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I. INTRODUCTION 

A. Purpose of This Report 

James Clerk Maxwell’s presentation titled, “A Dynamical Theory of the Electromagnetic 

Field” in 1864 established the foundation for electromagnetic field theory as we know it today 

[1]. His work, which drew upon the observations of Faraday, Ampere, Oersted, Gauss and 

others, introduced equations describing the relationship between electric and magnetic fields, 

electric charges and electric currents. From these equations, Maxwell was able to postulate the 

existence of electromagnetic waves, calculate the velocity of these waves and show that 

electromagnetic waves traveled at a velocity consistent with the velocity of light; suggesting that 

light could be a form of electromagnetic radiation. 

The next 100 years witnessed the development of the first antennas, the wireless telegraph, 

radio, radar, television and digital telemetry. Yet one of the most significant breakthroughs in 

electromagnetic analysis, the ability to solve Maxwell’s equations on a computer, did not occur 

until late in the 20
th

 century. 

Maxwell’s equations
1
 (Table 1) govern all electric, magnetic and electromagnetic behavior. 

They accurately describe electromagnetic behavior in any situation without making any 

assumptions about materials, linearity or relativity. They are the basis for all electrical 

interactions and they play a particularly important role in the design of antennas, EM wave 

propagation analysis, microwave circuit analysis, signal integrity and electromagnetic 

compatibility. 

Table 1: Maxwell’s Equations 

 Integral Form Differential Form 

Faraday’s Law:  
St




  E dl B ds  

t




  

B
E  

Ampere’s Law:  
S St




   H dl D ds J ds

 
t




  

D
H J  

Gauss’ Law: 
S V

dV D ds   D  

Gauss’ Magnetic Law: 0
S

B  ds  0 B  

As robust and powerful as these 4 equations are, they are virtually impossible to solve 

analytically for all but a small set of canonical configurations. Virtually all of the progress in this 

field in the 100 years following Maxwell’s 1864 publication was accomplished without the 

                                                 
1
 The set of 4 equations commonly referred to as Maxwell’s equations were actually derived from Maxwell’s theory 

by Oliver Heaviside and Heinrich Hertz (independently) more than 20 years later.   
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ability to find exact solutions to the problems of greatest interest. As a result most antennas 

tended to resemble cones, rods, spheres and other canonical structures; and antenna design was a 

mixture of science, art and trial-and-error. 

With the advent of reasonably powerful computers in the mid-1960s, a new form of 

electromagnetic analysis emerged; Computational ElectroMagnetic (CEM) modeling. Pioneers 

in this field such as Yee [2], Harrington [3], and others demonstrated that numerical solutions of 

Maxwell’s equations could be used to accurately describe the electromagnetic behavior of real 

antenna configurations. For the first time, it became possible to analyze a wide range of 

structures and accurately determine current and field distributions without building and 

measuring these structures in a lab. 

Of course, computers have come a long way since the 1960s, roughly doubling in speed and 

memory capacity every couple of years. Advances in CEM modeling techniques and software 

have also experienced exponential growth. A 1991 publication [4] briefly surveyed the progress 

in electromagnetic modeling up to that time. This report provides an expanded summary of the 

various EM modeling techniques and software that are currently available. 

B. Categorizing CEM Modeling Tools 

1. Time vs. Frequency Domain 

All CEM modeling codes use numerical techniques to solve Maxwell’s equations in some 

form. However, the specific technique employed, and the form of the equations solved, have a 

tremendous impact on the suitability of a given code to analyze a given problem. For example, 

some codes solve Maxwell’s equations in the frequency domain (i.e. one frequency at a time), 

while others work in the time domain (usually calculating a system impulse response). This is 

not unlike circuit theory, where circuits can be analyzed in the time or frequency domains. 

Frequency domain techniques tend to be more efficient when modeling problems with narrow 

bandwidths or high Q-factors. Time domain techniques are often more appropriate for modeling 

broadband structures and sometimes larger structures with complex geometries. It is interesting 

to note that the nature of the excitation (transient or swept-frequency) and the desired output 

format (function of time or frequency) are relatively minor considerations when choosing the 

optimum technique for a specific problem. This will become apparent as the techniques are 

described in more detail later in this report.  

2. IE vs. PDE 

Another important way that CEM modeling techniques are categorized is based on the form 

of Maxwell’s equations that they solve. As indicated in Figure 1, Maxwell’s equations can be 

expressed in two fundamental forms. The integral form of Maxwell’s equations describes the 

behavior of fields and currents over closed loops or closed surfaces of arbitrary size and shape. 

For example, Gauss’ Law in integral form effectively states that the net electric flux passing 

through any closed surface is equal to the total electric charge enclosed. 

The differential form of Maxwell’s equations describes the behavior of fields and currents at 

points in space. For example, Gauss’ Law in differential form simply states that the net change in 

the electric flux at any point is equal to the electric charge density at that point. 
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The differential forms of each equation can be derived from the integral form by taking the 

limit as the radius of a loop or surface approaches zero. Similarly, the integral forms can be 

derived from the differential forms. Nevertheless, CEM modeling techniques based on solutions 

of the integral form of Maxwell’s equations are fundamentally different from techniques based 

on the solution of the differential form. 

Techniques based on the solution of the differential form of Maxwell’s equations (Partial 

Differential Equation or PDE techniques) generally analyze a problem’s geometry by dividing 

the whole structure and the space around it into small pieces. The EM interactions in each region 

are modeled independently. Each piece interacts only with the other pieces that are nearby. 

Problems that involve radiation that propagates to infinity (open geometries) must utilize an 

“absorbing boundary” that defines the edge of the problem space. The effectiveness of PDE 

techniques applied to open geometries is highly dependent on the effectiveness of the absorbing 

boundaries. 

Integral Equation (IE) techniques generally segment only the boundaries between regions of 

the problem with different electromagnetic properties. For example, in a 3D structure, the 

“pieces” would be 2D surface patches or 1D wire segments. 

IE techniques generally require fewer pieces than PDE techniques; however every piece in an 

IE technique usually interacts with every other piece no matter where it is located, so the amount 

of calculation involved to solve the problem is not necessarily lower. 

3. 2D vs. 3D 

CEM modeling techniques can be implemented in 1, 2, or 3 dimensions. 1-dimensional codes 

are generally only of interest to students and academicians, though they can be useful in 

specialized applications. 2D codes are commonly used to obtain the per-unit-length transmission 

line parameters corresponding to circuit board trace geometries or cable cross-sections. They can 

also be used to model certain structures with symmetry in one dimension (e.g. a biconical 

antenna). Although most 2D problems could theoretically be analyzed using a 3D code (for 

example by modeling a length of cable and determining the fields in a single cross-section), this 

is rarely done. 2D modeling is much more efficient than 3D modeling (e.g. N
2
 vs. N

3
 unknowns 

corresponding to N
6
 vs. N

9
 calculations) and 2D codes optimized for a particular application will 

generally be much easier to use and more accurate than similar 3D codes. 

Most problems of interest however, are 3-dimensional and require a 3-dimensional modeling 

code. “Full wave” modeling codes calculate time-varying fields in 3 independent dimensions 

without placing any special restrictions on the behavior of the fields in any given dimension. All 

of the CEM modeling techniques described in this report can be implemented in 2 or 3 

dimensions. However, 2D and 3D implementations of a given technique can be very different. It 

is not necessarily true that the best technique for analyzing a particular 2D problem will be the 

best technique for analyzing a “similar” 3D problem. 

4. Static, Quasi-static, Full-wave or Asymptotic 

Claims that a particular technique works “from DC to daylight” are not uncommon, but CEM 

modeling codes are only accurate and efficient over a limited band of frequencies. Actually, it is 

not the frequency itself that matters as much as the size of the structure to be modeled relative to 

the wavelengths of the analysis. 
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Full wave modeling techniques, which are the main focus of this report, are most effective 

when the size of the structure being analyzed is within an order of magnitude of one wavelength 

(e.g. 0.1 to 10). Smaller objects are often more readily modeled with static or quasi-static 

codes. Larger objects are often better suited for analysis using asymptotic techniques. 

There are two categories of static modeling codes: electrostatic and magnetostatic. Since the 

electric and magnetic fields are uncoupled at DC, an electrostatic solver yields no information 

about the magnetic fields. Similarly, a magnetostatic solver does not calculate electric field 

distributions. The sources in an electrostatic analysis will be DC voltages or static charge 

distributions. All materials behave like perfect conductors or perfect dielectrics. Electrostatic 

solvers are used to determine induced charges or voltages, electric field distributions, or 

capacitances. The sources in a magnetostatic analysis are DC current distributions. Magnetostatic 

solvers are used to determine induced currents, magnetic field patterns or inductances. 

Static field solvers do not employ time or frequency domain techniques, because neither time 

nor frequency is variable. Static solvers can be either IE or PDE, however, the primary difference 

being whether the entire volume or just the material interfaces are sectioned. 

Static field analysis requires much less computation and tends to be more stable than full-

wave analysis. For these reasons, static field solvers are capable of analyzing configurations with 

significantly greater complexity than full-wave solvers using similar computer resources. 

Quasi-static modeling codes generally employ static field solvers with some allowance made 

for the solution to vary (slowly) with time. For example, an analysis of an electric motor may 

employ a magnetostatic solver to recalculate the magnetic field over and over as the rotor 

changes position. Similarly, an analysis of dielectric breakdown in a capacitor may rely on an 

electrostatic field solver while adjusting static charge distributions in response to the calculated 

field strengths and non-linear properties of the dielectric. 

