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Abstract--EMAP5 is a numerical software package 
designed to model electromagnetic problems. It 
employs the finite element method (FEM) to analyze a 
volume, and employs the method of moments (MoM) 
to analyze the region exterior to the FEM volume. The 
two methods are coupled by enforcing the continuity of 
the tangential fields on the interface.  Dielectrics, lossy 
dielectrics and metal objects can be modeled within the 
FEM volume.  Metal objects can also be located 
exterior to, or on the surface of the FEM volume. A 
simple input file translator (SIFT) is provided with 
EMAP5 that allows users to define basic input 
configurations on a rectangular grid without a graphical 
interface. It is also possible to use commercial mesh 
generators to analyze more complex geometries of 
arbitrary shape. EMAP5 can model three types of 
sources: incident plane waves, voltage sources on 
metal patches and impressed current sources in the 
finite element region. This paper describes the 
implementation of EMAP5 and provides four examples 
to demonstrate the range of configurations that EMAP5 
is capable of modeling using the SIFT translator. 

I. INTRODUCTION 

Methods used to solve Maxwell’s equations can 
often be classified into one of two categories. One 
category is integral equation-based methods.  Integral 
equation-based methods generally solve for unknown 
fields or currents on the surface of homogeneous 
volumes. Only the surfaces are meshed; therefore the 
number of unknowns is relatively small. Integral 
equation-based methods are well suited for modeling 
homogeneous structures in unbounded geometries. 

 The other category is partial differential equation 
(PDE) -based methods.  PDE-based methods require a 
volume mesh.  The resulting number of unknowns is 
usually much higher than that obtained from integral 
equation-based methods, but the reduced complexity of 
the solution method can more than compensate for this. 
PDE-based methods are well suited for modeling 
complex inhomogeneous structures, particularly those 
in bounded geometries (e.g. a waveguide or a metallic 
enclosure).  

The finite element method (FEM) is a powerful 
PDE-based method. It requires the entire region of 
interest to be meshed.  However, each mesh element 
can have its own electromagnetic properties (ε, µ, σ).  

Thus, FEM has an inherent capacity to analyze 
inhomogeneous structures.  In addition, FEM does not 
require a uniform mesh.  Va rious types of elements, for 
example, bricks, tetrahedra and prisms, can be used to 
discretize arbitrary geometric configurations. 
Therefore, FEM is well suited for modeling complex, 
inhomogeneous structures.  A significant disadvantage 
of the FEM method is the inability to model unbounded 
geometries without using absorbing boundary 
elements. Absorbing boundary elements are not 
effective when they closely conform to the shape of 
long thin objects (e.g. cables). When modeling objects 
with one dimension significantly longer than the others 
using FEM, it is generally necessary to fill the empty 
space around these objects with many elements that 
transition from the object of interest to the absorbing 
boundary. This can significantly inflate the overall size 
of the problem. 

The method of moments is not actually an 
electromagnetic modeling technique, but rather it is a 
technique for solving complex linear equations [1, 2]. 
However, electromagnetic modeling techniques that 
apply the method of moments to the solution of electric 
or magnetic field integral equations are generally 
referred to as method-of-moment (MoM) techniques.  
MoM techniques can be used to model metallic 
(particularly wire) structures in unbounded geometries 
very effectively. 

In order to take advantage of the strengths of both 
the FEM and MoM methods, several researchers have 
developed hybrid FEM/MoM approaches [3-6]. Hybrid 
FEM/MoM methods generally take advantage of the 
FEM’s ability to model complex inhomogeneous 
structures and the MoM’s ability to model unbounded 
geometries. The specific strengths of a particular code 
depend on the details of the implementation, 
particularly the form of the integral equation and the 
basis and weighting functions employed. 

