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ABSTRACT 

Hybrid FEM/MoM methods combine the finite 
element method (FEM) and the method of moments 
(MoM) to model inhomogeneous unbounded 
problems. These two methods are coupled by 
enforcing the continuity of tangential fields on the 
boundary that separates the FEM and MoM 
regions. When modeling complex geometries with 
many elements on the boundary, the MoM part of 
the problem is the bottleneck of the hybrid method 
since it requires O N  memory and O N  
computation time. This paper presents a hybrid 
FEM/MoM formulation applying the fast multipole 
method (FMM) that greatly reduces the memory 
requirement associated with MoM part. Two 
practical electromagnetic problems are presented to 
validate this method. 

2( ) 3( )

INTRODUCTION 

The hybrid finite-element-method/method-of-
moments (FEM/MoM) has been used to analyze a 
variety of electromagnetic scattering and radiation 
problems effectively. FEM is used to model 
detailed structures with complex inhomogeneities 
and MoM is used to model larger metallic 
structures and to provide an exact radiation 
boundary condition to terminate the FEM mesh. 
These two methods are coupled by enforcing 
tangential field continuity on the boundary 
separating the FEM and MoM regions. Both the 
FEM and MoM are powerful methods, but each of 
these methods has its own advantages and 
disadvantages. MoM handles unbounded problems 
very effectively but is less efficient when complex 
inhomogeneities are present. Inhomogeneities are 
easily handled by FEM. However, FEM is most 
suitable for bounded problems. Hence, methods 
that combine MoM and FEM are advantageous for 
treating electromagnetic problems involving 
unbounded, complex structures.  

The FEM part of the hybrid method produces a 
sparse matrix, which requires ( )O N  memory, 
where N is the total number of unknowns in the 
FEM region. On the other hand, the MoM part of 

the hybrid method produces a dense matrix, which 
requires ( )2

SO N  memory and ( )3
SO N  CPU time, 

where NS is the total number of unknowns on the 
MoM boundary. The final system of equations 
produced by the hybrid method consists of a 
partially full, partially sparse matrix. An iterative 
solver is usually preferred to solve this matrix 
equation. However, the computational effort 
primarily associated with the MoM part limits the 
size of the problems that can be solved.  

(O N

( SO N log

Rokhlin introduced a fast multipole method to 
speed up the matrix-vector multiplication that arises 
in the iterative solution of MoM equations [1]. This 
method has been applied to electromagnetic 
scattering computation by Engheta [2], Lu [3], and 
Song [4] et al. The memory required for matrix-
vector multiplications can be reduced from ( )2

SO N  

in MoM to )1.5
S  by using a two-level FMM, 

and to )N  by using a multilevel version 
of the FMM method.  

S

In this paper, a two-level FMM is implemented 
in a hybrid FEM/MoM method. Section II describes 
the formulation of the hybrid FEM/MoM and the 
related formulation using the FMM method. 
Preconditioning techniques to improve the 
condition of the resulting system of equations are 
also discussed. Section III presents numerical 
results using the FMM-enhanced hybrid 
FEM/MoM method. 

 FORMULATION 

The FMM method provides an efficient 
technique for performing matrix-vector 
multiplications for MoM matrices. This section 
describes the hybrid FEM/MoM formulation with 
FMM applied to the evaluation of the MoM 
integrals. 

The Hybrid FEM/MoM Formulation 
In the hybrid FEM/MoM, an electromagnetic 

problem is divided into an interior equivalent part 
and an exterior equivalent part. The interior part is 
modeled using the FEM and the exterior part is 
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modeled using a surface integral equation method. 
The two equivalent parts are coupled by enforcing 
the continuity of tangential fields on the FEM and 
MoM boundaries [5]. 

