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Abstract—A full-wave FEM-SPICE technique is presented for 
modelling electromagnetic fields from DC to GHz. Previous 
implementations of this method have not worked well at low 
frequencies, because the circuit models generated from the finite 
element formulation had low-frequency stability problems. A 
modified LU recombination method is here applied to the 
standard FEM-SPICE formulation in order to eliminate the low-
frequency stability problem while allowing a reduction of the 
number of circuit elements. The equivalent circuit derived from 
the reformulated equations is suitable for analysis in the time 
and/or frequency domains by any circuit solver that can model 
large numbers of linear or non-linear lumped elements. 
Examples are provided that demonstrate the ability of the new 
technique to model geometries from DC to several GHz in a 
single simulation. 

I. INTRODUCTION 
Combining full-wave electromagnetic (EM) and circuit 

simulation in a single analysis technique offers many 
advantages. Several numerical tools suitable for analyzing 
field-circuit coupled problems have been developed [1-6]. The 
circuit-oriented finite element method (FEM) based on the 
finite element simulation of the field domain [3-6] combines 
the flexible mesh generation and analysis capabilities of FEM 
with the fast solution capabilities of circuit solvers, such as 
SPICE. This approach is also well suited for analyzing 
problems that involve complex distributed EM geometries as 
well as lumped circuit elements. However, because it is 
derived from a full-wave FEM formulation, circuit-oriented 
FEM is hampered by low-frequency instability problems and 
can not be used to analyze low-frequency problems or 
geometries driven by a source signal that has a DC component. 

Full-wave EM simulation algorithms suffer from low-
frequency instability due to the decoupling of the electric and 
magnetic fields at low frequencies. This problem related to 
FEM was analyzed in [7]. The matrix formulations can be 
viewed as a sum of two parts: the first part scales linearly with 
frequency and therefore is very small at low frequencies; the 
second part dominates at low frequencies and is singular. The 
overall matrix is poorly conditioned at low frequencies and 
the information of the first part can be obscured by numerical 
error in the second part when the two parts are summed. The 
LU recombination method proposed in [7] enforces the 
singularity property of the second part in a manner that 
ensures that the information contained in the first part won’t 
be neglected when the two parts are added.  

In this paper, the low-frequency limitations of the FEM-
SPICE method are explored. The LU recombination method is 
reformulated to modify the FEM matrix and a new equivalent 
circuit is derived. This approach significantly reduces the 
number of components in the SPICE simulations and produces 
circuits that accurately model full-wave problem geometries 
from DC to the highest valid frequencies of the original FEM 
formulation.  

II. FEM-SPICE FORMULATION 

The frequency domain vector wave equation in terms of the 
electric field E for a Debye material is give by [6] 

 

0 0 s
1 σ  jωε [ε  χ (ω)]  

jωμ ∞∇× ∇× + + + = −  E E E J , (1) 

 
where Js is the current density of an impressed source, ω the 
angular frequency, μ the permeability of the medium, and 

)(ωχ  the electric susceptibility. For a first order Debye 
medium, )(ωχ is given by 
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where ε∞ is the permittivity as ω→∞ and σ0 is the 
conductivity as ω→0. 

The computational domain is discretized into arbitrarily 
shaped finite elements and the electric field vector E is locally 
approximated by the Whitney 1-form [9], 

 

   )()(E kk

n

1k
erwr ∑

=

≅
,
 (3) 

 
where r is the position vector, n is the number of element 
edges in a given element, wk(r) is the vector trial function 
associated with the k-th edge, and ek is the circulation of the 
electric field along the k-th edge defined as, 
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with kt̂ the k-th edge tangent unit vector and lk the k-th edge 
length.  

By using the FE approximation (3), and applying a Galerkin 
method, equation (1) is discretized into a matrix form  [6], 
 

܍ ܇ ൌ  (5) ,܁۷
 
where e=[e1, e2,.....eN]T is the vector containing the electric 
field circulations,  IS is the global source current vector, Y is a 
non-singular sparse symmetric matrix obtained by the 
assembling process, and N the number of edges. The global 
admittance matrix can be expressed as sum of four 
contributions: 
 

܇ ൌ ۺ܇ ൅ ܀܇ ൅ ۱܇ ൅ ۱܀܇ , (6) 
 
where the matrices ۺ܇ ܀܇ , ۱܇ ,  and ۱܀܇  are obtained by 
assembling the respective elemental matrices whose 
coefficients are given by 
 

௅ܻ౟ౠ
௘ ൌ ׬ ଵ

ሺ୨னఓሻ
ሺ׏ ൈ ௜ܟ · ׏ ൈ ୨ሻ௏ܟ ܸ݀ (7a) 

ோܻ౟ౠ
௘ ൌ ׬ σ଴׏ ൈ ௜ܟ · ׏ ൈ ୨௏ܟ ܸ݀ (7b) 

஼ܻ౟ౠ
௘ ൌ ׬ jωε଴εஶ׏ ൈ ௜ܟ · ׏ ൈ ୨௏ܟ ܸ݀ (7c) 

ோܻ஼౟ౠ
௘ ൌ ׬ jωε଴χሺωሻ׏ ൈ ௜ܟ · ׏ ൈ ୨௏ܟ ܸ݀. (7d) 

 
The elements of  ۱܇ ,܀܇ ,ۺ܇ behave like inductors, resistors, 

and capacitors, respectively, while the elements of ۱܀܇  
behave like RC circuits. Note that dielectric losses are 
modeled by a resistive term, while Debye dispersion is 
modeled by an RC branch. The equivalent circuit of ୧ܻ୨ is then 
given by the parallel connection four branches as shown in 
Fig. 1 [6].  