EMAP5 (Electro Magnetic Analysis Program 
version 5) is a hybrid FEM/MoM modeling code 
developed at the University of Missouri-Rolla (UMR). 
EMAP5 was developed in order to demonstrate and 
validate the hybrid technique described in [6,7].  This 
technique, used in conjunction with a mesh generator, 
is  particularly useful for analyzing EMI from printed 
circuit board geometries with enclosures or attached 
cables. A rudimentary mesh generator (SIFT5) is 
distributed with the EMAP5 code.  This non-graphical 
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user interface is simple and portable, making it a good 
tool for educators and people who want to learn to use 
the EMAP5 code. However, the meshes generated by 
the SIFT5 code do not exploit the primary advantage of 
FEM modeling codes (i.e. the ability to adapt the size 
and shape of the mesh to fit the geometry).  The 
EMAP5 and SIFT5 source codes can be obtained via 
the web at <http://www.emclab.umr.edu/emap5>. 

II. FORMULATION  

Although details of the EMAP5 formulation are 
described in [6,7], a brief summary is provided below. 
The general structure of interest is shown in Figure 1. 
A dielectric volume V2 has electrical properties (ε2, µ2) 
and is enclosed by a surface S2. A conductive volume 
V3 is enclosed by a conductive surface Sc. The fields 
within V3 vanish. V1 denotes the volume outside of V2  
and V3, which is assumed to be free space. (E1, H1) and 
(E2, H2) denote the electric and magnetic fields in V1  
and V2, respectively. The unit normal vectors for S2 
and Sc are defined pointing outward toward V1. The 
structure is excited by an incident wave (Einc, Hinc) or 
impressed sources (Jint, Mint). The scattered electric and 
magnetic fields are (Es, Hs). The objective is to solve 
for the scattered fields (Es, Hs) or the surface electric 
current density on Sc. 

 

Figure 1.  A dielectric object and a conductive object 
illuminated by (Einc, Hinc ) or (Jint, Mint). 

From Maxwell equations, the vector Helmholtz 
equation in terms of E can be written as,  
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After multiplying Equation (1) by a weighting function 
w(r) and integrating over the finite element domain V2, 
one obtains the FEM weak form as follows [8, 9],  
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Equation (2) can also be derived using the variational 
method [10] (pp. 158-161),  [11] (pp. 158-160). 

Within volume V2, EMAP5 uses the vector 
tetrahedral elements proposed by Barton and Cendes 
[10] (pp. 56-59), [12]. Each basis function is defined 
within a tetrahedron, and is associated with one of the 
six edges. The electric field E within volume V2 can be 
expanded as, 
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where Nv is the total number of interior edges and 
boundary edges on the dielectric surface, and {En} is a 
set of unknown complex scalar coefficients. 

The surface integral term in Equation (2) can be 
evaluated by using a surface basis function f(r), which 
is discussed later.  The weighting functions chosen are 
wn(r), n=1…Nv. After multiplying by the weighting 
functions, Equation (2) can be discretized as, 
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The unknown coefficients [En] are partitioned 
according to edge type. The two categories are interior 
edges, which are denoted by the subscript i in Equation 
(4), and dielectric boundary edges, which are denoted 
by the subscript d in Equation (4). [Jh] is a set of 
unknown complex scalar coefficients for the surface 
electric current densities on Sd.  Sd is defined as S2 if 
the conductive body is not adjacent to the dielectric 
body; otherwise, Sd= S2 - (S2 ∩ Sc). Edges in [Jh] 
include dielectric boundary edges and junction edges 
(i.e. edges that are on both the conductor and dielectric  
boundary). [Bdh] is a square matrix if there are no 
junction edges in the problem. [gint] is the source term, 
representing sources located within the FEM region. 
The elements of  [A], [Bdh], and  [gint] are given by, 
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where fn(r) is the surface basis function. Since the 
tangential E field vanishes on Sc, Bmn is evaluated over 
Sd rather than all of S2. A detailed description of how to 
evaluate the terms in Equation (5) is provided in [11] 
(pp. 254-257). Appendix A describes how to evaluate 
Equation (6).  [gint] is the source term and is discussed 
in a later section. 

