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Abstract 
Plane wave shielding effectiveness is frequently expressed as the sum of three terms called 

penetration loss, reflection loss, and an internal reflections correction term. This well-known 
decomposition was originally developed by Schelkunoff, and provides an intuitive way of relating 
material properties to the overall shielding effectiveness of certain shielding materials, especially 
metallic materials. In experimentally characterizing the shielding effectiveness of composite materials, 
other methods of describing the reflection and absorption contributions to shielding are commonly 
used. These other decompositions are generally more closely related to the reflected and absorbed 
power densities and are thus easier to obtain from measurements. This paper analyzes different 
decompositions that have been used to describe the shielding properties of materials. It introduces the 
term mismatch decomposition to describe a method for decomposing shielding effectiveness into terms 
related to the reflectance and absorptance of a material. This decomposition method has been 
effectively applied by a number of researchers, but inconsistent terminology has prevented the full 
value of this decomposition from being recognized. The mismatch decomposition results in terms that 
are useful as figures of merit because they are closely related to the reflected and absorbed power and 
are readily derived from standard measurements of plane wave shielding effectiveness. 

1. Introduction 
Electromagnetic shielding plays an important role in ensuring the electromagnetic compatibility 

(EMC) of many electronic systems. Shields have traditionally been constructed from metals and metal 
coatings, but this approach to shielding can be expensive and/or heavy [1]. The need for lightweight 
and inexpensive shielding materials has driven a large amount of research in recent years on the 
shielding properties of polymer composites and intrinsically conductive polymers [2]–[19]. 
Additionally, it is often desirable for a shield to absorb a large amount of energy relative to the energy 
that it reflects so that secondary electromagnetic pollution is minimized [3], [5], [8], [20]–[22]. Thus 
quantifying the reflection and absorption contributions to shielding is important in many applications. 

The shielding properties of materials are typically quantified by measuring the electromagnetic 
shielding effectiveness (EMSE) of a flat material sample with a given thickness. The EMSE is the 
insertion loss expressed in decibels of the sample in free space with a normally incident plane wave. In 
recent books on EMC (for example [23]–[28]), plane wave shielding is typically presented in a model 
known as the transmission line model of shielding. This model of shielding was originally developed 
by Schelkunoff [29]–[31]. Schelkunoff analyzed the EMSE of planar, cylindrical, and spherical shields 
by using wave impedances in a manner analogous to transmission line characteristic impedances. He 
applied the transmission line concepts of reflection and transmission coefficients to the shielding 
analysis. The transmission line model of shielding gives an exact solution for the EMSE of an infinite 
homogeneous material sheet or layers of sheets with a normally-incident plane wave. However, the 
transmission line model of shielding gives only approximate solutions in situations with non-plane 
waves, for example a near field source next to a planar shield, or the cylindrical and spherical shields 
that Schelkunoff analyzed. For approximate application of the transmission line model to situations 
with non-plane waves, the wave impedance must be selected carefully to achieve good accuracy [28], 
[32]–[34]. The transmission line model of shielding is also applicable to composite materials using 
effective constitutive parameters when the heterogeneities are evenly dispersed and are small 
compared to the effective wavelength in the medium [35]. Section 2 of this paper reviews the 
transmission line model of shielding. 
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The transmission line model of shielding breaks up the decibel value of EMSE into the sum of three 
decibel loss terms: penetration loss (also called absorption loss), reflection loss, and an internal 
reflections correction term (also called multiple reflections loss) as illustrated in (1). 

  

SE
Internal reflections

correction te

Schelkunoff decomposition (terms in dB)

Penetration loss / Reflection loss
absorption lo rmss

RA B= + +


 (1) 

This decomposition of EMSE will be referred to in this paper as the Schelkunoff decomposition. 
Additionally, the sum of reflection loss and the internal reflections correction term will be referred to 
in this paper as the net reflection loss. The internal reflections correction term is generally negligible 
for thick good conductors; but for poor conductors, thin metallic films, or shielding at low frequencies, 
it can have a large negative value. In EMC textbooks, graphs of the EMSE of materials decomposed 
into the terms of the Schelkunoff decomposition are commonly presented. Although the Schelkunoff 
decomposition may break EMSE into components that are easy to calculate and intuitive for 
understanding the parametric dependence of EMSE, the terms do not represent very useful figures of 
merit and they do not correlate to quantities obtained from shielding effectiveness measurements in a 
straightforward manner. Section 3 of this paper reviews and analyzes the Schelkunoff decomposition, 
its physical interpretations, and its mathematical relationship to network parameters and 
reflectance/absorptance. 