At high frequencies, where the structure being analyzed is many wavelengths, full-wave 

solutions are less attractive because the number of electrically small “pieces” required to 

represent the entire problem space can quickly grow to a number that exceeds the computer 

resources available. At these frequencies, codes employing asymptotic techniques are usually 

more efficient and accurate. Asymptotic techniques model radiated fields as if they were rays of 

light; emanating from a source and traveling in a straight line to the point where the field is 

calculated. These rays may be absorbed, reflected or diffracted by objects in the problem space. 

The calculated field at a given point is the vector sum of all rays reaching that point from all 

sources. There is no need to grid the entire volume as in full-wave PDE techniques; and there is 

not an interaction between every pair of elements as in IE-based full-wave methods. 

5. Circuit-based Field Solvers 

There are at least two CEM modeling techniques that convert a field problem to an RLC 

circuit analysis problem that can then be solved using SPICE-like circuit modeling tools. An 

advantage of these techniques is that the resulting circuit can be analyzed in either the time or 

frequency domain. Another advantage is that these techniques can make it easier to incorporate 

linear or non-linear circuit elements into the field analysis. 
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6. Linear vs. Higher-order Methods 

Since virtually all general purpose CEM modeling codes break the problem space into a set of 

pieces (or elements), it is useful to categorize techniques depending on how the charge, current 

or field quantities within these elements are defined. Most CEM modeling tools employ linear 

elements, meaning that the quantities within a single element are described by a linear function 

whose entire domain is confined within the boundaries of that element. Specifying the amplitude 

of that function completely determines the quantity within the element independent of the 

amplitudes specified outside the element.  

Higher-order techniques employ elemental functions that are not confined to the boundaries 

of a single element. These functions are normally nth-order polynomials where n>1. This 

formulation allows complex charge, current or field distributions to be represented accurately 

with fewer (i.e. larger) elements. Fewer elements generally translates to less computation time 

and memory, so the primary advantage of higher-order techniques is that they solve problems 

more quickly and accurately than their linear counterparts. 

The primary disadvantage of higher-order techniques is that they can require significantly 

more effort to segment properly and the additional “bookkeeping” required to set up a problem 

for analysis can sometimes consume the resources that were saved by using the higher-order 

formulation. 

Virtually all of the full-wave modeling techniques discussed in this report can be formulated 

with higher-order elements, but moment method and finite element codes are perhaps better 

suited for this than codes based on other techniques. 

C. Outline of This Report 

The next five sections of this report describe various CEM modeling techniques commonly 

employed by commercial software or used to model specific problems of interest. The focus of 

these sections is on full-wave EM modeling, though several of these techniques can also be 

formulated to solve quasi-static problems. Section VII reviews high-frequency (asymptotic) 

techniques. Section VIII discusses hybrid methods, which combine two or more techniques to 

create codes that can analyze a wider variety of problem geometries. Finally, Section IX provides 

a brief summary of commercially available CEM modeling software available as of the date of 

this report. 

II. THE METHOD OF MOMENTS 

In the 1960s, R.F. Harrington [5] and others applied a technique called the Method of 

Moments to the solution of electromagnetic field problems. The Method of Moments (also called 

the Method of Weighted Residuals) is a technique for solving linear equations of the form, 

 ( ) f L  (II-1) 

where ( )L is a linear operator, f is a known excitation or forcing function, and  is an unknown 

quantity. To solve this problem on a digital computer, we start by expressing the unknown 

solution as a series of basis or expansion functions, vn, 
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1

N

n n
n

a v


   (II-2) 

where an are unknown coefficients describing the amplitude of each term in the series. 

Now instead of one equation with a continuous unknown quantity, f, we have an equation 

with N scalar unknowns, 

 
1 1 2 2

( )N Na v a v a v f   L  (II-3) 

To solve for the values of an, we need N linearly independent equations; so N different 

weighting or testing functions, wn, are applied. This yields the following system of N equations 

in N unknowns: 

 

1 1

2 2

( )

( )

( )N N

w w f

w w f

w w f







  

  

  

< ,L < ,

< ,L < ,

< ,L < ,

 (II-4) 

Or, expressed in matrix form, 

 

1 1 1 2 1 1 1 1

2 1 2 2 2 2 2 2

1 2

( )) ( )) ( ))

( )) ( )) ( ))

( )) ( )) ( ))

N

N

N N N N N N N

w v w v w v a w f

w v w v w v a w f

w v w v w v a w f

        
     

   
     
     
     

        

< ,L < ,L < ,L < ,

< ,L < ,L < ,L < ,

< ,L < ,L < ,L < ,

 (II-5) 

This linear system of equations has the form, 

     Z A B  (II-6) 

where the elements of [Z] are known quantities that can be calculated from the linear 

operator, ( )L , and the chosen basis and weighting functions. The elements of [B] are 

determined by applying the weighting functions to the known forcing function. The unknown 

elements of [A] can be found by solving the matrix equation. After solving for [A] (i.e. the 

unknown coefficients, an), the value of  is determined using Equation (II-2).  

The Method of Moments (MoM) can be used to solve a wide range of equations involving 

linear operations including integral and differential equations. This numerical technique has 

many applications other than electromagnetic modeling; however the MoM is widely used to 

solve equations derived from Maxwell’s equations. In general, moment method codes generate 

and solve large, dense matrix equations and most of the computational resources required are 

devoted to filling and solving this matrix equation. The particular form of the equations that is 

solved and the choice of basis and weighting functions have a great impact on the size of this 

matrix and ultimately the suitability of a given moment method code to model a given geometry. 
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A. Equation Options 

The most common equation form solved by CEM modeling codes based on the Method of 

Moments is the Electric Field Integral Equation (EFIE). This is an equation of the form, 

 ( , )efE J M  (II-7) 

where E is the impressed (i.e. source) electric field and J and M are the induced electric and 

magnetic current densities, respectively. The EFIE will be discussed further in the section 

describing the Boundary Element Method. Generally, codes that solve a form of the EFIE excel 

at modeling open (unbounded) geometries in which the electric field dominates in the near-field 

region of the source. 

Another equation solved by Moment Method codes is the Magnetic Field Integral Equation 

(MFIE), which has the general form, 

 ( , )mfH J M  (II-8) 

where H is the impressed (i.e. source) magnetic field intensity. Codes that solve a form of the 

MFIE are best suited for modeling geometries with circulating currents, where the magnetic near 

field is dominant. 

Moment Method codes based on the EFIE or MFIE alone, may exhibit unstable behavior 

when the modeling surfaces form a resonant cavity at a particular frequency. To avoid this, many 

moment method codes solve a linear combination of the EFIE and MFIE known as a Combined 

Field Integral Equation (CFIE). This requires more calculations to fill the matrix, but results in a 

more stable solution when the modeling surface is large enough to support an interior resonance. 

Some CEM modeling codes employ the Method of Moments to solve other equations. For 

example, static modeling codes often solve a form of Laplace’s equation relating electric field 

strengths to charge densities or magnetic field strengths to current densities. The Generalized 

Multiple Technique (GMT), which is described in another section of this report, employs a 

moment method to solve equations for the electric field generated by multipole sources. 

B. Basis and Weighting Functions 

An appropriate choice of basis and weighting functions can make a tremendous difference in 

the number of elements, N, required to obtain an accurate solution. Since the solution is 

represented as a summation of basis functions [see Eq. (II-2)], it is important to choose basis 

functions that accurately represent the solution with a small number of terms. For example, when 

solving for the current distribution on a surface, the basis functions should be current distribution 

elements that can be summed together in a way that is able to efficiently approximate any overall 

current distribution that might result from the analysis. 

Weighting functions should be chosen that maximize the linear independence of the various 

weighted forms of the equation. Often, the best choices of weighting functions are functions that 

are identical to the basis functions. Moment method techniques that employ identical basis and 

weighting functions are called Galerkin techniques. 
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III. THE BOUNDARY ELEMENT METHOD 

Boundary Element Method (BEM) codes use the method of moments to solve an EFIE, MFIE 

or CFIE for electric and/or magnetic currents on the surfaces forming the interfaces between any 

two dissimilar materials. Most CEM modeling codes that bill themselves as simply “moment 

method” codes employ a boundary element method. 

SE , H
i i

E , H
s s

J
s

M
s

E , H
i i

E , H
s s

m, e , s

 

Figure 1: Principle of Equivalence. 

The first step in a boundary element analysis is to represent the problem geometry as a 

distribution of equivalent surface currents in a homogeneous medium (usually free space). As 

illustrated in Figure 1, the fields exterior to an object consist of fields incident on the object, 

fields reflected from the object and fields emanating from the object. The Equivalence Theorem 

[6] states that any field distribution exterior to an object can be exactly duplicated by removing 

the object and replacing it with a set of equivalent electric and magnetic currents on the boundary 

surface. 

Since the forms of EFIE and MFIE used by boundary element methods are only valid for 

current distributions in a uniform homogeneous medium, all objects in the problem space must 

be removed and replaced with (initially unknown) surface currents conforming to their 

boundaries. 

Equations (III-1) and (III-2) below show a common form of the EFIE and MFIE employed by 

boundary element method codes that model metallic objects only (i.e. there are no equivalent 

magnetic surface currents); 

 
4

( ) ( ') ( , ') 'S eS

j
r r r r dS

k






 E J G  (III-1) 

 
1

4
( ) ( ') ' ( , ') 'S mS
r r r r dS


 H J G . (III-2) 
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In these equations, '
S
dS represents integration over all boundary surfaces. Note that since 

the boundary only exists at places where an interface between two different materials occurred, 

the size of the boundary is limited (i.e. there is no integration to infinity). 