The MoM surface integral equation evaluated by 
the MoM part of EMAP5 is a form of the electric field 
integral equation (EFIE) [13], 
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where r ∈∈  S,  S≡ Sc∪S2, η0 and k0 are the intrinsic 
impedance and wavenumber in free space, 
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is the Green’s function in free space. The integral term 
with a bar in Equation (8) denotes a principal-value 
integral. The singularity at r= r ′  is excluded. The 
equivalent surface electric and magnetic currents are 
defined as,  

S                    , )(ˆ)( ∈×= rrH nrJ  (10) 

dS ˆ)()( ∈×= r                  , nrErM . (11) 

M(r) vanishes  on Sc. J(r) and M(r) can be 
approximated by using the triangular basis function 
fn(r) proposed by Glisson [14].  On the surface Sd, the 
MoM basis function fn(r) and the FEM basis function 
wn(r) are related by, 
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J(r), M(r) can be expanded as, 
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where Ns is the total number of edges on the surface S, 
and Nd  is the total number of edges on the surface Sd. 
{Jn} and {En} are unknown complex scalar 
coefficients. 

The weighting functions chosen are fn(r), n=1, ... 
Ns. After multiplying by the weighting functions, 
Equation (8) can be discretized into Equation (15), 
which is a matrix equation. Edges on Sd and Sc are 
grouped together respectively.  
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The elements in matrices [C], [D] and [ iF ] are given 
by,
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Details of how to evaluate Equation (16) are provided 
in [14].  Appendix B describes how to evaluate 
Equation (17). Equation (18) can be evaluated by using 
the Gaussian Quadrature technique. 

From Equation (15),  [Jh] can be expressed as,  
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After combining Equations (4) and (19), the final 
matrix equation that must be solved is given by, 
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where [A] is the FEM matrix in Equation (4), and 

hdhhdh DCB ′−1  is the coupled matrix from the MoM 

equation. The right-hand side in Equation (23) is the 
source term. 

The far fields can be calculated using the 
equivalent surface currents J and M defined in 
Equations (10) and (11). The point of observation is 
denoted by (r, θ, ϕ) in spherical coordinates. Potential 
functions A and F can be approximated by [15], 
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where .cos zsin  sin ysin  cos xcos r θθϕθϕψ ′+′+′=′  

EMAP5 evaluates the integral terms in Equations (24) 
and (25) using the Gaussian Quadrature technique. The 
far fields are given by [15], 

))( (
0

00 η
η ϕ

θθ
F

AkjE +−=  (26) 

).)( (
0

00 η
η θ

ϕϕ
F

AkjE −−=  (27) 

III. SOURCE AND LOAD MODELING 

EMAP5 can model voltage sources on metal 
patches, incident plane waves, and impressed current 
sources within the FEM region. A delta-gap voltage 
source can be defined anywhere on the MoM surface. 
It can be modeled as an incident E-field normal to 
edges coinciding with the source [9] (pp. 260-261). A 
delta-gap voltage source parallel to the x-axis can be 
expressed as, 

xxxV f

r
 )(  inc −= δE  (28) 

where xf is the location of the source and V is the 
voltage magnitude, and δ (x) is the Dirac delta 
function. Suppose that edge m coincides with the 
source. The normal component of fm(r) across edge m 
is unity.  Thus, the source term given by Equation (18) 
is, 

m
i

m lVF  =  (29) 

where lm is the length of edge m.  

Plane wave sources are also described using the 
forcing term given by Equation (18). Assume the 
incident wave can be expressed in a spherical 
coordinate system as, 

rkE •−+=  inc  )ˆˆ( jeEE ϕθ ϕθ  (30) 

where the propagation vector k is, 

)zyxk ˆ cosˆ sinsinˆ cos(sin θϕθϕθ ++= k  (31) 

and (θ, ϕ) defines the angle of the propagation 
direction of the plane wave. EMAP5 calculates the E 
field of the plane wave on the surface of the structure, 
then evaluates the right-hand side of Equation (18) 
numerically. 