FEM is used to analyze the interior equivalent 
part by solving the weak form of the vector wave 
equation [6]: 

(

( ) int

0 r
0 rV

S V

     + j     dV
j  

ˆ=  n  dS     dV

ω ε ε
ωµ µ

  ∇×
• ∇× •  

  

× • − •

∫

∫ ∫

E(r) w(r) E(r) w(r)

H(r) w(r) (r) w(r)J

)


   (1) 

where S is the surface enclosing volume V, w(r) is 
the weighting function, and Jint is an impressed 
source inside volume V. A Galerkin procedure is 
usually used to test equation (1). The resulting FEM 
matrix equation has the form, 

ii is i i

si ss s ss s s

g0 0 0A A E  =   + 
g0 JA A E B
        
        

         
  (2) 

where {Ei} is a set of unknowns for the electric 
field within the FEM volume;  {Es} and {Js} are 
sets of unknowns for the electric field and the 
electric current density on the dielectric surface, 
respectively; Aii, Ais, Asi, Ass and Bss are sparse 
coefficient matrices; and gi and gs are source terms.  

The exterior equivalent problem can be 
analyzed by using an electric field integral equation 
(EFIE), magnetic field integral equation (MFIE), or 
both, i.e., combined field integral equation (CFIE). 
Both the EFIE and MFIE equations are prone to 
errors at frequencies corresponding to the resonant 
frequencies of the closed surface. However, proper 
formulation of the CFIE is free of such errors [6]. 
The EFIE is in the form [7], 

[

]

inc

0

0 0 0

0
0

0

1
( ) ( ) ( ) G ( , )

2

( ) G ( , )

( ) G ( , ) ',

S

jk

j dS S
k

η

η

′ ′ ′= + ×∇

′ ′+

′ ′ ′− ∇ • ∇ ∈

∫E r E r M r r r

J r r r

J r r r' r

 (3) 

where k0 and η0 are the wavenumber and the 
intrinsic wave impedance in free-space. The MFIE 
is the dual of the EFIE [7], 
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The integral term in equations (3) and (4) is a 
principal-value integral, i.e., the singularity at 

′=r r is excluded. 

The equivalent currents on the boundary are 
represented by a series of basis functions. In this 
case, triangular basis functions, , (RWG basis 
functions) were employed [8], 

( )f r

1

( ) ( ) ( )
sN

s n
n

J
=

= ∑J r f r  (5) 

1

( ) ( ) ( )
sN

s n
n

E
=

= ∑M r f r  (6) 

where Ns is the total number of unknowns on the 
surface S. The EFIE and MFIE in equations (3) and 
(4) have four different discrete forms using 
different testing functions [9]. Two of them, TE and 
NE, are described in the following sections. In both 
cases, the resulting MoM matrix equation has the 
following structure, 

[ ] [ ] [ ] [ ] [ ]  s sC J D E F= − . (7) 

The TE form 
One method of discretizing the EFIE is known as 

the TE form (short for t ⋅ E where  denotes a unit 
vector tangential to S). In this form, the EFIE in 
Equation (3) is tested using functions . The 
elements in matrices [C], [D] and [F] are then given 
by [10], 
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In equation (8), the operator has been transferred 
to the testing function f  so that C

∇
( )m r mn has an R-1 

singularity that can be evaluated analytically [8]. 

The NE form 

In this form, the EFIE in Equation (3) is tested 
using functions n × f , where  is a unit normal 
vector pointing outward from the boundary surface. 
The elements in the matrices [C], [D] and [

ˆ (r) n̂

F ] are 
given by [10], 
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The matrix elements in TH and NH forms can be 
derived from those in TE and NE forms.  

Note that neither the FEM matrix equation (2) 
nor the MoM matrix equation (7) can be solved 
independently. They are coupled through the Js and 
Es terms. Three different formulations, the 
combined formulation, the inward-looking 
formulation and the outward-looking formulation, 
can be used to solve the coupled system [6], [13].  