The functions Ge and Gm in these equations relate source currents to the electric and 

magnetic field generated by those currents, respectively. Ge and Gm are called Green’s functions 

[7] and they play a central role in boundary element analysis. Free-space Green’s functions 

express the field emanating from the surface current represented by an individual basis function 

(e.g. the current on an individual surface patch). However, other Green’s functions can be 

employed to express the field emanating from more complex structures that are common to a 

particular problem geometry. For example, a geometry consisting of metal surfaces coated with a 

thin dielectric may employ a special Green’s function that expresses the fields emanating from 

the combined surfaces of the metal-dielectric and dielectric-air interfaces. This can substantially 

reduce the number of surface elements required to model the problem. 

All Green’s functions are approximate expressions that are accurate for a limited range of 

frequencies, distances and source geometries. Many boundary element methods employ several 

Green’s functions to model different regions of a problem or different problem environments. 

General purpose 3D BEM codes usually employ basis and weighting functions that are linear 

current distributions on a rectangular or triangular surface patch. There are generally two 

unknowns per patch corresponding to two orthogonal current vectors. Thin wires can be 

represented very efficiently with a single unknown representing the amplitude of the current 

distribution on each wire segment. 

Point matching techniques employ basis and weighting functions that are simple impulse 

functions often at the center of each patch or segment. Pulse matching techniques employ basis 

and weighting functions that have a constant value everywhere on the patch or segment. More 

accurate implementations employ basis and weighting functions that transition smoothly from 

one patch to the next. Rao-Wilton-Glisson (RWG) [8] basis functions are a popular choice for 

codes that employ triangular surface patch elements. Roof-top basis functions [9] are often 

employed by codes that use rectangular elements. 

Generally, CEM software employing a boundary element method excels at modeling 

unbounded problems, particularly when it is not necessary to model regions of great complexity 

in detail. Structures that can be adequately represented with a wire grid can be analyzed very 

effectively using boundary element methods, because these methods model wires very 

efficiently. 

 Table 2 lists various strengths and weakness of BEM modeling techniques. Note that the 

capabilities of any particular modeling software depend strongly on the form of the integral 

equation solved, the choice of basis and weighting functions, the Green’s function(s) employed, 

and the matrix solver and any optimization techniques employed. 
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Table 2: Strengths and Weaknesses of the Boundary Element Method 

BEM Modeling Strengths BEM Modeling Weaknesses 

 Excellent for modeling 

unbounded (radiation) problems. 

 Excellent for modeling metal 

plates and thin wires. 

 Good for modeling structures 

with lumped circuit elements 

included. 

 Does not model inhomogeneous or 

complex materials well. 

 Not good for modeling problems that 

combine small detailed geometries 

with larger objects. 

 CFIE formulation required to model 

enclosed structures of resonant size. 

Table 3 lists various CEM modeling codes that are based on a boundary element method. The 

codes listed and the comments in Table 3 are based on the information available to the authors as 

of the publication date of this report. 

Table 3: CEM Modeling Codes that use the Boundary Element Method 

Software Title Description Source 

Amperes/Coulomb/Faraday 3D quasi-static Integrated Eng. Software 

Antenna Model wire structures Teri Software 

CableMod 2D cable modeling CST/Simlab 

CONCEPT-II 3D full-wave TU Hamburg-Harburg 

Efield FD start-pack 3D full-wave efield 

Electro/Oersted 2D quasi-static Integrated Eng. Software 

EM3DS MMIC Modeling MEM Research 

EZNEC Pro Wire structures EZNEC 

FEKO 3D full-wave EM Software and Systems 

GEMACS 3D full-wave (wires and plates) Advanced Electromagnetics 

NEC2  3D full-wave (wires and plates) Open Source 

OPERA 2D 2D quasi-static Vector Fields 

OPERA 3D 3D quasi-static Vector Fields 

PCBMod 2D circuit board structures CST/Simlab 

SuperNEC Wire structures Poynting Antennas 

WIPL-D Pro 3D full-wave WIPL-D 
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IV.  THE FINITE ELEMENT METHOD 

Scalar finite element methods have been used by civil and mechanical engineers to analyze 

material and structural problems since the 1940s. However it wasn’t until the 1960s that FEM 

codes were developed to solve problems in electromagnetics. Some of the pioneers in this field 

were Silvester [10], Zienkiewicz [11], and Wexler [12]. Initial FEM-based CEM modeling codes 

were applied to problems in electrostatics and magnetostatics. Later they were used to solve 

high-frequency problems in 2 dimensions. Practical 3-dimensional codes did not appear until the 

1980s due largely to problems with vector parasites [13, 14] and unreliable absorbing boundary 

conditions [15]. Unwanted reflections from absorbing boundaries continue to be a problem with 

full-wave 3D FEM codes even today. 

Like BEM techniques, finite element methods can be based on different formulations (even 

the method of moments). However BEM techniques always solve an integral equation and FEM 

techniques always solve a differential equation. Every FEM code divides the entire problem 

domain into small elements. For 2D problems the elements are usually triangles or rectangles. 

For 3D problems, the elements are usually tetrahedra (4 faces) or bricks (6 faces). The domain 

must be finite and bounded. Modeling an unbounded (e.g. radiation) problem requires that the 

problem domain be bounded with special elements that absorb all incident energy. These 

elements are called ABC (Absorbing Boundary Condition) elements.  

The unknowns in scalar FEM codes are the three orthogonal components of the field at the 

“nodes” (vertices) of each element. The unknowns in vector FEM codes are the field components 

along the edges of each element. Scalar codes are conceptually simpler, but they are unsuitable 

for full-wave modeling, because they are susceptible to spurious solutions that can cause 

significant and unpredictable errors in the solution. Vector FEM codes are much less likely to 

exhibit these parasitics. 

To form a linear system of equations, the governing differential equation and associated 

boundary conditions are converted to an integro-differential form using either a variational 

method or a weighted-residual (moment) method. Variational methods solve for the unknown 

quantity by minimizing an energy functional. Weighted-residual methods multiply a weak form 

of Maxwell’s equations by a weighting function and integrate over each element. Ultimately, a 

matrix equation is generated in the form,  

     A X B  (IV-1) 

where [X] is a vector of the unknown field quantities, [B] is a vector of source terms, and [A] is a 

sparse matrix whose only non-zero values correspond to positions in the matrix corresponding to 

edges that share an element. 

Generally, the matrices generated by FEM codes are must larger than the matrices generated 

by BEM codes applied to similar geometries. This is because gridding an entire problem volume 

requires many more elements than gridding just the material interfaces. However, because FEM 

matrices are very sparse, they do not necessarily require more storage or computing resources to 

solve than the small, but dense, matrices generated by BEM codes. 

As indicated previously, modeling unbounded problems requires special absorbing elements 

(ABCs). Many formulations of these elements have been proposed [15-22]. The ABCs that have 
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been developed for 2D FEM codes work very well; however 3D FEM ABCs work well only at 

prescribed angles of incidence resulting in the need to locate the boundaries sufficiently far from 

other structures. Hybrid FEM/BEM codes terminate open surfaces of the FEM volume with a 

BEM surface negating the need for ABCs [23]. Unfortunately, the BEM portion of the resulting 

matrix is dense, which can significantly increase the amount of computational resources 

required.  

Perhaps the most attractive feature of the finite element method is its ability to model 

configurations that have complicated geometries and incorporate various materials. The 

electrical properties of each element are defined independently and elements can be as small or 

as large as needed to facilitate the analysis. 

Table 4 lists various strengths and weakness of FEM modeling techniques. Note that the 

capabilities of any particular modeling software depend on the specific formulation, the matrix 

solver and any optimization techniques employed. 

 

Table 4: Strengths and Weaknesses of the Finite Element Method 

FEM Modeling Strengths FEM Modeling Weaknesses 

 Excels at modeling 

inhomogeneous or complex 

materials 

 Excels at modeling problems that 

combine small detailed geometries 

with larger objects 

 Excels at modeling structures in 

resonant cavities or waveguides 

 Absorbing boundary required for 

modeling unbounded (radiation) 

problems 

 Difficult to model thin wires accurately 

 

Table 5 lists various CEM modeling codes that are based on the finite element method. The 

codes listed and the comments in Table 5 are based on the information available to the authors as 

of the publication date of this report. 
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Table 5: CEM Modeling Codes that use the Finite Element Method 

Software Title Description Source 

Amaze (HiPhi/Magnum) 3D quasi-static Field Precision 

Analyst 2D and 3D full-wave STAAR 

Microwave Studio –FDS 3D full-wave CST 

EMDS 3D full-wave Agilent Technologies 

EMS 3D quasi-static ElectromagneticWorks, Inc. 