Even though the terms describing reflection and absorption in the Schelkunoff decomposition are 
not closely related to the actual levels of reflected and absorbed power, terms from the Schelkunoff 
decomposition have been used to quantify the reflection and absorption contributions to EMSE in 
some experiments on materials (for example [3], [5]). However, other measures have also been used to 
quantify the reflection and absorption contributions to shielding. For the analysis of radar absorbing 
materials, it is common to use the reflection coefficient expressed in decibels with the absorbing 
material backed by a thick metal sheet approximating a perfect electrical conductor as a specification 
of the balance of reflection/absorption [3], [36]. A number of recent papers have used the input 
reflection coefficient expressed in decibels to quantify reflected power in shielding experiments [18], 
[37]. Of course, one could use the linear measures of reflectance (reflected power density divided by 
incident power density), transmittance (transmitted power density divided by incident power density), 
and absorptance (absorbed power density divided by incident power density) to describe how much of 
a material’s shielding is due to reflection and how much is due to absorption. Such measures are 
employed in a number of recent shielding experiments [10], [38], [39]. However, it is often desired to 
have decibel measures of reflection and absorption that sum to give the total decibel EMSE as the 
terms in the Schelkunoff decomposition do.  

In transmission line engineering, a quantity called the mismatch loss is frequently used to describe 
the degree of mismatch in a transmission line at a particular point. Mismatch loss has been widely used 
in the analysis of the shielding properties of composites in recent publications [6], [17], [20], [21], 
[40]–[45]; although the authors of these publications used different terminology to describe this loss. 
Mismatch loss is a different quantity than the reflection loss or net reflection loss of the Schelkunoff 
decomposition. This point is explicitly made in a few of these publications, but confusion arises from 
the fact that the decomposition based on mismatch loss is often described using the same name or 
notation as the terms in the Schelkunoff decomposition. Some recent publications incorrectly imply 
that the mismatch loss is an approximation for the Schelkunoff reflection loss for good conductors 
when the internal reflections correction term is close to zero (for example [21], [43], [45]). The 
decomposition of EMSE using mismatch loss and another term called dissipation loss will be referred 
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to in this paper as the mismatch decomposition. The mismatch decomposition gives terms that are 
useful as figures of merit because they are closely related to the absorbed and reflected power. 
Furthermore, the mismatch decomposition may be interpreted as a comparison to a situation of 
conjugate matching between the source impedance and the equivalent input or output impedance of the 
shield transmission line analog terminated with free space. Section 4 of this paper reviews and 
analyzes the mismatch decomposition and compares it to the Schelkunoff decomposition. 

Section 5 of this paper provides graphical plots of various EMSE decompositions computed for 
three example shields and Section 6 concludes the paper. Additionally, the appendix (referenced in 
Section 3) shows how the Schelkunoff decomposition can be generalized using image parameters to 
apply to layered materials.  

2. Review of Transmission Line Model of Shielding 
The basis for the transmission line (TL) model of shielding is that the voltage in a TL is analogous 

to the electric field intensity of a plane wave and the current in a TL is analogous to the magnetic field 
intensity of a plane wave. Additionally the distributed series inductance per unit length, shunt 
capacitance per unit length, and shunt conductance per unit length of a TL are analogous to the 
respective constitutive parameters of permeability, permittivity, and conductivity. These analogies 
make most TL concepts directly applicable to the analysis of shielding of normally incident plane 
waves. 

Fig. 1 shows a depiction of the basic plane wave shielding problem of a single-layered 
homogeneous and isotropic material that is infinite in the xy-plane but has thickness t in the z direction. 
The shield is surrounded by free space with intrinsic impedance η0 and propagation constant γ0 on 
either side for z < 0 and z > t. For the electric and magnetic field intensity vectors expressed as RMS 
phasors, the complex Poynting vector is given by *= ×S E H  and the time-average Poynting vector is 
Re(S). By the nature of a plane wave, the electric and magnetic field vectors are spatially orthogonal, 
so the cross product of vectors reduces to a multiplication of scalars. The magnitude of the time-
average Poynting vector is the time-average power density (with units of watts per square meter). 
Because η0 is real, the time-average power densities associated with the incident, reflected, and 
transmitted fields in Fig. 1 are given by: 2

0| | /I IP E η= , 2
0| | /R RP E η= , and 2

0| | /T TP E η= , 
respectively. By conservation of energy,  

I R T AP P P P= + + , (2) 

where PI is the incident power density, PR is the reflected power density, PT is the transmitted power 
density, and PA is the absorbed power density. It is more convenient, however, to consider power 
densities normalized to the incident power density. Dividing each term in (2) by IP  gives the 
normalized power balance equation, 

ˆ ˆ ˆ1 R T AP P P= + + . (3) 

The following notation and terminology for these power densities normalized to the incident power 
density will be used in this paper: 𝑃𝑃�𝑅𝑅 is called the reflectance, 𝑃𝑃�𝑇𝑇 is called the transmittance, and 𝑃𝑃�𝐴𝐴  is 
called the absorptance. 
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Fig. 1. Basic plane wave shielding problem of homogeneous and isotropic material infinite in 
xy-plane. 

