the code
performance. To better utilize the data-caching feature, it is desirable to access data in a cache block
continuously to reduce the number of cache misses. For the above example, the loop index can be
changed from (i, j) to (j, i) (the loop body is the same) as shown below,

for (j=0; j<N; j++)

 for (i=0; i<N; i++)

 C[i] = Conjugate(A[j][i]) *P[j] ;

As shown in Table 2, this change of loop index order increases the performance from 1.52 MFlops to 2.94
MFlops, (i.e. by 93%).

Buffering the loop indices i and j in registers can improve the code performance even further. The
following code (in the C language) stores two integers in registers,

register int i, j;

This ensures that the loop indices i and j will not be swapped out from cache memory to DRAM. Many C
compilers do not optimize codes by buffering temporary variables. Programmers must decide how to
buffer variables by themselves. It can be difficult to decide how to buffer temporary variables in a large
routine because computers have a limited number of registers. Therefore, crucial codes (in terms of
computational cost) should be put into separate routines of proper size and tuned to optimize
performance. As shown in Table 2, buffering loop indices i and j improves the code performance by 90%
(from 2.94 MFlops to 5.32MFlops) without compiler optimization and 11% (from 10.42MFlops to 11.6
MFlops) with compiler optimization. Choosing the proper loop index and buffering loop indices improves
the overall code performance by a factor of 2.5 without compiler optimization and 2.6 with compiler
optimization.

B. Optimizing matrix multiplication

Hybrid FEM/MoM codes perform many matrix multiplications [1]. This process is numerically
intensive, involving O(N3) floating point operations. Choosing the proper loop index order is critical to
the code performance. For typical matrix multiplication [A]N,N = [B]N,N*[C]N,N , loop index (i, j, k) refers
to the following loop order,

for (i=0; i<N; i++)

for(j=0; j<N; j++)

 for(k=0; k<N; k++)

 A[i][j] += B[i][k]*C[k][j];

Table 3 shows the code performance of all six possible combinations of loop indices. It is clear that (k, i,
j) and (i, k, j) are the best loop index orders. Without compiler optimization, the best/worst performance

ratio is 1.88. With compiler optimization, the best/worst performance ratio is 5.0. This indicates that
codes that are more efficient can be better optimized by compilers.

Unrolling techniques [5] can efficiently utilize cache blocks to reduce data access time. The basic
idea of unrolling is to reduce the number of iterative loops, but add statements to loop bodies to do the
missing iterations. For the above matrix multiplication codes, a four-way unrolling implementation is
shown below,

for (i=0; i<N; i++)

 for (k=0; k<N; k+=4)

 for(j=0; j<N; j++) {

 A[i][j] += B[i][k]*C[k][j];

 A[i][j] += B[i][k+1]*C[k+1][j];

 A[i][j] += B[i][k+2]*C[k+2][j];

 A[i][j] += B[i][k+3]*C[k+3][j];

 }

Table 4 shows the code performance improvement obtained by using this 4-way unrolling technique and
buffering loop indices. The time required for matrix multiplication is reduced by 68%.

V. Preconditioned Iterative Solvers

The coefficient matrices generated by the application of hybrid FEM/MOM codes to complex
geometries often have very large condition numbers. It is difficult to apply iterative solvers to these
matrix equations. However, in general, a matrix equation can be transformed into another matrix equation
so that the new matrix equation has the same solution as the original one, but has better spectral
properties. For instance, both sides of Equation (1) can be multiplied by a square matrix 1−P ,

bPAxP 11 −− = (2)

where P has the following properties,

)()1(1 K(A)APK <<−

 0)det()2(1 ≠− AP

 (3) it is inexpensive to solve Px = b

and where)(•K and)det(• are the condition number and the determinant of a matrix, respectively.
Such a matrix P is called a preconditioner. This technique is called preconditioning. Condition (1) assures
favorable spectral properties for the new linear system. Condition (2) guarantees that the new system,
Equation (2), has the same non-trivial solution as Equation (1). Condition (3) is essential to ensure the
efficiency of preconditioned iterative solvers. In preconditioned iterative algorithms, it is not necessary to
solve 1−P explicitly. Instead, a linear system of the form Px = b is solved at each step.

A new equation solver has been developed for EMAP5 based on the preconditioned Bi-Conjugated
Gradient Stabilized method (BiCGSTAB) [2]. Two printed circuit board (PCB) problems and one
scattering problem have been chosen to test the new solver. As shown in Table 5, the new solver has
improved the efficiency of the matrix equation solver by a factor of 48 in Problem 1 (from 206.10 sec to
3.55 sec), by a factor of 150 in Problem 2 (from 6,037.90 sec to 40.10 sec), and by a factor of 48 in
Problem 3 (from 386.77 sec to 8.10 sec). The overall improvements for the three problems are 221%,
783% and 636%, respectively. This shows that preconditioning techniques can dramatically improve the
convergence rate of iterative solvers and the overall performance of FEM/MoM codes.