FEMM 2D quasi-static Dr. David Meeker 

Flux2D/3D 2D and 3D quasi-static Magsoft 

HFSS 3D full-wave Ansys / Ansoft 

JCMsuite optics  JCMwave  

MagNet / ElecNet 3D quasi-static Infolytica 

Magneto / Oersted 2D quasi-static Integrated Eng. Software 

Maxwell 2D/3D quasi-static Ansys / Ansoft 

Opera 2D/3D 2D/3D quasi-static Vector Fields 

Q3D Extractor 2D/3D quasi-static Ansys / Ansoft 

QuickField 2D quasi-static Tera Analysis 

Tricomp EStat/PerMag 2D quasi-static Field Precision 

Tricomp WaveSim 2D high-frequency Field Precision 

V. THE FINITE DIFFERENCE TIME DOMAIN METHOD 

The Finite Difference Time Domain (FDTD) method, as first proposed by Yee [2], is a direct 

solution of Maxwell’s time dependent curl equations. It uses simple central-difference 

approximations to evaluate the space and time derivatives. A basic element of the FDTD space 

lattice is illustrated in Figure 2. An electric-field grid is offset from a magnetic-field grid in both 

space and time. A first-order central-difference approximation can be expressed as, 

           0
1 2 3 4 0 0

1

2

m
              

z y z y x xE t E t E t E t H t t H t t
l t

     (V-1) 

where l is the length of one side of the cubical cell in Figure 2. Hxott is the only unknown 

in this equation, since all other quantities were found in a previous time step. In this way, the 

electric field values at time t are used to find the magnetic field values at time tt. A similar 

central-difference approximation of Equation (V-1) can then be applied to find the electric field 
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values at time t2t from the magnetic field values at time tt. By alternately calculating the 

electric and magnetic fields at each time step, fields are propagated throughout the grid. 

Time stepping is continued until a steady state solution or the desired response is obtained. 

The required computer storage and running time is proportional to the electrical size of the 

volume being modeled and the grid resolution. 

 

Figure 2: Basic Element of the FDTD Space Lattice. 

For an open region problem, an absorbing boundary condition (ABC) is used to truncate the 

computational domain. One technique, which is obtained by factoring the wave equation to 

permit only outgoing waves, is differential based ABCs, such as those proposed by Engquist 

[24], Lindman [25], Mur [26], Liao [27], Keys [28], and Higdon [29]. Another is material based 

ABCs that are constructed so that the fields are dampened as they propagate into an absorbing 

medium. Rappaport [30] proposed an ABC employing pyramid-shaped absorber material. In 

1994, Berenger [31] introduced the perfectly matched layer (PML) absorbing boundary 

condition. This ABC outperforms any that had been proposed previously and is widely used 

today. Andrew [32] compared the accuracy of the Berenger perfectly matched layer and the 

Lindman higher-order ABCs for the FDTD method. Accuracy studies of ABCs have also been 

conducted for dispersive media [33, 34]. In 2003, Diaz [35] introduced a new radiation boundary 

condition for FDTD based on self-teleportation of fields.  

Because the basic elements are cubes, curved surfaces on a scatterer must be staircased. For 

many configurations this does not present a problem. However for configurations with sharp, 

acute edges, this approximation may lead to significant errors [36-37], and an adequately 

staircased approximation may require a very small grid size. Surface-conforming FDTD 

techniques with non-rectangular elements have been introduced to combat this problem [38-45]. 

Since all of the elements in an FDTD analysis must generally be the same size, the size of the 

elements is determined by the smallest structural details that need to be modeled. If an object 

under consideration contains small-scale geometries, such as a narrow slot or a very thin wire, an 

excessively fine grid would have to be used to accurately model the associated fields. To 

overcome these shortcomings, sub-cellular structures [46-55] have been introduced. Sub-cellular 

structures are essentially special FDTD cells whose boundary conditions have been altered to 

model small structures contained within the cells.  
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 One major advantage of the FDTD method is the ability to obtain wideband results using a 

transient excitation in one simulation. Frequency domain results can be obtained by applying a 

discrete Fourier transform to the time domain results. Since many materials have frequency 

dependent properties, it is necessary to take special precautions to model these materials 

correctly with a time-domain technique. In 1990, Luebbers [56] used a recursive convolution 

scheme to model a Debye media; this was the first frequency dependent FDTD formation. 

Kashiwa and co-workers [57-59] published the first papers utilizing the auxiliary differential 

equation (ADE) method to model Debye media, Lorentz media, and media obeying the Cole-

Cole Circular Arc law. In 1992, Sullivan [60] proposed a dispersive formulation based on Z 

transforms. Petropoulos [61] provided a comparison of the stability and phase error among 

frequency dispersive FDTD methods.  

Lossy surfaces can be modeled in FDTD codes by utilizing a surface impedance boundary 

condition (SIBC) [62-64]. A thin material sheet model has also been developed for the FDTD 

method [65-67].  

A primary advantage of FDTD methods is their great flexibility. Arbitrary signal waveforms 

can be modeled as they propagate through complex configurations of conductors, dielectrics, and 

lossy non-linear non-isotropic materials. Another advantage of FDTD techniques is that they are 

readily implemented on massively parallel computers, particularly vector processors and SIMD 

(single-instruction-multiple-data) machines. 

Time stepping techniques like FDTD are subject to dispersion errors when the time step is too 

large for the given problem size. Many researchers have studied the numerical dispersion error 

inherent in the FDTD method [68-76], but it is easily controlled by using appropriately small 

time steps.  

Table 6 lists various strengths and weakness of FDTD modeling techniques. Table 7 lists 

various CEM modeling codes that employ an FDTD solver. 

 

Table 6: Strengths and Weaknesses of the Finite Difference Time Domain Method 

FDTD Modeling Strengths FDTD Modeling Weaknesses 

 Excels at modeling 

inhomogeneous or complex 

materials 

 Excels at modeling very large 

problems 

 Runs efficiently on highly parallel 

computers 

 Absorbing boundary required for 

modeling unbounded problems, but 

PML boundaries work very well. 

 Difficult to model thin wires 

 Uniform cells must be small enough 

to model necessary detail, but still fill 

the entire volume. 

 High Q structures are not modeled 

efficiently 
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Table 7: CEM Modeling Codes that use the Finite Difference Time Domain Method 

Software Title Description Source 

ApsimFDTD 3D full-wave Applied Simulation Tech. 

CST M. Studio - TS 3D full-wave CST 

EMA3D 3D full-wave Electromagnetic Appl. 

EMPIRE XCcel 3D full-wave Empire 

EZ-FDTD 3D full-wave EMS-Plus 

Fidelity 3D full-wave Zeland Software 

GEMS 3D full-wave 2COMU 

LC 3D full-wave Cray Research 

PAM-CEM 3D full-wave ESI Group 

SEMCAD X 3D full-wave Schmid & Partner Eng. 

Toy 3D full-wave The CEMTACH Group 

XFDTD 3D full-wave Remcom 

VI. OTHER POPULAR CEM MODELING TECHNIQUES 

A. The Finite Integration Technique 

The Finite Integration Technique (FIT) is a consistent formulation for the discrete 

representation of Maxwell's equations on spatial grids. First proposed by Weiland [77] in 1977, 

the finite integration technique can be viewed as a generalization of the FDTD method. It is also 

similar to the finite element method.  

Weiland [77, 78] proposed exact algebraic analogues to Maxwell’s equations that guarantee 

physical properties of computed fields and lead to a unique solution. By discretizing the integral 

form of Maxwell’s equations on a pair of dual interlaced discretization grids, the finite 

integration technique generates so-called Maxwell’s Grid Equations (MGEs) that guarantee the 

physical properties of computed fields and lead to a unique solution.  
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where e  is the electric voltage between the grid points and h  is the magnetic voltage between 

dual grid points. d , b  and j  are fluxes over grid or dual grid faces. The allocation of the 

voltage and flux components on the dual grids is shown in Figure 3. 

 

Figure 3: Allocation of the voltage and flux components in the mesh. 

Due to the consistent transformation, the analytical properties of the fields are maintained 

resulting in corresponding discrete topological operators on the staggered grid duplet. The 

topology matrices C , C , S  and S  correspond to the curl- and the div- operators. The tilde 

means that the operator is performed on the dual grid. 

After discretization, the material property relations become 

 d M ee  (VI-5) 

 b M hm  (VI-6) 

 Aj M e j   (VI-7) 

where Me, Mm and Mk are matrices describing the material properties. The relations in (VI-1) - 

(VI-4) are exact on a given mesh, however, the material matrices contain the unavoidable 

approximations of any numerical procedure. In addition, these matrices have diagonal form [78]. 

Employing a so-called leap-frog scheme which samples values of e and h at times separated 

by a half time step, the MGEs can be rewritten as a set of two recursion formulas: 

 
1 1 1/ 2i i ih h tM Cem

      (VI-8) 

  3/ 2 1/ 2 1 1 1i i i ie e tM Ch je

         (VI-9) 

The recursion is stable if the time step inside an equidistant grid is restricted by the Courant 

criterion to  
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The calculation of each further time step only requires one matrix-vector multiplication. Thus 

it has the advantage being an explicit algorithm. 

The FIT can be applied to different mesh types [79, 80]. On Cartesian grids, the time-domain 

FIT is equivalent to FDTD. 

B. The Partial Element Equivalent Circuit Method 

The Partial Element Equivalent Circuit (PEEC) Method was developed by Ruehli [81, 82] in 

the 1970s and 1980s. This electromagnetic modeling technique does not solve Maxwell’s 

equations directly. Instead, it models electric field interactions as capacitances and magnetic field 

interactions as inductances. Metallic geometries are segmented on their surfaces, much as they 

would be using other integral equation techniques. Dielectrics (other than free space) are 

segmented throughout their volume. Each segment is then represented as a node in a large circuit 

model. The currents flowing in these segments are determined by analyzing the circuit using a 

SPICE-like circuit solver. 

This technique has the advantage that it is reasonably intuitive to many electrical engineers 

and it is easy to integrate the field solver with real circuit elements. Problems can be solved in 

the time domain or in the frequency domain, 

Static modeling with PEEC codes is particularly powerful and intuitive [83-86]. Full-wave 

modeling requires a circuit solver that can handle time-retarded values of mutual capacitance and 

inductance. Since this is not a normal feature of SPICE solvers, the circuit solver for full-wave 

PEEC codes must generally be distributed with the PEEC software. 