 With the permeability μ, the conductivity σ, and the permittivity ϵ potentially expressed as complex 
numbers and with ω representing the angular frequency of the wave, the propagation constant in the 
material is: 

( )j j jγ α β ωµ σ ω= + = +  . (4) 

As in (4), the propagation constant may be written in terms of the attenuation constant α and the phase 
constant β. The intrinsic impedance of the material is: 

j
j

ωµη
σ ω

=
+ 

. (5) 

Another term important for the analysis of shielding materials is the skin depth, which is defined as 
δs = 1/α. In good conductors when the frequency is such that σ ≫ ωϵ, the intrinsic impedance may be 
approximated as /jη ωµ σ≈  and the propagation constant may be approximated as   

( )1 / 2jγ ωµσ≈ + . Thus the skin depth in good conductors can be closely approximated by

( ) 1/2
s fδ π µσ −≈ , where f = ω/(2π). Elementary electric field reflection coefficients are denoted by ρ 

and represent the ratio of reflected to incident electric field intensity that would occur at the junction of 
two materials if both materials were infinitely thick. Actual reflection coefficients representing the 
ratio of electric field intensity in the backward and forward traveling waves next to a junction are 
denoted by Γ. The elementary electric field reflection and transmission coefficients of a normally 
incident plane wave traveling from free space and impinging on the material in Fig. 1 are given by 

( ) ( )1 0 0/ρ η η η η= − +  and ( )1 02 /T η η η= + , respectively. Likewise, the electric field reflection and 
transmission coefficients of a wave traveling out of the material and into free space are given by 

( ) ( )2 0 0/ρ η η η η= − +  and ( )2 0 02 /T η η η= + , respectively. The relationships 1 11T ρ= + , 2 21T ρ= + , 
and 1 2ρ ρ= −  will be used for subsequent derivations in this paper.  

The transmitted electric field can be expressed as a sum of the field that would be transmitted 
directly through the material, 1 2

t
IE eT Tγ− , and the fields that experience internal partial reflections an 

even number of times and then are transmitted into the region z > t of Fig. 1. Thus, the transmitted 
electric field intensity can be expressed as the following summation of partial reflections: 
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( )2
1 1 2 2

0

m
t t

T I
m

E T TE e eγ γρ ρ
∞

− −

=

= −∑ . (6) 

By converting the electric field intensities represented in (6) to power densities, using the formula for 
the sum of a convergent geometric series, noting that 2

1 1 2ρ ρ ρ= − , and dividing by the incident power 
density, the transmittance can be expressed as, 

2

1 2
2 2
1

ˆ
1

T

I

t

T t

P TT eP
P e

γ

γρ

−

−= =
−

. (7) 

The reflectance is easily found by calculating the input reflection coefficient and taking the 
magnitude squared of this value: 

( ) 22
2 1

2 2
1

1ˆ
1

t

R in t

e
P

e

γ

γ

ρ

ρ

−

−

−

−
== Γ . (8) 

Consequently, from the power balance relationship, (3), the absorptance can be expressed as, 

ˆ ˆ ˆ1A T RP P P= − − . (9) 

3. Schelkunoff Decomposition of Shielding Effectiveness 
In general, EMSE can be defined as either the electric or magnetic field insertion loss expressed in 

decibels when the material is added [26]. However, for the plane wave shielding problem shown in 
Fig. 1, this is equivalent to the power insertion loss or simply the reciprocal of the transmittance 
expressed in decibels: 

( ) 1 2
10

1
10 2 2

ˆSE 10log 20log
1

t

T t

TT eP
e

γ

γρ

−

−= − = −
−

. (10) 

In the EMC literature, there is widespread decomposition of (10) into decibel quantities called 
penetration loss, reflection loss, and the internal reflections correction term that sum to give the EMSE. 
As described in Section 1, this decomposition is called the Schelkunoff decomposition and can be 
expressed as, 

SE A R B= + + . (11) 
The penetration loss, which is also called absorption loss, is the reciprocal of the attenuation that 

occurs when a wave travels through the material once and is the non-negative quantity given by: 

10 1020 log 20log ( )· 8.7tA e e t tγ α α−= − = ≈ . (12) 

The penetration loss can equivalently be physically interpreted as the ratio expressed in decibels of the 
magnitude of the incident complex Poynting vector to the magnitude of the transmitted complex 
Poynting vector when the shield is simultaneously matched for no reflection on both sides. 

The reflection loss is the reciprocal of the product of the transmission coefficients at both interfaces 
expressed in decibels and represents the reduction in transmitted field that would occur due to 
reflections off of both interfaces in the absence of loss in the medium and internal reflections between 
the two interfaces. Reflection loss is the non-negative quantity given by: 
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2
10 1 2 10 120 log 20log 1R TT ρ= − = − − . (13) 

The remainder of the expression for EMSE is the correction term for multiple internal reflections, 
accounting for the reflections represented by the geometric series in (6). The internal reflections 
correction term, which is also called the multiple reflections loss, is given by: 

2 2
10 120 log 1 tB e γρ −= − . (14) 

Because 1 1ρ < , it follows that the upper positive limit of B is about 3 dB which occurs when 
2 2

1
te jγρ − = ± . For sufficiently thick good conductors at frequencies where t ≫ δs, the argument of the 

absolute value function in (14) is near unity and 0 dBB ≈ . 

