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Abstract 
When modeling differential signal propagation in a two-conductor transmission line over ground, it 

is convenient to express the propagation as the sum of two orthogonal modes, common-mode and 
differential mode. These TEM modes propagate independently as long as there is no change in the 
electrical balance of the three-conductor configuration. Any change in the electrical balance results in 
an exchange of power between the two modes at the point of the discontinuity. This effect can be 
precisely modeled using simple load resistances and dependent sources.  

1. Introduction 
High-speed digital signals are often transmitted from one point to another as differential signals on 

balanced two-conductor transmission lines. The balanced conductors generally have identical cross-
sections and have the same electrical impedance to any other conductors in the system. In order to help 
maintain constant impedances, these two conductors are often located near a third reference conductor, 
typically labeled “ground”. The differential-mode (DM) currents on the two signal conductors are 
equal in magnitude and flow in opposite directions everywhere along the transmission line. No current 
is intended to flow on the reference conductor; but discontinuities in the electrical balance of the two-
conductor transmission line can cause energy to be converted from the differential-mode to common-
mode (CM) reducing the amount of signal power available at the far end of the line and potentially 
contributing to unwanted coupling between the signal path and electrical noise. 

Differential mode and common mode, also referred to as odd mode and even mode, propagation in 
TLs have been studied extensively. In [1]-[8], these modes of propagation were evaluated using multi-
conductor transmission line theory. In [9]-[13], changes in transmission line impedances were viewed 
from the standpoint of introducing imbalance to an otherwise balanced transmission line. These papers 
modeled the coupling using ideal sources inserted in a modal equivalent circuit. In [13], the model was 
extended to include a complete description of the power flow within and between model equivalent 
circuits.  

The concept of mode conversion due to changes in electrical balance has also been applied to the 
modeling of radiated emissions problems, where the common-mode currents do not return on a nearby 
conductor and the common-mode propagation is not TEM (e.g. [14]-[20]). However, the focus of this 
paper is modeling TEM mode conversion. Simple equivalent sources and loads are developed to model 
TEM mode conversion in terms of changes in electrical balance. The resulting models are generally 
simpler and more intuitive than models based on multi-conductor transmission line equations and can 
be applied whether the mode coupling is weak or strong. 

2. Definition of Differential Mode and Common Mode Signals 

 

Fig. 1. A two-conductor TL above a reference plane. 
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Consider the pair of wires routed above a reference plane illustrated in Fig. 1. The currents on 
conductors 1 and 2 are I1(z) and I2(z), respectively. V1(z) and V2(z) are the voltages between each 
conductor and the reference plane. 

If a signal is propagating differentially on the wire pair, it is inconvenient to view the propagation in 
terms of V1, I1 and V2, I2. Instead, it is preferable to express the propagation in terms of the two 
orthogonal modes of propagation modes typically referred to as differential mode (DM) and common 
mode (CM). These modes of propagation are associated with well-defined propagating voltages and 
currents, VDM, IDM and VCM, ICM. For a TEM wave propagating along the transmission line in the 
positive z-direction, we define the DM voltage as the voltage difference between two conductors, 

1 2DMV V V+ + += −  . (1) 

The CM current is defined as the total current that flows on both conductors, 

1 2CMI I I+ + += + .  (2) 

Since DM and CM are mutually independent, the voltage and current associated with each mode are 
related by their own characteristic impedances, 

DM DM DMV Z I+ += ⋅  , (3) 

CM CM CMV Z I+ += ⋅  . (4) 

For a pure DM signal arriving at the matched termination illustrated schematically in Fig. 2, the CM 
current and voltage are zero, and the DM current flows from one wire conductor to the other. This 
current flows through Z3 and the series combination of Z1 and Z2, so the DM impedance is, 

 3 1 2|| ( )DMZ Z Z Z= +  . (5) 

 

Fig. 2. A matched termination consisting of three resistances. 

