Multiscale Modeling of Electrochemical Capacitors: From Atomic Scale to System-Level

### Jim Qiao

Clemson Transport Phenomena Laboratory Clemson University



# Outline

### Basic concepts of supercapacitor

- Numerical modeling
  - Why modeling?
  - Modeling at different scales
  - Our capability

### Project: virtual prototyping of supercapacitors

### **Basic Concepts**

- Supercapacitor: electrical energy storage device based on the electrical double layers
- Key performance parameters
  - energy density  $\propto c A V^2$
  - power density
- Components and design issues
  - electrode
    - large specific area desired (~2000m<sup>2</sup>/g)
    - pore wettability
    - kinetic pore accessibility
  - electrolyte
    - high specific capacitance
    - wide electrochemical window
    - high conductivity
  - separator



Double Layer Capacitors (Adsorbed layers of ions and solvated ions)

# Emerging hierarchical materials design



Hierarchical porous materials with both nano- and meso-pores

- address the competing demands from large surface area vs. good kinetic pore accessibility
- to achieve a balance between energy density and power density

# Materials issues related to superCap performance

Given an electrode-electrolyte pair, what are the

- specific capacitance in mesopores
- specific capacitance in nanopores
  - typically decreases with pore size, but increase is also observed
- wettability of the nano/meso-pores by electrolytes



### Transport phenomena related to superCap performance

### □ Charging of a porous electrode

- charging dynamics in mesopores
- ion dynamics in nanopores



# dictates the charging/discharging kinetics and <u>effective capacitance</u> governed by the Nernst-Planck equations

### Why numerical modeling?

A tool to understand the working of superCap

- A tool for design optimization
  - help explore design parameter space effectively
  - help handle the conflicting requirements from different aspects of performance



## Our modeling capability – materials engineering

Materials chemistry modeling to understand the specific capacitance of an electrode-electrolyte pair



differential specific capacitance of an ionic liquid near a planar electrode

# Our modeling capability – transport phenomena

### Pore scale modeling of charging kinetics



#### System level modeling

feed pore scale results into system-level models

# Proposed project

### Ultimate goal:

to develop user-friendly software for virtual prototyping of a superCap based on hierarchical nanomaterials



### One-year plan

- Develop a cross-section scale and system-level modeling package capable of handling capacitance design at the device level
  - charging kinetics
  - discharging kinetics
  - temperature behavior
  - thermal management