VI. Conclusions

This paper presents techniques for optimizing FEM/MoM codes. Numerical codes should be divided
into routines of appropriate length for the sake of maintenance and performance. Crucial routines should
be well tuned to the hardware they will run on. The performance bottlenecks of FEM/MoM codes are
computing the MoM matrices and assembling and solving the final matrix equation. The process of
computing the MoM matrices can be accelerated by using an adaptive Gaussian Quadrature technique and
by taking advantage of the symmetric nature of the impedance (admittance) matrix. The performance of
matrix operations can be significantly improved by optimizing loop index order and buffering loop
indices. Unrolling techniques can be utilized to reduce data access time. The hybrid FEM/MoM method
often generates matrix equations with very large condition numbers. It can be difficult to apply iterative
solvers to these matrix equations directly. Preconditioning techniques can be used to improve the spectral
properties of matrix equations and dramatically accelerate the convergence rate of iterative solvers.
Together, these optimization techniques can greatly reduce the overall run time of hybrid FEM/MoM
codes analyzing large problems.

References:

[1] M. Ali, T. H. Hubing, and J. L. Drewniak, "A hybrid FEM/MoM technique for electromagnetic
scattering and radiation from dielectric objects with attached wires," IEEE Trans. on
Electromagnetic Compatibility, vol. 39, pp. 304-314, Nov. 1997.

[2] Y. Ji, M. Ali, and T. H. Hubing, "EMC applications of the EMAP5 hybrid FEM/MoM code,"
Proceedings of the IEEE 1998 International Symposium on Electromagnetic Compatibility, vol.
1, pp. 177-181, Denver, Colorado, Aug. 1998.

[3] S. McConnell, Code Complete, Washington: Microsoft Press, 1993.

[4] C. Jones, Programming Productivity, New York: McGraw-Hill, 1986.

[5] D. Loshin, High Performance Computing Demystified, Boston: Academic Press, 1994.

[6] D. A. H. Jacobs, "A generalization of the conjugate gradient method to solve complex system,"
IMA J. Numerical Anal. vol. 6, pp 447-452, 1986.

[7] R. Barrett, M. Berry, T. F. Chan, F. Demmel, J. M. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C.
Romine, and H. Van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods, Philadelphia: SIAM, 1994.

Figure 1. The EMAP5 code structure.

Figure 2. Center-to-center distance between two surface patches.

Figure 3. Memory hierarchies.

Figure 4. Code performance verses data size.

Table 1. Time required to model a problem with 579 FEM and 1,155 MoM unknowns.

Total time
(min.)

Compute the
FEM matrices

(min.)

Compute the
MoM matrices

(min.)

Assemble the final
matrix equation

(min.)

Solve the final matrix
equation (min.)

174 0.1 20 92 63

Table 2. Performance of [C]N =[A]H
N,N*[P]N versus loop index permutation when N= 400.

Performance (MFlops)

Loop index

Use registers to
buffer variables

(Yes/No)
No compiler
optimization

Using compiler
optimization

Case 1 (i, k) No 1.52 3.23

Case 2 (k, i) No 2.94 10.42

Case 3 (k, i) Yes 5.32 11.60

Improvement (best/worst) 250% 260%

Table 3. Performance of [A]N,N = [B]N,N*[C]N,N versus loop index permutation when N=400.

Performance (MFlops) Loop index

No compiler optimization Using compiler optimization

Case 1 (k, j, i) 0.90 1.57

Case 2 (j, k, i) 0.95 3.64

Case 3 (j, i, k) 1.36 3.64

Case 4 (i, j, k) 1.31 3.71

Case 5 (k, i, j) 1.78 7.72

Case 6 (i, k, j) 1.79 7.72

Improvement (best/worst) 188% 500%

Table 4. Performance of [A]N,N = [B]N,N*[C]N,N using unrolling techniques when N=400.

Performance (MFlops)

Use registers to

buffer variables No compiler optimization Using compiler optimization

Case 1 No 1.31 3.71

Case 2 Yes 1.85 3.70

Unrolling Yes 2.20 6.26

 Table 5. Time required to solve three sample problems.

Original Preconditioned Compute
FEM and
MoM
matrices
(sec)

Forming
the final
matrix
equation
(sec)

Solving
the final
equation
(sec)

Total
(sec)

Solving
the final
equation
(sec)

Total
(sec)

Overall
improve-
ment (%)

Problem 1 48.00 40.23 206.10 294.22 3.55 91.78 221%

Problem 2 287.20 438.60 6,037.90 6,763.7 40.10 765.90 783%

Problem 3 40.12 11.33 386.77 438.22 8.10 59.55 636%