The sum of the internal reflections correction term and the reflection loss will be called the net 
reflection loss in this paper:  

netR R B= + . (15) 

This net reflection loss thus represents a comparison loss comparing the magnitude of the ratio of the 
incident and transmitted complex Poynting vectors of the actual shield configuration to the 
corresponding ratio which would occur if the shield was simultaneously matched. 

3.1 Determining Decomposition from Scattering Parameters 
There are many different techniques that have been used to obtain measurements approximating 

plane wave EMSE. Often these measurement techniques make use of transverse electromagnetic 
(TEM) cells or coaxial airlines. Analysis of these different measurement techniques is beyond the 
scope of this paper, but if one obtains the necessary complex-valued scattering parameters S11 and S21 
of a single-layered shield in free space, the terms of the Schelkunoff decomposition can easily be 
obtained. As  presented in [46], the elementary reflection coefficient of a wave impinging on the 
material can be found by, 

2
1 1ρ χ χ= ± − , (16) 

where the solution giving 1 1ρ ≤  is taken and where,  

2 2
11 21

11

1
2

S S
S

χ − +
= . (17) 

From this result, the propagation term can be determined as, 

( )
11 21 1

11 21 11
t S Se

S S
γ ρ

ρ
− + −

=
− +

. (18) 

Then, the penetration loss, the reflection loss, and the internal reflections corrections term can be found 
from the results of (16) and (18) using the formulas in (12), (13), and (14). 

3.2 Determining Power Distribution from Decomposition 
The full characterization of a reciprocal linear two-port network requires six real-valued parameters, 

while a network known to be symmetric may be characterized by four real-valued parameters. Thus, 
the three real-valued parameters that are given by the Schelkunoff decomposition are by themselves 
insufficient to fully characterize a network. However, it is often of interest to know simply how much 
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power is reflected and absorbed by a shield. This raises the question of whether it is possible to 
determine the reflectance/absorptance from the Schelkunoff decomposition of a single-layered shield 
in different circumstances. 

3.2.1 Good Conductor Approximation 
It is easy to approximate the reflectance/absorptance from the Schelkunoff decomposition of a 

shield composed of a good conductor at frequencies when σ ≫ ωϵ. For good conductors, the 
magnitude of η is generally very small at frequencies of interest for EMC. For example, the intrinsic 
impedance of copper at 1 GHz is 0.0037∠45° Ω and |η| is even lower for f < 1 GHz. Additionally, both 
the propagation constant and intrinsic impedance in good conductors have approximately equal real 
and imaginary parts. These relationships are evident from the following equation which is valid for 
materials with real-valued permeability and conductivity: 

( )
( )

2 2 2

2 22

Re 1 tan 1
Im 1 tan 1

η δ β
αη δ

+ +
= =

+ −
, (19) 

where tan ( ) / ( )δ ω σ ω′′ ′= +   is the loss tangent (which is very large for good conductors) and where 
the complex permittivity is expressed as ϵ = ϵ′ − jϵ″.  

 Thus the normalized intrinsic impedance (which is denoted by ζ with real part  ζr) can be 
approximated as, 

0 (1/ )r jζ η η ζ += ≈ .  (20) 

With this approximation, the argument of the logarithm in the reflection loss term (which is denoted by 
MR) can be expanded as, 

2 2
/10

2 4 3 2

32410
( 1) 4 8 8 4 1

R r
R

r r r r

M ζζ
ζ ζ ζ ζ ζ

−= = ≈
+ + + + +

. (21) 

Solving (21) for ζr and selecting the correct root (the one giving 0 < ζr < 1 for the possible interval of 
0 < MR ≤ 1 gives, 

( )1 4 2 8 2 2
2r R R R

R

M M M
M

ζ ≈ − − − − + + . (22) 

Then, the elementary electric field reflection coefficient may be approximated as, 

 1
(1 ) 1
(1 ) 1

r

r

j
j

ζρ
ζ

+ −
≈

+ +
. (23) 

From (12), the product of the attenuation constant and thickness may be written in terms of the 
Schelkunoff absorption loss as, αt = A/(20 log10(e)). The product of the propagation constant and 
thickness may thus be approximated as,  

( )1t t jγ α≈ + . (24) 

Also note that the denominator of (8) is 10B/10. Thus the reflectance can be approximated by 
substituting 10B/10, γt from (24), and 1ρ  from (23) into (8). The transmittance is 𝑃𝑃�𝑇𝑇 = 10−SE/10, so the 
absorptance can be approximated with (9). These approximations are shown to be accurate for a 
variety of example materials later in this paper. 
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3.2.2 General Material Solution 
For a general single-layered material for which it is only known that the relative permeability is one, 

but for which it is not necessarily the case that σ ≫ ωϵ, determining the reflectance/absorptance from 
the Schelkunoff decomposition is a more involved process. For such a material, we can write the 
intrinsic impedance as ( )0 0 //j j jη ωµ γ ωµ α β= = + . By expressing the reflection coefficient 1ρ  in 
terms of 𝜂𝜂0 , ω, α, and β, we can write the arguments of the logarithms in the Schelkunoff 
decomposition reflection loss and internal reflections correction terms as the following two 
expressions, which both involve entirely real-valued quantities:   