Application of the FMM Method 
To apply the FMM, the Ns basis functions are 

divided into M localized groups, labeled by an 
index l, each supporting Ns /M basis functions. For 
nearby group pairs ( l ,l )′ , the matrix elements are 
calculated using the numerical evaluation of 
equations (8)–(13). For non-nearby groups ( l ,l )′ , 

let  be the observation point,  be the source 

point,  be the center of l group which contains 

, and  is the center of l′ group which contains 

, 

mr nr

lr

rmr

nr
l ′

.

mn m n

m l l l l

ll ml nl

′ ′

′ ′

= −

= − + − + −

= + −

r r r

r r r r r r

r r r
n  (14) 

m

For simplicity, the same subscripts used to label 
basis functions are employed to label the source 

and observation points here. Equation (14) breaks 
the path from the source point  to the observation 

point  into three parts: the path from the source 
point to the center of the l′ group, the path from the 
center of the l′ group to the center of the l group, 
and the path from the center of the l group to the 
observation point. The scalar Green’s function 
between the source point and the observation point 
can be approximated as [3], 

nr

mr

where 2 ˆd k∫  is  a surface integral over a unit 

sphere,  and  

( 2 )

0

cos ) ( ) (2 1) ( ) (cos )
L

l

L l
l

j l h Pθ κ
=

= − +∑ θ  (16) 

where  is a spherical Hankel function of the 
second kind and  is a Legendre polynomial. 

( 2 )
lh ( x )

lP ( x )

Substituting (15) into equations (8), (9), (11), 
and (12), we can get the matrix elements in TE and 
TH form using the approximate Green’s function. 
These elements seem to be more complicated than 
their counterparts obtained using the MoM method, 
but they can be evaluated more efficiently. 

The TE form 

The elements in matrices [C] and [D] are 
approximated by, 
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Equation (17) requires both a vector dot product of 
 with  and a scalar product of U  with 
.  

C C
mlU

nlV ′

nl ′V ml

The NE form 

Similarly, the elements in matrices [C] and [D] 
in equations (11) and (12) are given by, 
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where 
, , ˆC NH C TE

ml ml n= ×U U  (26) 

, ˆC NH C NH

ml mlU k= • U ,

,

 (27) 

, ˆD NH C NH

ml mlk= ×U U  (28) 

Figure 1 illustrates how the computational 
complexity can be reduced by applying FMM, 
which applies approximate Green’s functions to the 
evaluation of MoM integrals. In this figure, a 
hollow circle represents a source point, a solid 
circle represents an observation point, a hollow 
square represents a group center for a few source 
points, a solid square represents a group center for a 
few observation points, and a line that connects a 
circle with a circle or a square represents a matrix 
element resulting from the direct interaction from 
the two connecting objects. Using the MoM 
method, the four points illustrated in Fig. 1(a) 
generate a matrix with 4 4  elements. Using 
the FMM method however, every two points are 
grouped together, and only the group center has a 
one-to-one interaction with the other group centers. 
The matrix illustrated in Fig. 1(b) has only 12 
elements since the number of one-to-one 
interactions is reduced. When there are more 

groups and more points per group, this reduction 
can be much more significant. 

16× =

An iterative solver based on the inward-looking 
formulation or the combined formulation is usually 
preferred for the solution of the hybrid FEM/MoM 
matrix equation when the FMM method is 
employed. The combined formulation was used in 
this study since it doesn’t require a direct inverse of 
the FEM matrix.  

 
       (a)  MoM               (b) FMM  

Figure 1. Computational complexity reduction by 
using FMM.  

The hybrid FEM/MoM matrix equation 
employing the combined formulation is given by, 

ii is i i

si ss ss s s

s

A A 0 E g
A A B E g
0 D C J F

   
 


  − = 


  

 


  −     

. (29) 

In practice when the FMM method is employed, the 
C and D matrix elements resulting from far groups 
in equation (29) are not generated explicitly using 
equations (17), (18), (24), and (25). Instead, these 
equations are used to generate the matrix-vector 
multiplication directly [3]. So the explicit C and D 
matrices are sparse and contain only elements 
resulting from the nearby groups generated using 
the MoM method, denoted as Cnear and Dnear, 
respectively. Thus, the near matrix  is given 
by 

LHS ′

[ ]
ii is

si ss ss

near near

A A 0
LHS A A B

0 D C

 
 ′ = − 
 − 

. (30) 