Combining (1), (3) and (5), we obtain the definition for IDM necessary to ensure the independence of 
the DM and CM propagating modes,  

1 2
1 2

1 2 1 2
DM

Z ZI I IZ Z Z Z
+ + += ⋅ − ⋅

+ +
 . (6) 

For a pure CM signal arriving at the termination, the DM voltage and current are zero. Since both 
conductors have the same voltage, CM current flows from both conductors through the parallel 
combination of Z1 and Z2 to the reference conductor, so the CM impedance is,  

1 2||CMZ Z Z=  . (7) 

Combining (2), (4) and (7) yields the definition for VCM, 

2 1
1 2

1 2 1 2
CM

Z ZV V VZ Z Z Z
+ + += +

+ +
 . (8) 

Conductor 2Conductor 1

Z1 Z2

Z3
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For a backward propagating wave, we can define the DM and CM propagating modes similarly, 

1 2DMV V V− − −= −   (9) 

1 2CMI I I− − −= +   (10) 

1 2
1 2

1 2 1 2
DM

Z ZI I IZ Z Z Z
− − −= ⋅ − ⋅

+ +
  (11) 

2 1
1 2

1 2 1 2
CM

Z ZV V VZ Z Z Z
− − −= +

+ +
  (12) 

Combining both the forward and backward wave, i.e., combining (3), (4), (6) and (8) with the 
corresponding equations (9), (10), (11) and (12), we get, 

2 2
1 1 2 2 1 2( ) ( )DM DM DMV V V V V V V V V a b+ − + − + −= + = + − + = − + , (13) 

1 1 2 2 1 2( ) ( )CM CM CMI I I I I I I I I+ − + − + −= − = − + − = + , (14) 

2 1
1 1 1 1

1 2 1 2

2 1
1 2

1 2 1 2

( ) ( )

CM CM CMV V V
Z ZV V V VZ Z Z Z
Z ZV VZ Z Z Z

+ −

+ − + −

= +

= + + ++ +

= ++ +

, (15) 

1 1
1 1 2 2

1 2 1 2

2 1
1 2

1 2 1 2

( ) ( )

DM DM DMI I I
Z ZI I I IZ Z Z Z
Z ZI IZ Z Z Z

+ −

+ − + −

= −

= − − −+ +

= −+ +

.  (16) 

If we define 

2

1 2

Z hZ Z ≡
+

 , (17) 

then the DM and CM voltages and currents can be expressed as functions of V1, V2, I1 and I2 as 
follows, 

1 2DMV V V= −  , (18) 

1 2(1 )DMI h I h I= − − ⋅  , (19) 

1 2(1 )CMV h V h V= ⋅ + − ⋅  , (20) 

1 2CMI I I= +  . (21) 

This definition of common-mode and differential-mode voltage and current is consistent with that 
described by Uchida [21] and recent papers employing imbalance difference theory. The quantity, h, is 
called the current division factor or imbalance factor. Note that for a balanced transmission line, 
Z1 = Z2, and h = 0.5. In this case, (18)-(21) reduce to the familiar form for balanced TLs, 

1 2

1 2

1 2

1 2

,
( ) / 2,
( ) / 2,

.

DM

CM

DM

CM

V V V
V V V
I I I
I I I

= −
= +
= −
= +

  (22) 
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3. Conversion between Differential Mode and Common Mode 
By definition, as long as the electrical balance (defined by the quantity, h) does not change along 

the TL, the DM and CM signals propagate independently. However, as indicated by (19) and (20), any 
change in the electrical balance along the line will cause a discontinuity in the values of IDM and VCM. 
Fig. 3 shows a two-conductor TL above a reference plane that exhibits a change in the electrical 
balance. The matching impedances for the left section and right section of the TL are Z1L, Z2L, Z3L and 
Z1R, Z2R, Z3R respectively.  

 

Fig. 3. TL with an electrical balance discontinuity above a reference plane. 

At the interface where the electrical balance changes, the boundary conditions require the voltages 
and the currents on each conductor to be continuous, i.e. 

1 1 1

2 2 2

1 1 1

2 2 2

,
,

,
.

L R

L R

L R

L R

V V V
V V V
I I I
I I I

= ≡
= ≡
= ≡
= ≡

  (23)               

From (18) and (21), it is apparent that the DM voltage and CM current are also continuous at the 
interface, 

_ _1 2DM L DM R DMV V V V V= − = ≡  , (24) 

_ 1 2 _CM L CM R CMI I I I I= + = ≡  . (25) 

The imbalance factors of the left section and right section are different, 

2

1 2

L
L

L L

Zh Z Z=
+

 , (26) 

2

1 2

R
R

R R

Zh Z Z=
+

 . (27) 

Therefore, according to (19) and (20), the CM voltages and DM currents are different in the two 
sections of the TL, 
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_ 1 2

_ 1 2

_ 1 2

_ 1 2

(1 ) ,
(1 ) ,

(1 ) ,
(1 ) .