( )
( )( )

2 2 2 2 2
0 0/10

22 2 2 2 2
0 0 0 0

16
10

2
R

η µ ω α β

η α β βη µ ω µ ω
−

+
=

+ ++
 and (25) 

/10 2
0 0, cos(2 si10 ( , , n(2e ), ), , , )B tf t tαα β β β η µ ω− = , (26) 

where f is a real-valued multivariate rational function. 
A nonlinear system of two equations with two unknowns in terms of α and β is formed by (25) and 

(26) with the symbolic substitution made in (26) that t = A/(20 log10(e)⋅α). Although this system is 
solvable with numerical methods, the robustness of this procedure was not thoroughly investigated as 
these formulas are intended primarily to indicate the theoretical relationships between the Schelkunoff 
decomposition and the reflectance/absorptance; furthermore, the approximate method in the previous 
section works well for many practical shielding materials. This procedure may be simplified to a 
closed form solution of (25) expanded in terms of β as a quartic polynomial if the thickness is also 
known. Once α and β are obtained, the reflectance and absorptance are easily computed. 

3.3 Application to Layered Shields 
Schulz presented an extension of the Schelkunoff decomposition to layered shields in [47]. Schulz’s 

extension to the Schelkunoff decomposition is briefly reviewed here. The field solution for the general 
multilayered (with homogeneous and isotropic layers) plane wave shielding problem is presented in 
Fig.  2 below.  
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Fig.  2. Field solution for multi-layered plane-wave shielding problem. 
From the field solution (using the notation in Fig.  2), Schulz defines the penetration loss as, 

10
1

20 log i i

N
t

i

A e γ−

=

= − ∏ , (27) 

the reflection loss as, 

( )
1

10
1

120log
N

i
i

R ρ
+

=

= − +∏ , (28) 

and the internal reflections correction term as, 

( )2
10 1

1

120log i i

N
t

i i
i

B e γρ −
+

=

Γ+= ∏ . (29) 

If, however, one were to apply the procedure presented previously for obtaining the Schelkunoff 
decomposition of a single layered shield to a symmetrically layered shield, one would generally obtain 
a different decomposition as illustrated in Fig. 3 below. In this figure, “Image Am” and “Image Rm,net” 
represent what one would obtain for A and Rnet, respectively, by applying the previously presented 
procedure for obtaining the Schelkunoff decomposition from scattering parameters. The trace labeled 
“Schulz Rnet” represents the sum of (28) and (29) for this shield and the trace labeled “Schulz A” is 
found from (27).  
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Fig. 3. Comparison of Schulz’s generalization of Schelkunoff decomposition to the 
decomposition which would be obtained if the shield was treated like a single-layered shield 
and the procedure in section 3.1 was used (these terms are prefixed by the word “Image.”) 

The decomposition corresponding to the curves prefixed by the word “Image” in Fig.  2 is what one 
would obtain using image parameters to generalize the comparison loss interpretations of the single 
layered shield for layered media. This generalization of the Schelkunoff decomposition using image 
parameters is presented in the appendix. However, this image parameter generalization is only useful 
from a theoretical point of view because not only do its terms lack usefulness as practical figures of 
merit (like the Schelkunoff decomposition and Schulz’s extension), but its terms are not useful as 
intermediate terms in calculating EMSE (unlike the Schelkunoff decomposition and Schulz’s extension 
which are useful in this respect). The theoretically interesting thing about this image parameter 
decomposition is that its terms can be interpreted by comparing to a hypothetical situation of 
simultaneous image matching (a generalization of the reflectionless matched condition) of the 
Schelkunoff decomposition. Specifically, the image absorption loss is the ratio expressed in decibels of 
the magnitudes of the incident and transmitted complex Poynting vectors when the shield is image 
matched.  

4. Mismatch Decomposition 
4.1 Basic Description 

A number of authors have used a decomposition, commonly used in the analysis of mismatches 
between transmission lines for the decomposition of experimental shielding effectiveness 
measurements [6], [17], [20], [21], [40]–[45]. In these papers, the decomposition terms have been 
called experimental reflection / absorption losses [20], net shielding by reflection / absorption [40], 
[41], and various other names. Here the terms will be called mismatch loss and dissipation loss to be 
consistent with the terminology that has been used for decades in the analysis of transmission lines 
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[48], [49]. The decomposition is called the mismatch decomposition here, because it is based on a 
comparison to conjugate matching of the equivalent input or output impedance of a network.  

Mismatch loss, which is also called conjugate mismatch loss, is defined at a reference plane 
between a source and a load as the ratio of the power that would be delivered to a conjugate-matched 
load to the power delivered to the mismatched load. In other words, it is the ratio expressed in decibels 
of the power available from the source to the power delivered to the load. Note that mismatch loss is 
only defined at a reference plane between a load and a source. The mismatch loss at the input of a 
transmission line segment that is mismatched at both ends, however, can be defined as the mismatch 
loss between the source and the equivalent input impedance of the transmission line [50]. 
Alternatively, it can be defined at the output of the transmission line segment by taking the Thévenin 
equivalent of the source cascaded with the transmission line.  