EMAP5 uses  current filaments on tetrahedron 
edges to model sources located within the FEM region 
[11] (pp. 324-325). A current source along the z-axis 
can be expressed as,  

zJ ˆ )( )(int
ff yyxx I −−= δδ  (32) 

where (xf, yf) specifies its position, I  denotes the 
electric current magnitude, and δ(x) is the Dirac delta 
function. The contribution to vector [gint ] in Equation 
(7) is simply, 

{ } dx dyyyxxlIg ff  )()-( ˆ  int −•= ∫∫ δδ   Wz  (33) 

where l is the edge length and {W} is the weighting 
function. According to the expression in Equation (33), 
only edges coinciding with a current source have non-
zero components in the [gint] vector.  After the E-fields 
along the current source edges are obtained, the voltage 
drop across the source can be calculated. Thus, the 
input impedance Zin can be obtained. The desired fields 
under an excitation of any magnitude voltage Vin can be 
obtained by multiplying the factor Vin / Zin to the results 
obtained when I is set to one Ampere.  

EMAP5 models load impedances ZL as dielectric 
posts on tetrahedron edges. These posts have a finite 
conductivity given by,  

SZ

l

L

=σ  (34)  
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where l is its length, and S is the cross sectional area. If 
the load is treated as a lumped element, its contribution 
to the finite element matrix is as follows [11] (pp. 324-
325), 
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where (xL, yL) is the position of the impedance load. 

IV. MATRIX  EQUATION  SOLVER 

EMAP5 uses the complex bi-conjugate gradient 
method (CBCG) to solve the final complex matrix 
equation, Equation (23). The major advantage of 
CBCG lies in its iterative nature and its ability to use 
the row-indexed method to store sparse matrices 
efficiently.  The CBCG method was first introduced by 
Jacobs [16].  A brief outline of the algorithm is 
provided in the following section. 

A. Complex Bi-Conjugate Gradient Method 

Consider a comp lex matrix equation, 

[M][x]=[b] (36) 

where [M] is an N×N complex matrix, and [b] and [x] 
are order-N complex column vectors. Both [M] and [b] 
are known while [x] is unknown.  Four column vectors 
are defined as, 

1. the residue, r, 

2. the bi-residue, r , 

3. the direction vector, p, 

4. the bi-direction vector, p . 

These vectors are initialized as,  

b ==  p r 00  (37) 

*
00 b p   r ==  (38) 

where * denotes the complex conjugate. The Hermitian 
conjugate of M is, 

MH ≡ (M*)T (39) 

where T denotes transpose. The inner product of two 
complex column vectors is defined as, 

<p1, p2>  ≡ (p1*)T p2  .  (40) 

The following steps are repeated N times at most. For 
k=0, … , N-1, calculate the step-length parameter, 

><
><=
kk

kk

p M,p

r ,r
 kα   . (41) 

The new solution estimate then becomes, 

kkkk pxx 1 α+=+   . (42) 

The new residue and bi-residue are calculated as, 

kpM - r  r kk1k α=+  (43) 

kkk pM - r  r H*
k1 α=+

   . (44) 

The bi-conjugate coefficient is calculated using the 
following formula, 
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><= +

kk
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H

p M,p

r ,pM
 - kβ   .  (45) 

The new direction and bi-direction vectors are given 
by, 

k1k1k p  r p kβ+= ++   (46) 

k
*

1k1k prp kβ +  = ++    . (47) 

This iteration is continued until a termination condition 
is satisfied, 

TOL
 b

r

2

2 ≤k  (48) 

where TOL is a number defining the tolerance. The 
best value of TOL depends on the problem for 
EMAP5.  Typically, 1×10-3 is sufficient. The value of 
TOL is defined as a macro in the EMAP5 source code 
so it can be easily adjusted by the user. 