C. The Transmission Line Matrix Method 

The Transmission Line Matrix (TLM) method, introduced by Johns [87], is similar to the 

FDTD method in terms of its capabilities, but its approach is unique. Like FDTD, analysis is 

performed in the time domain and the entire region of the analysis is gridded. Instead of 

interleaving E-field and H-field grids however, a single grid is established and the nodes of this 

grid are interconnected by virtual transmission lines. Excitations at the source nodes propagate to 

adjacent nodes through these transmission lines at each time step. 

The symmetrical condensed node formulation introduced by Johns [88] has become the 

standard for three-dimensional TLM analysis. The basic structure of the symmetrical condensed 

node is illustrated in Figure 4. Each node is connected to its neighboring nodes by a pair of 

orthogonally polarized transmission lines.  

 

Figure 4: The Symmetrical Condensed Node. 
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Absorbing boundaries are easily constructed in TLM meshes by terminating each boundary 

node transmission line with its characteristic impedance. Simons and Bridges [89, 90] derived 

2D TLM absorbing boundaries, Saguet [91] proposed matched load simulation based on a Taylor 

series expansion technique for 2D TLM waveguide problems. Morente et al. [92] investigated 

TLM absorbing boundaries based on a one-way equation technique for three-dimensional 

problems. Chen [93] implemented absorbing and connecting boundary conditions into a 3D 

TLM simulation based on Higdon’s absorbing conditions, a Taylor expansion algorithm, and 

connecting boundary conditions. Kukutsu [94] presented a super absorption boundary condition 

for guided waves. Eswarappa [95] and Pena [96] describe an algorithm that interfaces the three-

dimensional (3D) transmission-line matrix (TLM) with an absorbing-boundary condition (ABC) 

based on the perfectly matched-layer (PML) approach. Shao [97] implemented a Z-transform 

based absorbing boundary condition. 

Generally, dielectric loading is accomplished by loading the nodes with reactive stubs. These 

stubs are usually half the length of the mesh spacing and have a characteristic impedance 

appropriate for the amount of loading desired. Lossy media can be modeled by introducing loss 

into the transmission line equations or by loading the nodes with lossy stubs. De Menenes [98-

100] presented the modeling of a nonlinear Lorentz dielectric and a frequency independent 

dielectric with a Kerr nonlinearity. Hein [101, 102] developed the TLM model for propagation in 

both magnetized plasma and ferrite. Paul [103-105] designed TLM algorithms for one-

dimensional (1D) and three-dimensional (3D) models involving linear frequency-dependent 

isotropic dielectric media, anisotropic materials, and frequency dependent nonlinear dielectric 

materials. 

The strengths of the TLM method are similar to those of the FDTD method. Complex, 

nonlinear materials are readily modeled. Impulse responses and the time-domain behavior of 

systems are determined explicitly. And, like FDTD, this technique is suitable for implementation 

on massively parallel machines. 

Both the TLM and FDTD techniques are powerful and widely used. For many types of EM 

problems they represent the only practical methods of analysis. Deciding whether to utilize a 

TLM or FDTD technique is often based on personal preference. Many engineers find the 

transmission line analogies of the TLM method to be more intuitive and easier to work with. On 

the other hand, others prefer the FDTD method due to its simple, direct approach to the solution 

of Maxwell’s field equations. For modeling propagation in complex materials, TLM may offer a 

more straightforward solution than FDTD. Also, the TLM method generally does a better job of 

modeling complex boundary geometries, because both E and H are calculated at every boundary 

node. However, TLM methods require more computer memory per node than FDTD. 

D. The Finite Volume Time Domain Technique 

The Finite Volume Time Domain (FVTD) method was first applied to electromagnetic 

problems in the early 1990’s [106, 107]. This technique is based on Maxwell’s curl equations in 

their conservative form [108],  
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where ∂V represents the boundary enclosing V. The FVTD method solves the above form of 

Maxwell’s equations numerically by integration over small elementary volumes. Because there 

are no limitations for selecting the shape of the elementary volumes, the FVTD is well suited for 

implementation with unstructured meshes. It has become a powerful alternative to the finite 

difference time domain (FDTD) method for electromagnetic problems where conformal meshing 

is advantageous.  

Like FDTD, FVTD methods can take advantage of PML absorbing boundaries. Bonnet [109] 

presented a vertex-centered FVTD model of the PML for scattering problems. Sankaran [110] 

extended the PML concept to the cell-centered FVTD approach and systematically characterized 

its performance using both structured and unstructured finite volume meshes. He introduced a 

uniaxial Maxwellian absorber using PML to solve the waveguide truncation problem [111] and 

extended the absorber to incorporate radial anisotropy for modeling cylindrical geometries [112]. 

Fumeaux [113] presented a spherical perfectly matched absorber for finite-volume 3D domain 

truncation. Pinto [114] incorporated the uniaxial perfectly matched layer in the analysis of light 

propagation in photonic bandgap devices. 

The FVTD method is a promising numerical technique with good potential for the simulation 

of a variety of complex electromagnetic problems [115-118]. Bonnet [119] presented a method 

for the resolution of electromagnetic diffraction by complex structures; results obtained for an 

aircraft were compared with results from a classical FDTD code. Lacour [120] described a multi-

domain decomposition method using an FVTD technique for the resolution of an 

electromagnetic problem on vehicles and evaluated the current on a cable inside the volume of 

an airplane. Applications of the technique in microwave engineering require both the 

implementation of electromagnetic sources and the characterization of ports. Baumann [121, 

122] introduced new schemes for full-wave field excitation and full-wave S-parameter extraction 

that make the FVTD method especially well suited for microwave device simulations. To 

improve the computational efficiency of the FVTD method, Fumeaux [123] introduced a new 

generalized local time-stepping scheme, which is based on an automatic partition of the 

computational domain into subdomains where local time steps of the type 2
l-1

∆t ( l = 1 2 3 . . .) 

can be applied without violating the stability condition. 

E. The Finite Element Time Domain Technique 

The finite-element time-domain (FETD or TDFEM) method combines the advantages of a 

time-domain technique with the versatile spatial discretization options of the finite element 

method. A variety of FETD methods have been proposed. These schemes generally fall into two 

categories. Methods in the first category directly discretize the time-dependent Maxwell’s 

equations, yielding an explicit, conditionally stable, time-marching algorithm that can be viewed 

as a generalization of the finite-difference time-domain (FDTD) method for unstructured grids 

[124-133]. Methods in the second category discretize the second-order vector wave (curl-curl) 

equation, obtained by eliminating one of the field variables from Maxwell’s equations. The 
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solution of a linear system of equations is required at each time step, but this implicit method can 

be formulated to be unconditionally stable [134-146].  

The explicit FETD has less computational complexity, however the maximum time-step must 

be constrained to insure stability and it can be relatively difficult to achieve convergence. In 

implicit FETD methods, the time step is not constrained by a stability criterion and these 

methods can be extended to higher-orders in a relatively straightforward manner. However, 

implicit schemes have greater computational complexity because they require a global linear 

system of equations to be solved at each time step. This can make the simulation of large-scale 

electromagnetic problems relatively inefficient.  

Lou [147] presented a dual-field FETD formulation that computes both the electric and 

magnetic fields in a leapfrog fashion. This formulation has the advantages of implicit FETD 

schemes while reducing the computational complexity significantly when the computational 

domain is split into non-overlapping smaller subdomains. He extended the domain 

decomposition to the element level in [148].  

For unbounded problems, the truncated boundaries of the FETD computational domain need 

to be properly treated. This is usually done by using conventional absorbing boundary operators 

[149, 150], boundary integral (BI) methods [151], or PML boundaries [152-160]. As discussed in 

Section IV, absorbing boundary operators are easy to implement but can exhibit large reflection 

errors [150]. Boundary integral methods are theoretically exact but computationally expensive. 

PML implementations yield very small reflection errors in other time-domain methods, such as 

the FDTD method. However, the FETD formulation of the PML has not been thoroughly 

investigated. 

F. The Time Domain Method of Moments 

Most moment method codes solve integral equations in the frequency domain, but it is also 

possible to use the method of moments to solve time-domain integral equations [161-190]. 

Consider a perfect electric conductor in free space excited by an incident field  ,iE r t . This 

incident field induces a current ( , )J r t  on the surface S of the conductor that in turn radiates a 

scattered field. Enforcing the boundary condition on the total magnetic field or electric field on S 

gives rise to a time domain magnetic field integral equation (TDMFIE) or a time domain electric 

field integral equation (TDEFIE), respectively.  
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Note that in the principal value, we essentially exclude the part where the source and 

observation points are the same (i.e. R=0). Since /t t R c   , and 0R  , it is always true that 

t t  . The main difficulty in extending the approach used to solve the frequency domain integral 

equations comes from the retarded time variable. However, the TDIEs can be solved numerically 

by means of a marching-on-in-time (MOT) procedure. 
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Like the method of moments in the frequency domain, the MoM-TD method discretizes the 

scatterers or targets into segments or patches. The time axis is then divided into equal increments 

or time steps. The triangular patches and vector basis functions proposed by Rao–Wilton–

Glisson (RWG) [8] are commonly used to discretize the current in space and time by expanding 

the current ( , )J r t  as a finite linear combination of products of spatial basis functions  nS r  and 

temporal basis functions  kT t  

      ,

1

,
 

 
t sN N

j n n k

j k n

J r t I S r T t  (VI-15) 

where the temporal basis functions are generally versions of the same function shifted by a 

certain number of time steps,    kT t T t k t    with   0T t  ,  t t   . 