The mismatch loss at the input-side of a shield in free space may be expressed as: 

( ) ( )

2
0

10
0

10 log
4Re Re

in

in
ML

η η
η η

 +
=  

 
 

, (30) 

where ηin is equivalent wave impedance looking into the transmission line analog of the shield 
terminated with η0: 

( ) ( )0 1 / 1in in inη η +Γ −Γ= . (31) 

Because η0 is real, mismatch loss can also be expressed as: 

( )10
ˆ10log 1M RL P= − − . (32) 

The efficiency of a transmission line section is defined as the power delivered to the load divided by 
the net power input. Application of this concept to the transmission line analogy of shielding gives the 
efficiency as, 

ˆ
ˆ1

T T

I R R

P Ph
P P P

= =
− −

 . (33) 

The dissipation loss of the shield is then defined as the reciprocal of the efficiency expressed in 
decibels: 

( )1010 logDL h= − . (34) 

Note that the mismatch loss (32) and the dissipation loss (34) add up to the total EMSE:  

SE D MLL= + . (35) 

Another way of viewing the dissipation loss is to define the effective absorptance as the absorbed 
power relative to the power not reflected,  

( ),
ˆ ˆ ˆ/ 1A eff A RP P P= − .  (36) 

Then the dissipation loss can be expressed as, 

( )10 ,
ˆ10 log 1D A effL P= − − . (37) 
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4.2 Comparison to Schelkunoff Decomposition 
From the equivalence of (30) and (32), it is apparent that mismatch loss has an advantage over the 

Schelkunoff decomposition in that mismatch loss is closely related to the power balance as well as the 
impedance mismatch. Thus it is trivial and intuitive to obtain the decomposition from measured 
network parameters and to obtain the reflectance/absorbance from the decomposition. Another 
advantage of this decomposition is that the terms in this decomposition have the same physical 
meaning as comparison losses for single-layered and multi-layered materials. In contrast, the 
Schelkunoff decomposition generalized for layered materials by Schulz lacks this property. Although 
the image parameter generalization of the Schelkunoff decomposition presented in the appendix does 
yield identical comparison loss interpretations for single and multi-layered shields, its terms are neither 
useful as figures of merit nor as intermediate calculation terms.  

One disadvantage of the mismatch decomposition is that the terms in the mismatch decomposition 
are less useful for understanding the parametric dependence of EMSE; however, the terms are 
intuitively simple and represent useful figures of merit. The mismatch loss decreases with the power 
that is either absorbed by the shield or transmitted through the shield and the dissipation loss gives a 
measure of the absorbed power relative to the power not reflected. Authors who have used the terms of 
this decomposition as figures of merit have justified its use because increasing the percentage of 
conductive nanoparticles in a composite increases the reflectance of the material. Thus the absorptance 
will decrease simply because there is less power available to be absorbed. Therefore, these authors 
argue that for purposes of describing shielding mechanisms, the measure of absorption should be of the 
absorbed power relative to the power not reflected [41]. 

Mismatch loss and dissipation loss are totally different quantities than the terms in the Schelkunoff 
decomposition, even for good conductors. However, a number of recent papers are unclear in this 
regard (for example [20], [21], [40], [41], [43], [45]). The Schelkunoff reflection loss can be expressed 
as, 

( )22 2
10 1 110 log 1 2Re( )R ρ ρ= − − + . (38) 

The elementary electric field reflection coefficient between free space and a good conductor only has a 
very small imaginary part so it follows that 2 2

1 1Re( ) | |ρ ρ≈ . Thus the Schelkunoff reflection loss can 
roughly be approximated as, 

( ) ( )22 2
10 1 10 110 log 1 20log 1R ρ ρ−=≈ − − − . (39) 

For thick good conductors with t ≫ δs, the reflectance given by (8) may also be approximated as, 
𝑃𝑃�𝑅𝑅 ≈ |𝜌𝜌1|2, since e−2γt is very small. Thus, the mismatch loss can be approximated as, 

( )2
10 110 log 1ML ρ≈ − − . (40) 

Notice that the mismatch loss approximated by (40) is half of the decibel value of the Schelkunoff 
decomposition reflection loss approximated by (39) for materials in which t ≫ δs and σ ≫ ωϵ. 
Consequently, the dissipation loss will be greater than the Schelkunoff absorption loss for thick good 
conductors.  