B. Implementation   

It is not necessary to explicitly add the two 
matrices on the left-hand side of Equation (23) in 
CBCG.  The FEM matrix [A] is a sparse and symmetric 
matrix. The row-indexed scheme [17] is used to store 
it.  The MoM coupled matrix is an asymmetric 
compact matrix.  A full 2D array is used to store it.  
These two matrices are stored separately in order to 
make it is easier to obtain the Hermitian of the left-
hand matrix. Since [A] is symmetric, 

**TH )( AAA ==  (49) 

Thus, it  is not necessary to search the non-zero 
elements column by column in [A] when Hermitian 
operations are present.  Instead, the search is done row 
by row. The row-indexed scheme is very efficient in 
this case.  While the coupled MoM matrix is not 
symmetric, exchanging its row index and column index 
will result in its transpose. 
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Figure 2.  Components of the EMAP5 package. 

C. Accuracy and Convergence Problem      

Although the CBCG solver conserves memory, it 
is an iterative method and it may have difficulty 
converging in some situations. Convergence problems 
may result from round-off errors.  Usually the round-
off error for single -precision data is 1.19×10-7 [17].  If 
the total number of unknown edges is 1,000, the 
average error due to round-off errors is  

-6-7 103.8 101.19 000,1 ×≈×× . 

In the worst case, the error is 1,000×1.19×10-7 = 
1.19×10-4.  Because the total round-off error could be 
very large, it is impractical to set the TOL in Equation 
(48) to be on the order of 10-4 if no special technique, 
such as pre-conditioning, is used to reduce the total 
round-off error. The round-off error of double-
precision data is 2.22×10-16 [17].  If double precision is 
used for the matrix calculations, round-off errors will 
not reduce the effectiveness of CBCG considerably.  In 
EMAP5, all data are stored in double precision; 
however, double precision numbers require twice as 
much as memory to store as single precision.  

Another potential difficulty with the CBCG 
solver arises when the algorithm becomes unstable. 
This can happen when the denominator of the 
expressions for αk and βk is close to zero.  EMAP5 
monitors the value of the denominator.  If it becomes 
too small, EMAP5 will restart the algorithm using the 
current solution as the initial estimate as suggested by 
Jacobs [16]. 

V. COMPONENTS OF EMAP5  

EMAP5 is written in ANSI C. Thus, it can be 
compiled without modification on many computer 
platforms. As shown in Figure 2, the EMAP5 software 
package includes three major components: SIFT5, 
EMAP5 and FAR. EMAP5 was developed for research 
and educational use. It does not have a sophisticated 
mesh generator or graphical visualization tools.  SIFT5 
can be used to describe simple input geometries with a 
rectangular grid. It is also possible to use commercial 

mesh generators to analyze more complex geometries 
of arbitrary shape. EMAP5 is the FEM/MoM field 
solver. FAR calculates far-field electric fields from the 
equivalent surface currents calculated by EMAP5. 

Standard Input File Translator version 5 (SIFT5) 
is designed to generate input files for the field solver 
EMAP5. SIFT5 reads a text file in the SIFT format 
[18-20] and generates an input file for EMAP5.  Users 
can describe the structure of interest by using eleven 
keywords.  The physical geometry of the structure, 
source type and location, and the geometry of areas in 
which fields are to be printed by the solver, must be 
specified.   

EMAP5 is the hybrid FEM/MoM field solver. It 
reads an input file generated by SIFT5. A .log file is 
generated to log running status and error messages. The 
log file was initially designed to debug the code, but 
users can also benefit from log messages.  EMAP5 will 
print out fields within areas specified by the .sif file, to 
one or more output files. All equivalent surface 
currents J and M must be printed to a file if the user 
needs to calculate far fields. 