To determine the expansion coefficients ,j nI , Galerkin testing functions are applied in space 

and point matching is applied at times jt j t  , 1,2,3...j  , leading to a set of matrix equations 

that can be written as, 

     V Z I . (VI-16) 

The vector [V] contains the known incident field quantities and the terms of the Z-matrix are 

functions of the geometry. The unknown coefficients of the induced current are the terms of the 

[I] vector. These values are obtained by solving the system of equations iteratively. For example, 

Andriulli [188] proposed an explicit iterative scheme, 
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where jI  is a 1sN   vector, kZ  is a s sN N  matrix relating the currents on the body at time 

kt k t  . The current coefficient vector jI  can be obtained once the current coefficient vectors 

kI , 1,..., 1k j   are known. 

The TDIEs have applications and limitations similar to their frequency domain counterparts. 

The EFIE is suitable for closed and open bodies, while the MFIE is only suitable for smooth, 

closed bodies. MoM-TD techniques are not very effective when applied to arbitrary 

configurations with complex geometries or inhomogeneous dielectrics. They also are not well-

suited for analyzing the interior of conductive enclosures or thin plates with wire attachments on 

both sides. However, the time domain MoM is especially well suited for dealing with fast 

transient electromagnetic fields incident on or radiated from structures in free space. 

G. The Generalized Multipole Technique 

The Generalized Multipole Technique (GMT) was developed in the 1980s by C. Hafner [191] 

and implemented in software known as the Multiple Multipole (MMP) programs. It is essentially 

a frequency-domain moment-method technique where the basis functions are analytic solutions 

of the fields generated by sources located some distance away from the surface where the 

boundary conditions is being enforced. These basis functions are spherical wave field solutions 
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corresponding to multipole sources. By locating these sources away from the boundary, the field 

solutions form a smooth set of basis functions on the boundary and singularities on the boundary 

are avoided. 

Like the method of moments, a system of linear equations is developed and then solved to 

determine the coefficients of the basis functions that yield the best solution. Since the basis 

functions are already field solutions, it is not necessary to do any further computation to 

determine the fields. Conventional moment methods determine the currents and/or charges on 

the surface first and then must integrate these quantities over the entire surface to determine the 

fields. This integration is not necessary at any stage of the GMT solution. 

There is little difference in the way dielectric and conducting boundaries are treated by the 

GMT. The same multipole expansion functions are used. For this reason, a general purpose 

implementation of the GMT models configurations with multiple dielectrics and conductors 

much more readily than a general purpose moment method technique. 

Despite the advantages of this technique for certain types of modeling, it is not widely used. 

This may be partly because this technique is a little less intuitive to use and it can be difficult to 

learn to locate the multipole sources optimally. 

Note that the Generalized Multipole Technique should not be confused with the Fast 

Multipole Method (FMM), which is a technique for exploiting symmetry or periodicity in 

structures to accelerate some types of electromagnetic modeling codes. 

H. The Finite Difference Frequency Domain Technique 

Like the finite difference time domain method, the finite difference frequency domain 

(FDFD) method is based on a finite differential approximation of the derivative operators in the 

Maxwell curl equations. However, in FDFD, the time-harmonic version of these equations is 

employed. While time-domain finite difference schemes are very popular, the finite difference 

frequency domain method has received little attention in the literature. It is essentially similar to 

the finite element method, but it requires a uniform grid.  

VII. ASYMPTOTIC-EXPANSION BASED METHODS 

The techniques described in the previous sections are exact methods in that the error in the 

numerical solution only comes from the discretization. The numerical solution approaches the 

exact solution as the discretization is refined. However, as the number of unknowns grows, the 

demand for computer memory and calculation time also grows. This prohibits these methods 

from being applied to high frequency problems where the size of the object is much larger than 

the wavelength. The methods described in this section are based on asymptotic high-frequency 

expansions of Maxwell’s equations. They are high frequency methods that are only accurate 

when the dimensions of the objects being analyzing are large compared to the wavelength of the 

field. The asymptotic techniques introduced in the following sections include physical optics, 

geometrical optics, geometrical theory of diffraction, and uniform theory of diffraction.  
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A. Physical Optics  

The Physical Optics (PO) approximation is a well known and efficient method for analyzing 

large scatters [192]. PO reduces the cost of memory and CPU-time by performing a high 

frequency approximation. It is a current-based method in which the physical optics 

approximation is used to obtain the current density induced on a surface. The surface current 

density, Js, can be determined by, 

  n̂  i r

SJ H H  (VII-1)         ⑺ 

where H
i
 and H

r
 represent the incident and reflected magnetic field components evaluated on the 

surface. n̂ is the unit vector normal to the surface. If the surface can be approximated as an 

infinite plane surface, then by image theory, 

 ˆ ˆn n  i rH H  (VII-2) 

and Equation (VII-1) reduces to 

   2 2ˆ ˆ ˆn n n      i r i r

SJ H H H H  (VII-3) 

The electric and magnetic field radiated by the surface current on the illuminated side of the 

reflector can be determined by [194], 
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Equation (VII-3) is exact only when the surface is infinitely large. The accuracy of the 

approximation depends on the transverse dimensions of the reflecting surface, the radius of 

curvature, location of edges, and the angle of the incident field. Generally, PO works well for 

large, smooth surfaces with low curvature. The implicit assumption for the physical optics 

approximation is that the incident field is treated as a locally planar wave. Also, it assumes that 

the reflector surface is perfectly conducting.  

It has been found that PO provides an accurate prediction of far-field patterns of reflected 

antennas in the main beam region and out to several side lobes [196]. The major disadvantage of 

PO is that the integration over the surface of the reflector may be quite complicated and time 

consuming when the feed is placed off-axis or the feed pattern is asymmetric [197]. Moreover, 

the radiation integral has to be evaluated each time the observation point is changed.  

Fast and efficient evaluation of the radiation integral was proposed using a fast series 

approach [196], incorporating a multilevel fast multipole method [197], or decomposing the 

scatterer into subdomains [198]. Initially applied in the frequency domain, PO has also been 

extended into the time domain [199]. 
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B. Geometrical Optics (Ray Optics) 

Geometrical Optics (GO) [202] or geometrical optics with aperture integration (GO/AI) is a 

ray-based method intended for the consideration of electrically large dielectric structures in 

applications like the analysis of reflector antennas. In GO analysis, geometrical optics techniques 

(ray tracing) are used to set up equivalent currents on an aperture plane which is normal to the 

axis of the reflector. Then, the tangential aperture fields are constructed and used to determine 

the radiated fields utilizing the Fourier transform. Different formulations are obtained based on 

the use of aperture electric fields, magnetic fields or their combinations [201]. The advantage of 

the GO/AI method is that the integration over the aperture plane can be performed with equal 

ease for any feed pattern or feed position [195].  

The relationship between GO and PO was demonstrated in [201]. It was shown that the PO 

integral can be represented as a summation of many Fourier transforms, such that the first few 

terms resemble the GO representation. Using the “extinction theorem” [194], the fields predicted 

by the integration of PO surface currents were shown to agree with the geometrical optics 

aperture fields on the aperture plane to within the local plane wave approximation. It was 

concluded that the accuracy obtained by the two methods is comparable. 

C. Geometrical Theory of Diffraction 

The approximations in both physical optics and geometrical optics are based on the following 

assumptions [194]: 

• The current density is zero on the shadow side of the reflector 

• The discontinuity of the current density over the rim of the reflector is neglected 

• Direct radiation from the feed and aperture blockage by the feed are neglected. 

Both PO and GO ignore the edge diffractions which are highly dependent on the whether the 

edges of the reflector are flared, sharp, absorber lined or serrated. Thus, they cannot accurately 

predict the far fields beyond the first few side lobes. For predicting the patterns more accurately 

in all regions, geometrical diffraction techniques are required.  

As an extension of GO, the Geometrical Theory of Diffraction (GTD) overcomes the 

limitations of GO by introducing a diffraction mechanism [203]. The diffracted field is 

determined at the points on the surface where there is a discontinuity in the incident and reflected 

field. The value of the diffracted field is evaluated at these points with the aid of an appropriate 

diffraction coefficient. Usually, the coefficient is determined from asymptotic solutions of simple 

boundary-value problems with so called canonical geometries, such as a conducting wedge, 

cylinder or sphere. Since the solutions of these canonical problems are known, the object under 

investigation can be partitioned into smaller components, so that each component represents a 

canonical geometry. The ultimate solution is a superposition of the contributions from each 

component [193].  

Two major advantages of GTD over other high frequency asymptotic techniques are that it 

provides insight into the radiation and scattering mechanisms from the various parts of the 

structure, and it can yield more accurate results. The method has attracted increasing attention; 

especially for applications to reflector antennas [204-209]. Unfortunately, GTD fails in the 

transition region adjacent to the shadow boundary, at caustics (points through which all the rays 



 

28 

of a wave pass), or in close proximity to the surface of the scatterer. In these zones, the field 

cannot be treated as a plane wave. Thus, ray techniques become invalid. To deal with this 

problem, a number of alternative approaches have been proposed: uniform solutions [211-212], 

methods for dealing with caustic curves [213-215], physical theory of diffraction (PTD) [216], 

and the spectral theory of diffraction (STD) [217-218]. A comprehensive introduction to these 

methods can be found in [210]. 

D. Uniform Theory of Diffraction 

The Uniform Theory of Diffraction (UTD) is a uniform version of the geometrical theory of 

diffraction. It was initially proposed [219] to deal with the problem that GTD produces 

inaccurate results at the shadow boundaries. The uniform theory of diffraction approximates near 

electromagnetic fields as quasi-optical and uses ray diffraction to determine diffraction 

coefficients for each diffracting object-source combination. These coefficients are then used to 

calculate the field strength and phase for each direction away from the diffracting point. 