L LCM L

R RCM R

DM L L L

DM R R R

V h V h V
V h V h V
I h I h I
I h I h I

= ⋅ + − ⋅

= ⋅ + − ⋅

= − − ⋅

= − − ⋅

  (28) 

The change in the CM voltage and DM current across the interface can be expressed as, 

_ _ 1 2( ) DMCM CM L CM RV V V h V V h V∆ = − = ∆ ⋅ − = ∆ ⋅ ,  (29) 

_ _ 1 2( )DM DM L DM R CMI I I h I I h I∆ = − = ∆ ⋅ + = −∆ ⋅ . (30) 

Equations (29) and (30) indicate that a change in the electrical balance along a transmission line 
results in a virtual CM voltage, ΔVCM, that drives one side of the TL relative to the other side. ΔVCM is 
proportional to the DM voltage at the interface and the change in the electrical balance. There will also 
be a virtual DM current, ΔIDM, that flows from one conductor to the other at the interface. This DM 
current is virtual, because no actual electric charge moves from one conductor to the other. IDM takes 
on a new value due to the fact that it is defined differently in terms of I1 and I2, which are constant 
across the interface. ΔIDM is proportional to the CM current at the interface and the change in the 
electrical balance.  

4. Models of the Differential Mode and Common Mode Conversion 
For a two-conductor TL above a reference plane, we can decompose any signal into two 

independent propagating modes, DM and CM. In Fig. 4, the upper TL circuit represents only the DM 
propagation and the lower TL circuit represents only the CM propagation. 

 

Fig. 4. Decomposition of the original circuit into DM and CM propagation. 
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4.1 Model of DM-to-CM Conversion 

 

Fig. 5. Equivalent model for DM-to-CM conversion. 

Consider a DM signal propagating on the DM TL of Fig. 4. From (29), it is clear that the DM 
voltage at the interface will generate a CM voltage difference, ΔVCM. This can be represented as an 
ideal voltage source in the CM circuit as shown in the lower part of Fig. 5,  

DMCMV V h∆ = ⋅∆  . (31) 

The ΔVCM source will drive the CM circuit and generate a CM current, the impedance that ΔVCM 
source sees is the series combination of the input impedances of each side of the TL in the CM circuit, 
so the generated CM current will be, 

CM DM
CM

CM L CM R CM L CM R

V V hI Z Z Z Z− − − −

∆ ⋅∆
= =

+ +
.  (32) 

According to (30), this ICM at the interface will produce a DM current, 
2( )DM

DM CM
CM L CM R

V hI h I Z Z− −

⋅ ∆
∆ = ∆ ⋅ =

+
 . (33) 

ΔIDM can be regarded as the effect of the DM-CM conversion on the original DM signal. It can be 
represented by a shunt impedance in the DM circuit as shown in Fig. 5. Here, we will refer to it as the 
DM-to-CM conversion impedance, 

21DM
DC CM L CM R

DM

VZ Z ZI h − −
       

= = +
∆ ∆

.  (34) 

ZDC is the loading effect on the DM signal that accounts for the energy conversion from DM to CM. 
If the coupling is weak (i.e. ∆h is very small or the CM impedances are much bigger than the DM 
impedances), then ZDC is much bigger than ZDM, and it can be neglected. However, if the values of the 
CM impedances are comparable to the DM impedances and the change in electrical balance is 
significant, then ZDC must be considered in order to accurately calculate the DM voltage at the 
interface. 
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4.2 Model of CM-to-DM Conversion 

 

Fig. 6. Equivalent model for DM-to-CM conversion. 