FAR is a program used to calculate the far field 
radiation pattern.  FAR needs two input files.  One is 
the file generated by SIFT5 and the other contains the 
equivalent surface currents J and M.  The FAR 
program will prompt users to input the observing 
distance R in wavelengths, the observing θ interval in 
degrees, and the observing ϕ interval in degrees.  

VI.  STRUCTURE OF EMAP5  

Figure 3 shows a flowchart for the field solver 
EMAP5. Descriptions of the functions used by EMAP5 
are provided below, 

• ReadInputFile() 

reads an input file generated by SIFT5, and 
checks whether the input file is consistent (i.e. the 
input makes sense). If not, it aborts the program 
and reports problems with the input to the user. 
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• ComputeBMatrix() 

places a 3×3 sub-matrix (corresponding to one 
observing triangular patch and one source 
triangular patch) into the global B matrix based 
on the local-to-global mapping. 

• ComputeCMatrix() 

places a 3×3 sub-matrix into the global C matrix 
based on the local-to-global mapping. 

• ComputeDMatrix()  

places a 3×3 sub-matrix into the global D matrix 
based on the local-to-global mapping. 

• ComputeCorrectionTerm() 

uses B, C, and D matrices to compute the MoM 
coupling matrix. It also creates the necessary 
matrices required to compute the equivalent 
surface currents. 

• FEMMatrixCompute() 

computes a 6×6 matrix for each tetrahedron first, 
then assembles the global matrix based on the 
local-to-global mapping. The matrix is stored 
using the row-indexed method.  

• CreateRHSVector() 

creates the RHS (right-hand side) vector of the 
final matrix equation.  

• ConjugateSolver() 

uses the Complex Bi-Conjugate Gradient Method 
to solve the final matrix equation. For MoM-only 
analyses, this function can be replaced with an 
LU decomposition solver. 

• SurfaceFieldCompute() 

computes the equivalent surface currents on the 
boundary. 

• PrintOutput() 

outputs the values of fields in regions specified 
by the input file to a file specified by the input 
file. All equivalent surface electric and magnetic 
currents must be written to a file if users are 
interested in the far field pattern. 

VII.  NUMERICAL RESULTS 

This section describes four example geometries 
that can be solved using the EMAP5 software package. 
Each geometry is described in sufficient detail to allow 
others to duplicate the analysis. Results obtained from 
EMAP5 are compared to results obtained using other 
well-established codes, measurements, or analytical 
results. 

 

Figure 3.  EMAP5 flowchart. 

 The first example analyzes the electromagnetic 
scattering from a square plate over a dielectric slab. As 
shown in Figure 4, the configuration consists of a 
square plate of dimension 0.75λ × 0.75λ, and a 
dielectric slab of εr = 2.0, and dimensions of 0.4λ ×  
0.4λ × 0.2λ. The plate is symmetrically placed above 
the slab. The distance between the plate and the 
dielectric slab is 0.15λ. The system is illuminated by an 
x-polarized, +z traveling plane wave. In EMAP5's 
hybrid solution, the dielectric is divided into 320 
tetrahedra. The surface of the dielectric and the metal 
plate are divided into 392 triangle patches. Figure 5 
shows the normalized far field pattern calculated by 
EMAP5. For comparison, the results obtained by Arvas 
et al. [21] have been plotted on the same scale. The 
authors in [21] used a method of moments technique, 
which is based on a combined field integral equation 
formulation. As is evident from the figure, the two 
solutions compare very well. 
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Figure 4.  A conducting plate over a dielectric slab. 

 

Figure 5.  The normalized far field pattern for the 
configuration in Figure 4. 