Preconditioning technique 
The convergence of an iterative solution is 

strongly dependent on the condition of the matrix 
and the iterative solver used. The coefficient 
matrices generated by hybrid FEM/MoM 
techniques often have very large condition 
numbers. Without a preconditioner, the iterative 
solver may converge very slowly, or not at all. A 
good preconditioner should be easy to construct, 
require little memory and improve the convergence 
rate significantly. 
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Diagonal and block diagonal preconditioners 
have been widely used in the past [4]. LU and 
incomplete LU (ILU) factorization are commonly 
used to construct these preconditioners [15]. Matrix 
LHS' in equation (30) and the preconditioner LU 
matrices are usually the major memory consumers 
for an iterative solver. Special techniques must be 
applied to reduce the memory requirements of the 
preconditioner for electrically large problems [16].   

In this study, a biconjugate gradient stabilized 
(BICGSTAB) solver was implemented. 
BICGSTAB is a popular and stable Krylov 
subspace method for the iterative solution of linear 
systems. A preconditioner using the absorbing 
boundary condition (ABC) to provide a physical 
approximation of the MoM boundary was also 
employed [17, 18]. 

 NUMERICAL RESULTS 

EMAP5 (Electromagnetic Analysis Program 
Version 5) is a hybrid FEM/MoM modeling code 
that has been used to model signal integrity, 
scattering and radiation problems [19]. On a 
personal computer with 1 GByte of memory, 
EMAP5 is generally limited to the solution of 
problems with no more than 3600 boundary 
elements. The fast multipole method described in 
the previous section was implemented in EMAP5 in 
order to model larger problems. This section 
describes two practical examples. A commercial 
mesh generator was used to discretize the problems 
presented in this paper. Results obtained from the 
FMM-enhanced EMAP5 (EMAP5-FMM) are 
compared to results obtained using other well-
established codes or analytical results. 

The first sample problem is to model the input 
impedance of a printed circuit board (PCB) power 
bus structure. As shown in Fig. 2, the board 
dimensions are 10 cm × 8 cm × 2 mm. The top and 
bottom planes are perfect electric conductors 
(PECs). The dielectric between the PEC layers has 
a relative dielectric constant of 4.2 and a loss 
tangent of 0.02. An ideal current source is used to 
excite the structure at the point ( ix 3=  cm, iy 2=  
cm). The frequency range of interest is from 30 
MHz to 5 GHz. 

The MoM boundary was chosen to be the 
physical boundary of the board. The mesh density 
used for this problem was 12 elements per 
wavelength at 5 GHz. The discretization of this 
problem is summarized in Table 1. The total 
number of unknowns is given by the sum of the 
number of Ei, Ed, Jh and Jc elements. The TE form 

is sufficient to generate a stable solution for this 
problem.  

r, tan

z 
y 

x 

10 cm 

8 cm 

2 mm 

( x i, y i) 

δ ε  
Figure 2. A PCB power bus structure. 

In order to achieve a good approximation in 
equation (15), the size of a group should be 
proportional to the wavelength, so the number of 
groups varies with frequency. The number of 
groups generated for this structure at different 
frequencies is shown in Figure 3. At lower 
frequencies (e.g. below 1.5 GHz), the structure is 
electrically small, and the size of all groups must be 
much smaller than a wavelength. In this situation, 
the approximation in equation (15) becomes 
numerically unstable due to the divergent behavior 
of the spherical Hankel function when its order is 
much larger than its argument. It is invalid to use 
equation (15) in such cases, and all the elements 
must be in the same group (i.e., the matrix elements 
should be evaluated using MoM integrals). As the 
frequency increases, the wavelength decreases and 
the software assigns more groups to this structure. 
Figure 4 shows the groups of surface triangles at 
5 GHz using different shades of gray to represent 
different groups. There are a total of 30 groups. 