Equation (30) points out that CM current will generate DM current, ΔIDM, at the interface where the 
electrical balance changes. This can be modeled as an ideal current source in the DM circuit, as shown 
in the upper part of Fig. 6, 

DM CMI I h∆ = ⋅∆ .  (35) 

In the DM circuit, ΔIDM will flow through the parallel combination of the input impedances of both 
sides of the TL and generate a DM voltage at the interface: 

( || ) ( || )DM DM DM L DM R DM L DM RCMV I Z Z I h Z Z− − − −= ∆ ⋅ = ⋅∆ ⋅ .  (36) 

According to (29), this DM voltage will cause a change in CM voltage, ΔVCM, at the interface, 
2( ) ( || )DM DM L DM RCM CMV h V I h Z Z− −∆ = ⋅ = ⋅ ∆ ⋅ . (37) 

ΔVCM can be regarded as the effect of the CM-DM conversion on the original CM circuit. It can be 
represented by a series impedance in the CM circuit, as shown in the lower part of Fig. 6. Here, it is 
referred to as the CM-DM conversion impedance, 

2( ) ( || )CM
DM L DM RCD

CM

VZ h Z ZI − −
∆

= = ∆ ⋅ . (38) 

ZCD represents the loading effect on a CM signal that accounts for the energy conversion from CM 
to DM. Like ZDC, ZCD plays an important role if the two modes are strongly coupled, and it is 
negligible if the coupling is weak. 

5. Example 
This section demonstrates the implementation of these models on a multi-conductor transmission 

line structure where the coupling between the two modes is strong. As shown in Fig. 7, two cylindrical 
conductors of different radii form a two-conductor TL enclosed by a reference conductor. The total 
length of the TL is 600 mm. In the middle of the TL, the diameter of the two TL conductors abruptly 
changes, so that the electric balance is changed while the DM characteristic impedance stays the same. 
Near the left end of the TL, there is a 2-volt DM voltage source with 50-Ω internal impedance that 
drives the two conductors. The three-conductor system is perfectly matched at each end. The 
dimensions of the cross-section of the structure are shown in Fig. 8(a). The excitation frequency is 
1GHz. 
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Fig. 7. The example structure. 

 

 

Fig. 8. Cross-section of the transmission line in the example. 

5.1 Calculation by Imbalance Difference Theory 
The excitation is purely differential, but we expect to find power propagating in both modes due to 

the mode conversion that occurs at the middle of the line. To solve for the signal amplitudes in each 
mode using the imbalance difference theory, the imbalance factor on each side was calculated as a ratio 
of per-unit-length capacitances obtained using a 2D static field solver, ATLC2 [22]. The capacitances 
obtained are shown in Table I. The first three columns were obtained directly from the field solver. 
The values for C11, C22 and C12 were obtained from the data in the first three columns. These 
capacitances are illustrated schematically in Fig. 8(b). 

Table I. Capacitances calculated by ATLC2. 
C11+C12 C22+C12 C11+C22 C11 C22 C12 

150.621 pF/m 33.91 pF/m 164.96 pF/m 140.84 pF/m 24.12 pF/m 9.78 pF/m 
 

From the data in Table I, the imbalance factor of the two-conductor transmission line on one side of 
the discontinuity is, 

11

11 22
0.8538Ch C C= =

+
. (39) 

4 mm 4 mm

4 mm
Conductor 1

Radius  = 3.5 mm Conductor 2
Radius  = 1.0 mm

C12

C11

C22

(a) Dimensions (b) Capacitances per unit length
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On the other side of the discontinuity, because the conductors have a similar cross-section with 
positions of Conductor 1 and Conductor 2 switched, the imbalance factor is equal to one minus the 
imbalance factor on the first side. The change in the imbalance factor across the discontinuity is 
therefore, 

(1 ) 0.7075h h h∆ = − − = .  (40) 

The per-unit-length capacitances associated with the DM and CM propagation are, 

12 11 22 11 22/ ( ) 30.38 pF/mDMC C C C C C= + ⋅ + = , (41) 

11 22 164.86 pF/mCMC C C= + = . (42) 

Since both modes exhibit TEM propagation, the characteristic impedances of each mode are: 
1 109.7DM

DM
Z u C= = Ω

⋅
, (43) 

1 20.21CM
CM

Z u C= = Ω
⋅

 , (44) 

where u is the velocity of propagation. According to (34), the conversion impedance is, 
21 80.73DM

DC CM L CM R
DM

VZ Z ZI h − −
       

= = + = Ω
∆ ∆

. (45) 

In the DM circuit as represented in Fig. 4, the impedance at the interface looking towards the right 
will be, 

|| 45.51DMDCmiddleZ Z Z= = Ω  . (46) 

The impedance at the source looking to the right will be, 

tan 46.51tan
DMmiddle

DMsource right
DM middle

Z j Z lZ Z Z j Z l
β
β−

+ ⋅ ⋅
= ⋅ = Ω

+ ⋅ ⋅
.  (47) 