The second example demonstrates the application 
of the EMAP5 code in mo deling microstrip geometries. 
The geometry of the structure is shown in Figure 6. 
The board is made of a dielectric with εr=4.0. The trace 
is excited by a source at one end, and is terminated by a 
resistor at the other end. Microstrip lines support quasi-
TEM fields [22] (pp. 160-161) and can therefore be 
viewed as transmission lines. The input impedance Zin 

of a transmission line is given by,  

) tan( 

) (tan 

0

0
0 lZjZ

lâZjZ
ZZ

L

L
in β+

+
=

 (50) 

where ZL is the load impedance,  β is the propagation 
constant;  l is the length of the transmission line. To 
determine the characteristic impedance Z0 of the 
transmission line, one can find the input impedance 
when the load side is shorted or open, respectively. 
When the load side is shorted, the input impedance is 
given by, 

( ) ) tan( 0 lZjZ shortin β= . (51) 

When the load side is open, the input impedance is 
given by,  

( )
)  tan(

 0

 l

Z
jZ openin β

−= . (52) 

Thus, the characteristic impedance is given by, 

( )openinshortin ZZZ )(0 = . (53) 

In EMAP5's hybrid solution, the dielectric 
volume is divided into 900 tetrahedra. The surface is 
divided into 828 triangles.  Table 1 lists ( )openinZ , 

shortinZ )(  and 0Z  obtained using EMAP5 at three 

different frequencies.  The results in Table 1 are 
consistent and 0Z = 56.4 Ohms at each frequency. 

Figure 7 shows the input impedance at the source end 
obtained by EMSIM [23] when the trace is terminated 
with a 56.4 Ω  resistor. It is evident that the microstrip 
line is almost perfectly matched confirming EMAP5’s 
calculation of the characteristic impedance. 

 

Figure 6.   A microstrip geometry. (a) y -z plane view, 
(b) x-z plane view, and (c) 3D view. 

Table 1.  Impedances obtained using EMAP5. 

Source 
Frequency 

(MHz) 

( )openinZ  

(Ohms) 

( )shortinZ  

(Ohms) 

 0Z  

(Ohms) 

300 -j187 +j17 56.4 

500 -j106 +j30 56.4 

700 -j69 +j46 56.3 

 



Y. JI, T. HUBING: EMAP5: A 3D HYBRID FEM/MOM CODE  9 

 

 

 

 

Figure 7.   The input impedance obatined using 
EMSIM with a 56-Ohm load resistor. 

 The third example simulates the coupling 
between an active trace and an off-board trace on a 
printed circuit board. As shown in Figure 8, the active 
trace is excited by a 1-volt, 600 MHz source at one 
end, and is terminated by a 50-Ohm resistor at the other 
end. The off-board trace runs parallel to the active trace 
and extends well off the board. In EMAP5's hybrid 
solution, the dielectric volume is divided into 900 
tetrahedra. The surface is divided into 876 triangles. 
For the first test case, there is no dielectric material 
between the traces and the ground. Therefore, the 
model contains only perfect electrical conductor (PEC) 
and can be analyzed using only the MoM portion of 
EMAP5. Figure 9 shows the current on the off-board 
trace obtained by EMAP5 compared with results 
obtained by EMSIM. For the second test case, the 
dielectric constant of the slab is set to 4.0. Figure 10 
shows the results obtained by EMAP5 compared with 
results obtained using EMSIM. For both cases, good 
agreement is obtained between EMAP5 and EMSIM. 

 The fourth example models a printed circuit board 
power bus structure.  As shown in Figure 11, the top 
and the bottom planes of the board are PEC. The 
dielectric between the top and bottom planes has a 
relative permittivity of 4.3(1-j0.02). Two test ports are 
identified at the locations shown in Figure 11. In 
EMAP5's hybrid solution, the dielectric volume is 
divided into 1,500 tetrahedra. The surface of the 
dielectric and the metal plates are divided into 1,340 
triangle patches.  The model is verified using 
measurements of an actual printed circuit board with 
the dimensions shown in Figure 11.  Two 85-mil semi- 

 

Figure 8.  A grounded printed circuit board with active 
and passive traces.  (a) y -z plane view, (b) x-z plane 

view, and (c) 3D view. 