Table 1. Discretization of the problems 

 Problem 1 Problem 2 

Number of nodes 798 7,854 

Number of 
tetrahedral 
elements 

2,189 23,376 

Number of 
triangles 1,580 9,186 

Number of inner 
edges (Ei) 

1,406 15,533 

Number of FEM 
boundary edges 
(Ed) 

144 13,779 

Number of MoM 
boundary edges 
(Jh+Jc) 

2,370 13,779 

Total number of 
unknowns  3,920 43,091 
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Figure 3. Number of groups at different frequecies 

for sample problem 1. 

Groups  are defined as near groups when 
the following criteria are satisfied, 

( l ,l )′

1.5 max( )llD ′= <r d  (39) 

where D is the distance between two groups, 
max(d) is the maximum size of a group.  

 
Figure 4. Mesh and groups for problem 1 at 5 GHz. 

Since there are a total of 3920 unknowns in this 
structure, the near matrix LHS' in equation (30) can 
be used to build the preconditioner without 
exceeding the memory limit on a personal 
computer. Since the C and D matrices are 
dominated by the near group contributions 
evaluated using MoM, an ILU factorization on 
LHS' reduces the condition number of the matrix on 
the left hand side of equation (29) and the number 
of iterations significantly. 

Figure 5 shows a plot of the memory required 
by LHS' and using ILU factorization on LHS' as a 
preconditioner. In this study, ILU factorization 
based on drop tolerance was adopted [15]. The 
memory required to evaluate equations (19), (20), 
(26), and (27) is negligible since no matrix 
elements are generated explicitly. The general 

behavior of the memory requirement versus 
frequency is directly related to the number of 
groups shown in Fig. 3. As frequency goes up, 
there are more groups, and more interactions 
between group pairs may be evaluated using the 
FMM method, thus the memory required to store 
the near matrix is reduced. Below 2.8 GHz, 
although the number of groups varies from 1 to 9, 
the groups are so close to each other that the 
interaction between them has to be evaluated by the 
MoM integrals, so the memory required to store the 
near matrix is about the same. The memory 
required by the near matrix at 5 GHz is less than 
half of that required at 30 MHz. The memory 
required to store the ILU factorization is generally 
lower when the memory required by the near 
matrix is reduced.  
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Figure 5. Memory cost of the near matrix and 
preconditioner. 

To validate the EMAP5-FMM result, a cavity 
model was also used to calculate the input 
impedance of the same rectangular power bus 
structure. The cavity model has been widely used to 
analyze PCB power-return plane structures [20], 
[21]. For a thin power-return plane pair with a 
reasonably good dielectric and PEC conductors, the 
input impedance is approximately determined as,  

( ) ( )2 2 2

2 2 2
0 0

cos cos

( )
mn xm s yn s

in
m n xm yn

k x k y
Z j h

ab k k

χ
ϖµ

γ

∞ ∞

= =

=
+ +

∑∑ . (40) 

A more detailed explanation of equation (40) can 
be found in [21]. Figure 6 compares the EMAP5-
FMM result with the cavity model result. Although 
the cavity model does not account for the radiation 
from printed circuit board structures, there is good 
agreement between the two methods up to 5 GHz. 
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Figure 6. Input impedance comparison using 

EMAP5-FMM and cavity model. 

The second sample problem is to calculate the 
bistatic radar cross section (RCS) of a perfectly 
conducting sphere. The radius of the sphere is 15 
cm. The frequency of interest is 3 GHz. In this case, 
due to the large number of elements required, it is 
not possible to build a preconditioner from the 
matrix LHS' that fits in the physical memory of a 
personal computer. However, it is possible to 
construct an alternative preconditioner based on the 
FEM submatrix and an absorbing boundary 
condition (FEM-ABC) that is very memory 
efficient. In order to apply the ABC, the MoM 
boundary must be moved away from the PEC 
conductor and a specific CFIE form (TENH) is 
used [18]. An air sphere with a radius of 16 cm 
forms the MoM boundary, as shown in Fig. 7. More 
information on how to choose the location of the 
ABC can be found in [17]. 