VIII. HYBRID METHODS 

Many practical problems are too complicated to be solved accurately by a single numerical or 

asymptotic method. It is often advantageous to combine two numerical modeling techniques in a 

single field solver in order to take advantage of the strengths of each technique to solve problems 

that neither technique alone could model efficiently. For example, a finite element method can be 

combined with a boundary element method to form a more powerful hybrid numerical technique 

for analyzing both open-region problems and complex inhomogeneous objects. A full-wave 

numerical technique can also be combined with an asymptotic method to model very large 

objects with small features that require detailed analysis, such as an antenna mounted on an 

airplane. 

Hybrid methods are not simply two separate modeling codes with a common user interface. A 

hybrid method generally divides a problem into two parts and applies a different technique to 

each part while matching the currents or fields at the boundary to ensure a unique solution. Some 

hybrid codes solve one part first, and then use the boundary fields as the sources when solving 

the second part. Other hybrid codes solve both parts simultaneously allowing the solution of each 

part to influence the solution of the other. 

Formulations for many hybrid techniques have been developed and reported in the literature. 

Some of the more common (and useful) hybrid techniques are described in the following 

sections. 

A. Hybrid FEM/BEM 

Finite element methods excel at modeling complex volumetric structures, but are weak when 

it comes to modeling thin wires and unbounded radiation problems. Boundary element methods 

excel at modeling wires and unbounded geometries, but do not model complex structures that 

include a variety of materials well. The complementary strengths of these two methods make 

them ideal candidates for hybridization. Full-wave FEM/BEM (also called FEM/MOM, FE-BE 

and FE-BI) techniques have been successfully used to model many problems that could not be 

modeled effectively using either of the two techniques alone [220-227].  
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Hybrid FEM/BEM techniques introduce a fictitious surface (which may or may not coincide 

with an actual material surface) that separates an interior volume from an exterior volume. The 

interior region is analyzed using a finite element method with unknown electric or magnetic 

surface currents establishing the boundary condition on the outer surface. The exterior region is 

analyzed using a boundary element method, with unknown electric or magnetic currents on the 

fictitious surface. Two sets of matrix equations are developed that share unknowns on the 

boundary between the interior and exterior volumes. By forcing the fields on both sides of the 

fictitious surface to be consistent with each other, the two matrix equations can be combined into 

one larger equation with a unique solution. 

In practice, it is relatively inefficient to generate one large matrix that is partly dense and 

partly sparse. Inward looking techniques repeatedly solve the finite element portion of the 

problem, while populating the boundary element method matrix. Outward looking techniques 

repeatedly solve the boundary element method portion while populating the finite element 

matrix. Choosing the right hybrid technique for a particular application greatly increases the 

efficiency of a hybrid FEM/BEM approach [228].    

B. Hybrid MOM/GTD, MOM/PO 

Asymptotic methods can deal with objects whose overall dimensions are large in terms of the 

wavelength. However, if large objects contain features that are too fine to be analyzed by an 

asymptotic method, it becomes necessary to employ hybrid methods that combine asymptotic 

techniques with numerically rigorous methods. Techniques that combine a moment method with 

an asymptotic method can be broadly categorized as either ray-based or current-based. Ray-

based methods, such as MOM/GTD, provide a considerable speed advantage, but can be difficult 

to implement for arbitrary and complex objects [237].  

Hybrid MOM/GTD techniques were first described in the 1970s [229-230]. Since GTD fails 

in regions where the field cannot be approximated by a local plane wave, uniform solutions have 

been developed that overcome some of the limitations of GTD. Hybrid approaches combining 

MOM and UTD are discussed in [231-233].  

Physical optics is a current-based asymptotic method. The hybridization of PO with MOM 

has two advantages over the combination of ray-based methods and MOM. First, since both 

MOM and PO are current-based, they can be easily blended on the same surface. Second, 

MOM/PO is relatively general in that there are no specific restrictions on the geometries that can 

be modeled [234]. Consequently, this hybrid technique has received considerable attention in the 

literature [234-241]. It has also been implemented in a commercial numerical code [242]. 

C. Hybrid FEM/PO 

Hybrid methods that combine high-frequency asymptotic techniques with the method of 

moments are not suitable for solving problems with inhomogeneous or anisotropic materials. 

These types of problems are better suited for analysis by a hybrid FEM/PO technique. The 

hybridization of FEM and asymptotic techniques is described in [243-244]. 
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IX. COMMERCIAL CEM SOFTWARE SURVEY 

As part of this project, lists of free and commercial CEM modeling codes were developed and 

published on the web at the following URLs, 

 Free CEM Codes:  http://www.cvel.clemson.edu/modeling/EMAG/free-codes.html 

 Commercial CEM Codes: http://www.cvel.clemson.edu/modeling/EMAG/csoft.html. 

The companies or contacts associated with each code in these lists were asked to complete a brief 

online survey describing the general features, capabilities and costs of their products. Their 

responses are summarized in the following tables. In some cases, the responses received on the 

survey forms were inconsistent with the information on the company’s web site or with the first 

hand experience of the authors. We’ve done our best to insure that the information provided in 

the tables below is accurate. Any errors or omissions can be reported to CVEL-L@clemson.edu. 

Reported corrections will be made to the information posted on the web site. 

A. 3D Full-Wave Codes 

The main emphasis of this survey was on general purpose 3D full-wave codes. Twelve of the 

codes included in the survey responses were placed in this category. Note that some of the codes 

in the “hybrid” category can also be used as general purpose full-wave codes. 

 

Table 8: General Purpose 3D Full-Wave Codes 

Software Name Company Technique Cost Comment 

AMDS Antenna 

Modeling Design 

System 

Agilent FDTD between 

$10,000 

and 

$50,000 

for wireless appliance 

design and modeling 

ApsimFDTD Applied Simulation 

Technology 

FDTD between 

$10,000 

and 

$50,000 

part of a suite of tools 

for IC and package 

analysis 

CST Microwave 

Studio – Transient 

Solver 

Computer 

Simulation 

Technology 

FDTD between 

$10,000 

and 

$50,000 

part of a suite of tools 

CST Microwave 

Studio – 

Frequency 

Domain Solver 

Computer 

Simulation 

Technology 

FEM between 

$10,000 

and 

$50,000 

part of a suite of tools 

Comsol 

Multiphysics – RF 

Module 

Comsol FEM between 

$10,000 

and 

$50,000 

part of a suite of tools 

http://www.cvel.clemson.edu/modeling/EMAG/free-codes.html
http://www.cvel.clemson.edu/modeling/EMAG/csoft.html
mailto:CVEL-L@clemson.edu
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Efield FD- 

Startpack 

Efield AB BEM between 

$10,000 

and 

$50,000 

part of a suite of tools 

Efield TD- 

Startpack 

Efield AB FDTD between 

$10,000 

and 

$50,000 

part of a suite of tools 

EMA3D Electro Magnetic 

Applications 

FDTD between 

$10,000 

and 

$50,000 

 

EMDS Agilent 

Technologies 

FEM between 

$10,000 

and 

$50,000 

EMDS was integrated 

into Agilent ADS in 

Aug. 2008. 

emGine 

Environment 

Petr Lorenz TLM between 

$10,000 

and 

$50,000 

GUI is open source. 

Binaries are free for 

non-commercial use. 

EMPIRE XCcel Empire FDTD between 

$10,000 

and 

$50,000 

 

EZ-EMC EMS-Plus FDTD between 

$1000 and 

$10,000 

 

EZ-FDTD EMS-Plus FDTD between 

$1000 and 

$10,000 

 

EZNEC Pro EZNEC BEM between 

$200 and 

$1000 

wire and wire-grid 

modeling 

Fidelity Zeland Software FDTD not 

reported 

did not respond to 

survey 

GEMS Computer and 

Communication 

Unlimited 

FDTD between 

$10,000 

and 

$50,000 

 

HFSS Ansys/Ansoft FEM greater 

than 

$50,000 

 

IE3D Zeland Software BEM not 

reported 

Did not respond to 

survey 
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LC LC FDTD FREE  

MaX-1 John Wiley & Sons GMT between 

$1000 and 

$10,000 

package includes 2D 

and 3D FDTD solvers 

MEEP MIT FDTD FREE Free software under the 

GNU GPL. 

MEFiSTo-3D Pro Faustus Scientific 

Corporation 

TLM between 

$1000 and 

$10,000 

numerical TLM 

simulation engines for 

2D problems are also 

included. 

NEC2 Lawrence 

Livermore Lab 

BEM FREE wire grid modeling plus 

simple plates modeled 

by point matching, text 

file input and output 

NEC4 Lawrence 

Livermore Lab 

BEM between 

$200 and 

$1000 

U.S. export controlled 

PAM-CEM ESI Group FDTD between 

$10,000 

and 

$50,000 

 

PhysPack Physware BEM greater 

than 

$50,000 

chip-package-board 

simulation 

SEMCAD X Schmid & Partner 

Engineering 

FDTD between 

$10,000 

and 

$50,000 

package includes quasi-

static solvers 

Toy The CEMTACH 

Group 

FDTD FREE for educational use 

ToyTLM The CEMTACH 

Group 

TLM FREE for educational use 

WIPL-D Pro WIPL-D BEM between 

$10,000 

and 

$50,000 

metallic and dielectric 

3D structures with 

wires and plates 

XFDTD Remcom FDTD between 

$10,000 

and 

$50,000 
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B. 3D Quasi-Static Codes 

In many situations, it is better to use a quasi-static modeling code to model components that are 

small relative to the wavelengths of interest, even when these components are used at RF or 

microwave frequencies. Generally, quasi-static modeling codes are more powerful and more 

efficient for modeling complex electrically small geometries than full-wave codes. The codes 

listed in the Table 9 are electrostatic and/or magnetostatic modeling codes. 