 

Figure 9.   Current distribution on the off-board trace 
(εr  =1.0). 

 
Figure 10.  Current distribution on the off-board trace 

(εr=4.0). 
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rigid coaxial probes are attached at the port locations.  
A network analyzer is used to measure the scattering 
parameters of the two-port system up to 2.0 GHz. The 
measured and modeled |S11| and |S21| results are plotted 
in Figure 12 and Figure 13, respectively. 

 

Figure 11.  A two-port power bus structure. 

 

Figure 12.   The measured and calculated |S11| for the 
power bus structure. 

The power bus structure can be analyzed as a 
cavity with two PEC and four perfect magnetic 
conductor (PMC) walls. The cutoff frequencies are 
given as follows (for lossless case and µr = 1.0) [22], 

... 2, 1, 0,     
2

22

=




+





= m,n

b

n

a

mc
f

r

c
ππ

επ
   (54) 

where a and b are the length and width of the cavity, 
respectively; m and n are the mode indices; c is the 
light speed in free space; εr is the relative permittivity 
of the material in the cavity. For this power bus 
structure, only TMz modes are excited.   

Table 2 lists the calculated cutoff frequencies of 
the first five TMz modes. As shown in Figure 12, the 
|S11| response dips at these resonant frequencies. At 
resonance, more power is delivered to the board hence 
more power is transmitted to Port 2 as shown in 
Figure 13. The measurements, numerical results and 
theoretical analysis agree very well.  

 

 

Figure 13. The measured and calculated |S21| for the 
power bus structure. 

Table 2.   The TMz mode cutoff frequencies of  the 
power bus structure.  

Mode TMz 

(1,0) 
TMz 

(0,1) 
TMz 

(1,1) 
TMz 

(2,0) 
TMz 

(2,1) 

fc 
(GHz) 

0.702 1.019 1.237 1.405 1.735 

VIII. SUMMARY 

The EMAP5 hybrid FEM/MoM code allows 
users to analyze geometries with large PEC surfaces 
and lossy dielectrics. Unlike codes that simply use the 
MoM surface as an absorbing boundary for the FEM 
region, EMAP5 can model PEC surfaces inside, 
outside and adjacent to the boundary between FEM and 
MoM regions.  This permits a variety of interesting 
geometries to be modeled efficiently.  The SIFT5 input 
translation code allows users to input simple 3D 
geometries to EMAP5 without a graphical user 
interface.  Four sample geometries were analyzed that 
demonstrate the types of problems that can be analyzed 
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using SIFT5 and EMAP5. Good agreement was 
achieved between EMAP5 results and other well-
established codes, analytical results, and 
measurements. 
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Appendix A.  Evaluation of B Matrix  

The elements in B  are given by, 

dSB
mS

mn  )(  )( nm rfrw •= ∫ .      (A-1) 

When edge m and n do not lie on a common triangle, 
Bmn is zero. In addition, Bmn= 0 when m=n, because 

).(ˆ)( nn rfnrw ×=       (A-2) 

If edge m and n lie on a common triangle qT ,  Bmn is 
given by, 
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The ± signs before lm and ln refer to the edge directions 
of edge m and edge n, respectively. The integral term 
in Equation (A-3) can be evaluated using the one-point 
Gaussian Quadrature technique, 
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where cpr is the centroid of  triangle qT .  

 

 

Appendix B.  Evaluation of Matrix D 

The elements in matrix D are given by, 
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where mnD′  is defined as follows, 
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where R     ,rrR =′= R- . The ± signs before lm and 

ln refer to the edge directions of edge m and edge n, 
respectively. Because the EFIE given by Equation (8) 
already excludes the singularity at r = r ′ , mnD ′  can be 

evaluated directly using the seven-point Gaussian 
Quadrature technique. 