5. Examples 
The calculated EMSE decompositions are shown in Fig.  4–Fig. 6 for three different materials. In 

these plots, A, R, B, and Rnet represent the absorption loss, reflection loss, internal reflections correction 
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term and net reflection loss of the Schelkunoff decomposition, respectively. LM and LD represent the 
mismatch loss and dissipation loss of the mismatch decomposition, respectively. Finally, an additional 
decomposition consisting of three decibel power ratios is provided that illustrates another possible way 
to describe the reflection and absorption contributions to shielding. These three decibel ratios also sum 
to give the total EMSE. The first of these additional decibel ratios, shown in magenta in the figures, is 
the ratio of reflected to absorbed power, 10 log10�𝑃𝑃�𝑅𝑅  /𝑃𝑃�𝐴𝐴�. Next, shown in gray, is the decibel ratio of 
absorbed to transmitted power, 10 log10�𝑃𝑃�𝐴𝐴  /𝑃𝑃�𝑇𝑇�. The last of these ratios, shown in cyan, is the 
decibel ratio of incident to reflected power or the return loss, 10 log10� 1/𝑃𝑃�𝑅𝑅�. 

In all of the plots, note that the Schelkunoff net reflection loss is greater than the mismatch loss. 
Also, while the reflected power is greater than the absorbed power for all of these examples, the 
Schelkunoff absorption loss exceeds the Schelkunoff net reflection loss for the cases in Fig.  4 and 
Fig. 6 above several GHz. In each of these examples, the dissipation loss exceeds the mismatch loss. 
For the examples in Fig. 5 and Fig. 6, the internal reflections correction term of the Schelkunoff 
decomposition has a negative value of relatively large magnitude at frequencies up to hundreds of 
megahertz.  

Note that the decibel ratio of absorbed to transmitted power approximates the dissipation loss and 
the decibel ratio of reflected to absorbed power approximates the mismatch loss for all of the 
examples. In Fig.  4, these approximations hold to within 0.0012 dB. In Fig. 5, these approximations 
hold to within 0.083 dB. Finally, in Fig. 6, the mismatch loss differs from the decibel ratio of reflected 
power to absorbed power by up to 2.67 dB and the dissipation loss differs from the ratio of absorbed to 
transmitted power by up to 0.37 dB. In general, the dissipation loss will approximately equal the 
decibel absorbed-to-transmitted power ratio when the power absorbed is much greater than the power 
transmitted as is evident from rewriting the formula for dissipation loss as, 

( )10
ˆ ˆ10log / 1D A TL P P= + . (41) 

Thus if the absorbed-to-transmitted power ratio exceeds 10 dB, then this ratio will be within 0.5 dB of 
the dissipation loss. Likewise, the mismatch loss can be written in the following form,  

( )10
ˆ ˆ ˆ10log / ( ) 1M R A TL P P P= + + , (42) 

which illustrates why it is approximately equal to the decibel ratio of reflected to absorbed power in 
the examples. 

Additionally, the errors associated with approximating the absorptance and reflectance using the 
good conductor approximation-based equations in (21)−(24) were investigated. In Fig.  4, the 
approximated absorptance was within 0.0022% of the actual absorptance from 1 MHz to 10 GHz. For 
Fig. 5, the approximated absorptance was within 0.0532% of the actual absorptance from 1 MHz to 
10 GHz. Finally, in Fig. 6 the approximated absorptance was within 3.64% of the actual absorptance 
from 1 MHz to 10 GHz and within 1.02% from 1 MHz to 1 GHz. The maximum approximation errors 
for the reflectance were lower than those for the absorptance for each of the three examples. 
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Fig.  4. Shielding decompositions for 10 μm thick copper shield. 

 

Fig. 5. Shielding decompositions for 0.1 mm-thick shield with σ = 1×104 S/m. 
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Fig. 6. Shielding decompositions for 3 mm-thick shield with σ = 10 S/m. 

6. Conclusion 
For many applications of shielding materials, it is useful to consider the reflection and absorption 

contributions to the overall EMSE. The terms in the Schelkunoff decomposition represent intermediate 
terms in the calculation of EMSE using the transmission line model of shielding. However, these terms 
are distantly related to measurable quantities and as such are generally poor figures of merit for 
comparing the reflection and absorption contributions to the shielding effectiveness of materials in 
experimental situations.  

The mismatch decomposition has several advantages compared to the Schelkunoff decomposition. 
It has only two components that are easily expressed in terms of the amounts of power reflected and 
absorbed by the shielding material. Additionally, the power absorbed by a shield will go down if that 
shield becomes a better reflector. Thus it makes sense to quantify the ability of a shield to absorb 
power by comparing the absorbed power to the power that is not reflected as the mismatch 
decomposition does. The mismatch loss is also physically meaningful in that can also be interpreted as 
a comparison loss (comparing the attenuation in a situation of conjugate matching to the actual 
attenuation). Likewise the terms of the mismatch decomposition can easily be expressed in terms of the 
constitutive parameters and thickness of the material. 