  

Table 9: 3D Quasi-Static Codes 

Software Name Company Technique Cost Comment 

AMaze - HiPhi Field Precision FEM between 

$1000 and 

$10,000 

electrostatic (part 

of a suite of tools) 

AMaze - 

Magnum 

Field Precision FEM between 

$1000 and 

$10,000 

magnetostatic (part 

of a suite of tools) 

Amperes Integrated Engineering 

Software 

BEM between 

$10,000 

and 

$50,000 

magnetostatic 

Coulomb Integrated Engineering 

Software 

BEM between 

$10,000 

and 

$50,000 

electrostatic 

Comsol 

Multiphysics – 

AC/DC module 

Comsol FEM between 

$10,000 

and 

$50,000 

electrostatic, 

magnetostatic suite 

of tools 

EMS ElectromagneticWorks 

 

FEM between 

$1000 and 

$10,000 

electrostatic, 

magnetostatic suite 

of tools 

EMPLab EM Photonics FDTD between 

$1000 and 

$10,000 

MATLAB based 

software 

Faraday Integrated Engineering 

Software 

BEM between 

$10,000 

and 

$50,000 

magnetostatic 

Flux3D Magsoft FEM between 

$1000 and 

$10,000 

electrostatic and  

magnetostatic tools 

Opera 3D Vector Fields Inc. FEM between 

$1000 and 

$10,000 

electrostatic and  

magnetostatic tools 
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MagNet Infolytica Corporation FEM between 

$10,000 

and 

$50,000 

magnetostatic 

2D/3D 

Maxwell Ansys/Ansoft FEM not reported electrostatic / 

magnetostatic 

(includes 2D tool) 

ElecNet Infolytica Corporation FEM between 

$10,000 

and 

$50,000 

electrostatic 2D/3D 

PCBMod Simlab GmbH 2D BEM or 

3D PEEC 

between 

$10,000 

and 

$50,000 

electrostatic 

Q3D Extractor Ansys/Ansoft FEM greater than 

$50,000 

electrostatic and  

magnetostatic tools 

 

C. 2D High-Frequency Codes 

Great insight into wave propagation, reflection, diffraction, shielding, etc. can be obtained from 

2D high-frequency modeling codes. 2D codes use a fraction of the computational resources 

required by 3D codes; and it is much simpler to generate 2D inputs and visualize 2D outputs.  

 

Table 10: 2D High-Frequency Codes 

Software Name Company Technique Cost Comment 

MEFiSTo-3D 

Pro 

Faustus Scientific 

Corporation 

TLM between 

$1000 and 

$10,000 

2D simulation 

engines packaged 

with 3D tool 

Momentum Agilent BEM between 

$10,000 and 

$50,000 

2.5D code for planar 

circuits 

TriComp - 

WaveSim 

Field Precision FEM between 

$1000 and 

$10,000 

part of a suite of 

tools 
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D. 2D Quasi-Static Codes 

2D quasi-static codes are excellent tools for visualizing electric and magnetic field distributions. 

Generally, these tools have a relatively low cost and do not require a lot of computer resources.  

 

Table 11: 2D Quasi-Static Codes 

Software Name Company Technique Cost Comment 

TriComp - EStat Field Precision  FEM between $200 

and $1000 

electrostatic 

TriComp - PerMag Field Precision  FEM between $200 

and $1000 

magnetostatic 

Finite Element 

Method Magnetics 

(FEMM) 

Dr. David Meeker FEM FREE electrostatic / 

magnetostatic  

Electro Integrated 

Engineering 

Software 

BEM between 

$10,000 and 

$50,000 

electrostatic 

Flux2D Magsoft FEM between 

$1000 and 

$10,000 

electrostatic, 

magnetostatic suite of 

tools 

Magneto Integrated 

Engineering 

Software 

FEM  / 

BEM 

between 

$10,000 and 

$50,000 

includes BEM and 

FEM solvers 

Maxwell Ansys/Ansoft FEM not reported electrostatic / 

magnetostatic 

(includes 3D tool) 

Oersted Integrated 

Engineering 

Software 

FEM  / 

BEM 

between 

$10,000 and 

$50,000 

includes BEM and 

FEM solvers 

pdnmesh  FEM FREE electrostatic 

Q2D Ansys/Ansoft FEM greater than 

$50,000 

bundled with Q3D 

Extractor 

QuickField Tera Analysis FEM not reported did not respond to 

survey 
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E. Hybrid Codes 

Hybrid codes combine the features of two different modeling techniques in order to be able to 

model a wider range of problem geometries. Hybrid codes are not suites of tools that share a 

common user interface. Hybrid codes are capable of simultaneously applying two different 

solvers to different regions of a problem geometry. Each of the codes below is also capable of 

employing just a single technique and therefore could have been included with the 3D full-wave 

codes listed in Table 8.  

Table 12: Hybrid Codes 

Software 

Name 

Company Technique Cost Comment 

CONCEPT-

II 

Technical 

University of 

Hamburg-Harburg 

Hybrid BEM and 

PO 

between 

$1000 and 

$10,000 

large wire and thin 

plate structures 

GEMACS  Applied Research 

Associates 

BEM-FDFD-UTD between 

$200 and 

$1000 

large wire and thin 

plate structures, with 

dielectric capability 

FEKO EM Software and 

Systems 

BEM-FEM-PO between 

$10,000 and 

$50,000 

 

Singula Integrated 

Engineering 

Software 

BEM-PO between 

$10,000 and 

$50,000 

 

SuperNEC Poynting Antennas BEM -PO between 

$1000 and 

$10,000 

 

efield Efield AB hybrid FDTD-FEM-

TD  hybrid MoM-

MLFMM-PO 

greater than 

$50,000 

two different hybrid 

tools 

EMAP5 Clemson 

University 

BEM-FEM FREE  

 

F. Special Purpose Codes 

The codes below employ numerical electromagnetic modeling techniques, but are optimized for 

specific applications.  
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Table 13: Special Purpose Codes 

Software 

Name 

Company Technique Cost Comment 

AMaze - 

OmniTrak 

Field Precision FEM between 

$1000 and 

$10,000 

3D charged particle 

beam analysis 

Analyst Simulation Technology 

& Applied Research 

FEM-TD, 

FEM 

between 

$10,000 

and 

$50,000 

suite of tools for 

designing microwave 

and accelerator 

components 

Antenna 

Model 

Teri Software BEM  less than 

$200 

antenna model uses the 

MININEC code, used 

for the analysis of wire 

antennas 

AXIEM AWR BEM between 

$10,000 

and 

$50,000 

for modeling planar 

circuits 

CableMod Simlab GmbH BEM  between 

$10,000 

and 

$50,000 

2D electrostatic solver 

for calculating 

transmission line 

parameters and 

crosstalk 

Compliance Quantic EMC BEM between 

$10,000 

and 

$50,000 

calculates currents on 

circuit traces (2D 

BEM), then calculates 

radiated fields in 3D 

EM Explorer EM Explorer FDTD between 

$1000 and 

$10,000 

solver for scattering 

problems of periodic 

structures 

EM3DS MEM Research BEM between 

$1000 and 

$10,000 

MMIC modeling 

EMFlex Weidingler Associates 

Inc. 

FEM-TD between 

$10,000 

and 

$50,000 

optical modeling 

EZ-

PowerPlane 

EMS-Plus Cavity 

Resonance 

between 

$1000 and 

$10,000 

modeling power bus 

noise in printed circuit 

boards 

FlexPDE PDE Solutions FEM-TD between 

$1000 and 

$10,000 

general PDE solver - 

can be 1D, 2D or 3D 
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GSolver Grating Solver 

Development Company 

 between 

$1000 and 

$10,000 

periodic (grating) 

boundaries 

HFWorks ElectromagneticWorks 

 

FEM between 

$10,000 

and 

$50,000 

RF, Microwave and 

MMwave component 

analysis 

JCMsuite JCMwave GmbH FEM between 

$10,000 

and 

$50,000 

For optical modeling 

Open FMM Open FMM BEM FREE Large scattering 

problems 

OptEM 

Inspector 

OptEM Engineering not reported between 

$10,000 

and 

$50,000 

RC extraction software 

tool for deep 

submicron (DSM) IC 

designs 

OptEM 

Cable 

Designer 

OptEM Engineering not reported between 

$10,000 

and 

$50,000 

For modeling multi-

conductor flex, 

unshielded twisted-

pair and twisted-pair 

cables 

ScatLab ScatLab Mie theory, 

T-Matrix 

method 

FREE Large Scattering 

Problems 

Speed2000 Sigrity FDTD not 

reported 

for modeling 

interactions in multi-

layer chip packages 

and printed circuit 

boards 

Trace 

Analyzer 

Trace Analyzer BEM or 

MOM 

between 

$200 and 

$1000 

Electrostatic solution 

to calculate the [C] 

matrix, and the R/L/G 

matrices are derived 

from [C] 

TriComp - 

Trak 

Field Precision  FEM between 

$1000 and 

$10,000 

2D charged particle 

beam analysis 

XGtd Remcom UTD/GTD between 

$10,000 

and 

$50,000 

3D high-frequency ray 

tracing code. 
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