 

R1 = 15 cm   

R2 = 16 cm 

 
Figure 7. A perfectly conducting sphere. 

Table 1 summarizes the discretization of this 
problem. The air layer generates 23,376 tetrahedral 
elements and 15,533 FEM inner edges. The 
triangular mesh density used for this problem is 10 
elements per wavelength. If the MoM matrix is 

calculated directly using the MoM method, the 
memory requirement for the [C] and [D] matrices is 
about 6 GBytes, which greatly exceeds the physical 
memory of the personal computer used for this 
modeling.  

Figure 8 illustrates the triangular surface mesh 
on the air sphere. There are a total of 194 groups on 
the surface. Ideally, groups on the surface of a 
symmetric structure like a sphere would have a 
similar number of elements. However, the grouping 
algorithm that we used produced several groups 
with only a few elements. A better grouping 
algorithm would balance the number of elements in 
each group. Nevertheless, the FMM algorithm 
performed very well for these examples.  

 
Figure 8. The meshes and groups for problem 2. 

The memory required to store the near matrix 
LHS' in this case is about 1.2 GBytes, which is only 
1 5  of that required to store the [C] and [D] 
matrices obtained by the MoM. However, this 
memory requirement is close to the limit of the 
personal computer used for this modeling. It is not 
possible to generate a precondtioner using ILU 
factorization of the near matrix LHS' on the same 
computer due to its huge memory requirement. 
Using a FEM-ABC preconditioner and techniques 
reported in [18], the memory required for the 
preconditioner is only about 0.02 GBytes and the 
BICGSTAB solution converges to a tolerance of 
10-3 in 26 steps.  

air 

PEC 

Analytical results for the RCS of this geometry 
can be obtained using the Mie series [22]. Figure 9 
shows that the bistatic RCS results obtained using 
EMAP5-FMM agree with the Mie series results 
very well.  
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Figure 9. The bistatic RCS results of a perfect 

conducting sphere. 

CONCLUSION 

The fast multipole method was combined with a 
hybrid FEM/MoM method in this paper. 
Incorporating FMM allows an efficient evaluation 
of the surface integral and reduces the memory 
required to model structures with a large number of 
boundary elements. Two practical problems were 
investigated to validate the formulation and to 
demonstrate the memory efficiency of FMM. Good 
agreement was achieved between the FMM-
enhanced hybrid FEM/MoM method and other 
analytical results.  

For the first sample problem with 2,370 MoM 
boundary edges, the near matrix in the FMM 
employs about half of the memory required to store 
the fully-populated matrix generated by the MoM at 
5 GHz. For the second sample problem with 13,779 
MoM boundary edges, the near matrix uses about 
1 5  of the memory required to store the dense 
matrix generated by the MoM. If the FMM were 
applied to larger problems with more MoM 
boundary edges, we would expect even greater 
memory efficiency to be achieved.  

Besides the near matrix, the preconditioner also 
usually requires a lot of memory in an iterative 
solver. Since the condition number of the matrices 
generated by the hybrid method is usually very 
large, the preconditioner is crucial for the efficient 
convergence of the iterative solver. A good 
preconditioner will reduce the required iterations 
dramatically and require very little memory and 
little time to construct. Without an effective 
preconditioner, the modeling of the second sample 
problem would have been much more difficult on a 
personal computer. 

The FMM method implemented in this study 
does not work very well for electrically small 
structures due to the divergent nature of the 
spherical Hankel function used in this method. 
Electrically small structures that have many 
elements due to their geometric complexity are best 
modeled by locating the FEM/MoM boundary far 
from the complex part of the geometry. This 
minimizes the number of MoM boundary elements 
required and the total memory required to solve the 
problem.  

The FMM method is designed to model 
electrically large structures with a large number of 
boundary elements. Its multilevel versions have 
been successfully employed to model structures 
such as aircraft with more than 107 boundary 
elements [11]. For electrically large geometries, a 
hybrid FEM/MoM technique incorporating FMM is 
capable of solving much larger problems in less 
memory than a standard FEM/MoM approach.  
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