Due to the multitude of definitions for the terms “absorption loss” and “reflection loss” that appear 
in the literature, the terms in the Schelkunoff decomposition are often misinterpreted. It is important to 
recognize that the penetration loss and reflection loss of the Schelkunoff decomposition are not related 
to the normalized absorbed and reflected power in a straightforward or intuitive manner. As was 
illustrated by the examples in the previous section, the penetration loss can exceed the net reflection 
loss when the reflected power is around ten-thousand times greater than the absorbed power as in the 
case of the copper shield example, or when the reflected power is only slightly greater than the 
absorbed power as in the case of the 10 S/m shield example.  
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For describing the absorption and contributions to shielding, the figures of merit should convey 
information that is of interest in practical situations. The terms of the Schelkunoff decomposition are 
useful for giving an intuitive understanding of the parametric dependence of EMSE, but they otherwise 
do not convey very useful information. The mismatch decomposition does convey useful information 
directly related to the reflected and absorbed power, but it should not be mistaken for an approximation 
of the terms of the Schelkunoff decomposition when the internal reflections correction term is 
negligible. EMSE can also be decomposed in other manners that may give measures of interest. The 
examples section of this paper demonstrated how EMSE could be decomposed into three decibel terms 
representing useful power ratios. In many experimental situations, however, it may be best to use 
unambiguous figures of merit like the reflectance and absorptance to describe the mechanisms of 
shielding rather than decibel quantities that add to give the EMSE. 

Appendix: Image Parameters and Schelkunoff Decomposition  
Image parameters were first defined by Zobel [51] and can be used to completely characterize a 

reciprocal two-port network with two complex-valued image impedances and a complex-valued image 
propagation constant. Image parameters will be defined in terms of the ABCD transmission matrix 
from network theory. The ABCD matrix of the transmission line analogy of a single-layered shield can 
be expressed as, 

1 2 2
1

1 2 2

cosh( ) sinh( )
sinh( ) cosh( )

t tE E EA B
t tH H HC D η

γ η γ
γ γ

       
= =        
       

. (43) 

The field quantities in (43) correspond to using the positive x-axis in Fig. 1 as the reference 
direction for the electric field and the positive y-axis as the reference direction for the magnetic field. 
The field quantities in (43) can thus be expressed in terms of the quantities defined for the shielding 
problem as: 1 I RE E E= + , 1 0( ) /I R I RH H H EE η== − − , 2 TE E= , and 2 0/T TH H E η== . The ABCD 
matrix has a unity determinant for a reciprocal two-port network and satisfies A = D for a symmetric 
two-port network. 

The image impedances of a reciprocal two-port network can be expressed as 

( )1 2, ,m m
AB BDZ Z
CD AC

 
=   
 

. (44) 

A network with the source and load impedances equal to the respective image impedances of the 
network is said to be image matched and the impedance looking in the forward and backward 
directions is the same at both the input and output terminals. The image propagation constant of a 
reciprocal two-port network can be expressed as:  

1coshm m mj ADγ α β −== + . (45) 

Note that the two image impedances reduce to η and the image propagation constant reduces to γt for 
the ABCD matrix of the single layer shield in (43). 

A decomposition of insertion loss very similar to the Schelkunoff decomposition of shielding, but 
using image parameters, is applied to circuit filters in [51], [52]. This decomposition can be derived by 
hypothetically considering ideal transformers with complex-valued ratios placed on either end of the 
network providing conversion from the actual source and load impedances to the image impedances of 
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the network [53]. Adaption of this concept to the transmission line analogy of shielding to provide a 
generalization of the Schelkunoff decomposition is presented below.  

From the image impedances defined above, we can define terms analogous to reflection coefficients 
as follows: 

( ) ( )
( ) ( )

1 1 0 1 0

2 2 0 2 0

/

/
m m m

m m m

Z Z

Z Z

ρ η η

ρ η η

= − +

= − +
 . (46) 

Likewise, we can define terms analogous to transmission coefficients as follows: 

( ) ( )

( ) ( )
1 1 0 1 0

2 2 0 2 0

2 /

2 /

m m m

m m m

T Z Z

T Z Z

η η

η η

= +

= +
. (47) 

Note that these image transmission and reflection coefficients are defined for waves traveling into the 
network from both sides, which is different than the analogous definitions used in Fig. 1 (in which case 
both transmission coefficients are for a wave traveling in the positive z direction). Then the EMSE can 
be expressed as, 

m m mSE A R B= + + , (48) 

where, the image absorption loss is, 

1020 log 8.686m
m mA e γ α−= − = , (49) 

the image reflection loss is, 

10 1 220 log mm mR T T= − , and  (50) 

the image interaction loss is, 
2

10 1 220 log 1 m
m mmB e γρ ρ −= − . (51) 

Likewise, we will call the following term the image net reflection loss: 

,m net m mR R B= + . (52) 

For a symmetric shield (i.e. S11 = S22), the image reflection coefficient and the image propagation 
constant are equal to the corresponding terms that would be found by using the method presented in 
Section 3.1. Thus, for a symmetric shield, converting the shield’s scattering matrix to its ABCD matrix 
representation and then solving for the image absorption loss, image reflection loss, and image 
interaction loss is equivalent to obtaining the penetration loss, reflection loss, and internal reflections 
correction terms, respectively, of the Schelkunoff decomposition from scattering parameters using the 
method presented in Section 3.1. 
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