Therefore, the total impedance the DM source sees is, 

|| 32.66input DMsource rightZ Z Z−= = Ω , (48) 

and the DM voltage across two conductors at the source is, 

@ 0.7903 Vinput
sourceDM source

s input

Z
V V Z Z= ⋅ =

+
. (49) 

At the interface, the voltage propagating towards the right (positive) direction will be, 

@
0 1.33 V

( )
DM source

j l j l
mid

V
V

e eβ β
+

−= =
+Γ ⋅

. (50) 

The reflection coefficient at the interface looking from the left is, 

0.4046DMmiddle
middle

DMmiddle

Z Z
Z Z

−
Γ = = −

+
. (51) 

So the DM voltage at the interface is, 
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0.79 VDM middleV V V+ += + ⋅Γ = . (52) 

Then from (31), the equivalent CM voltage source amplitude will be, 

0.56 VDMCMV V h∆ = ⋅∆ = , (53) 

and the CM current will be, 

13.8 mA2
CM

CM
CM

VI Z
∆

= =
⋅

. (54) 

Note that the left section of the TL is no longer impedance matched to the right section due to the 
mode conversion resistance. This will create a standing wave in the left section with standing wave 
ratio of, 

1 | | 2.361 | |
middle

middle
SWR + Γ

= =
− Γ

. (55) 

For the purpose of comparison, if we neglected to account for the conversion impedance in this 
example, then the DM voltage at the middle of the TL in Fig. 6 would have been the same as that at the 
source, 

/ 2' 1.046 V/ 2
DM

sourceDM
s DM

ZV V Z Z= ⋅ =
+

. (56) 

In this case, the calculated CM current would have been, 

' 18.3 mA2 2
CM DM

CM
CM CM

V V hI Z Z
∆ ⋅∆

= = =
⋅ ⋅

, (57) 

or 33% higher than the correct value. 

5.2 Calculation by 3D full wave simulation 
For validation purposes, the currents in the Fig. 7 structure were also calculated using a full wave 

simulation code, HFSS [23]. From these currents, the DM and CM currents were determined using 
(19) and (21). They are plotted in Fig. 9. The solid line is the CM current, which is constant along the 
TL. The dashed line is the DM current. It exhibits a standing wave pattern on the left half and is 
constant on the right. The CM current is about 13.3 mA, and the DM SWR is 2.34. 
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Fig. 9. HFSS calculation result. 

Table II. Comparison of calculation result with different method. 
Methods Calculated CM current SWR 

Full wave simulation by HFSS 13.3 mA 2.34 

TL model with conversion impedance 13.8 mA 2.36 

TL model without conversion impedance 18.3 mA N/A 

Table II shows the calculated results from the full wave simulation, the TL model results with the 
modal conversion impedance, and the TL model results without accounting for the modal conversion 
impedance. There is good agreement (within 0.3 dB) between the TL result including the modal 
conversion impedance and the full wave simulation.  

6. Conclusion 
In a three-conductor transmission line, where one conductor is designated as the reference, the 

voltages and currents can be expressed in terms of orthogonal TEM DM and CM modes of propagation 
defined by (18)-(21). Any change in the electrical balance, as defined by (17), along the TL results in 
coupling between the DM and CM modes. A simple model describing DM-to-CM coupling consisting 
of an ideal source and conversion impedance was derived and is illustrated in Fig. 5. The change in the 
CM voltage at an interface is equal to the DM voltage at the interface times the change in the 
imbalance factor. This is true regardless of the whether the coupling between the two modes is weak or 
strong. The loading of the DM mode propagation can be modeled by a shunt resistor with the value 
calculated in (34).  

A model describing the CM-to-DM coupling was also derived and is illustrated in Fig. 6. Whether 
the coupling is weak or strong, the change in the DM current at the interface is equal to the CM current 
at the interface times the change in the imbalance factor. The loading of the CM mode propagation can 
be modeled by a series resistor with the value provided in (38). 
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The conversion impedances have little impact on the calculated coupling if the converted power is a 
small percentage of the signal power (i.e. the coupling between the modes is weak). However, as the 
example in Section V demonstrates, the conversion impedance can have a significant effect on 
differential-mode signals when there is a large discontinuity in the balance, even when the 
characteristic impedance is maintained. 
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