The system of equations (5) is similar in structure to 
multiport network equations based on an admittance matrix 
representation. Each edge of the FE mesh corresponds to a 
port in the circuit network and the FEM matrix equation (5) 
can be translated into an equivalent circuit model as shown in 
Fig. 2. A detailed description of the SPICE circuit 
representation can be found in [6].  

The low-frequency problem inherent in full-wave finite 
element methods has been addressed in [7]. On one hand, the 
elements in matrices ۱܇  and ۱܀܇ approach zero at arbitrarily 
low frequencies as seen from (7c)-(7d), and their contribution 
tends to be lost in numerical errors during the summation in 
(6). On the other hand, the matrix ۺ܇ , was shown to be 
singular when using the popular lowest-order curl-conforming 
basis functions. It has M  sets of linearly dependent rows, 
where M is equal to the total number of internal nodes in the 

finite element mesh [10]. The condition number of Y gets 
large at low frequencies where ۺ܇, dominates. Therefore, the 
loss of information in ۱܇ and ۱܀܇, although very small, leads 
to large errors in the solution at low frequencies. 

The FEM-SPICE model has a similar low frequency 
problem because the circuit model is directly derived from the 
FEM matrix formulation (5). Low frequency instability 
problems in the SPICE model are the result of the inductors 
derived from the ۺ܇ matrix. Moreover, when implementing the 
equivalent circuit in SPICE, a small resistor must be 
introduced in series with the inductor since no closed inductor 
loops are allowed. These artificial resistors result in an 
additional numerical error that is insignificant as long as the 
resistance is smaller than the inductor impedance, but it has a 
significant impact at low frequency. 

These problems related to the singular nature of  ۺ܇ can be 
overcome by the LU recombination method described in the 
following section. 
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Fig. 1. Equivalent circuit of the mutual admittance iܻj between i-th and j-th 
ports. 
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Fig. 2. Norton equivalent circuits corresponding to a portion of the FEM 
system involving edges i, j, k and h. 
 

III. LU FEM-SPICE FORMULATION 
A new approach based on the LU recombination method is 

proposed to generate a FEM-SPICE model that works at both 
high and low frequencies. The approach uses the LU 
recombination method to determine which rows in the matrix 
 are linearly dependent. Then for each group of dependent ,ۺ܇
rows, the approach creates a new row that removes the 
numerical errors. Since the new row is a linear combination of 
the dependent rows, it can replace any row within the group. 
The proposed approach also generates a combination matrix C 
that records all the dependent rows and how they are linearly 
related. This matrix is used to incorporate lumped elements 
and obtain the final solution.  
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In order to show the LU recombination method using a 
simple notation, the position ܇HF ൌ R܇ ൅ C܇ ൅  RC is adopted܇
so that (6) appears in compact form as: 

 
܇ ൌ L܇ ൅  HF. (8)܇

 
The detailed process is described using the following 

example. Let YLi and YHFi (i=1,2,…,N) denote the i-th rows of 
the ܇L and ܇HF matrices, respectively. Assume rows i1, i2, and 
i3 are linearly dependent such that,  

 
L௜ଵ܇  ൅ L௜ଶ܇ ൅  L௜ଷ= 0. (9)܇

 

The LU recombination method described in [7] is used to 
locate these groups of dependent rows. It replaces any of the 
i1, i2, and i3 rows with the linear combination Y0 

 
଴܇   ൌ L଴܇ ൅  HF܇

     ൌ ሺ܇L௜ଵ ൅ L௜ଶ܇ ൅ L௜ଷሻ܇ ൅ ሺ܇HF௜ଵ ൅ HF௜ଶ܇ ൅  HF௜ଷሻ. (10)܇
  

This new row is called a zero-edge row because ideally  ܇L଴  
is zero. A simple way to generate the combination matrix C is 
to initialize it as an N×N identity matrix, with N the total 
number of edges. Then, for any linearly dependent line i1 that 
is intended to be replaced by the zero-edge (10), some matrix 
coefficients are modified as: 
 

1=i1 i2C
 

1=i1 i3C . (11)

 
 

The column vector is also replaced to maintain the symmetry, 
and the following new admittance matrix is obtained: 
 

௡௘௪܇  ൌ ۱T ܇ ۱ ൌ ۱ ሼ܇L ൅  HFሽ ۱T . (12)܇
  

In practice, the matrix multiplication is performed only on the 
matrix ܇HF; the i1 row and column of the matrix ܇L are set to 
zero directly. The zero-edge elements have no inductive 
admittance and therefore circuit models created from the 
modified admittance matrix ܇௡௘௪ do not have inductors that 
correspond to these elements or their associated artificial 
resistors. This effectively removes both the inductances and 
additional resistances that will affect the low-frequency 
solution. For each group of dependent rows in ܇L, one row in 
Y is replaced by the zero-edge, and all necessary replacements 
are performed using the matrix multiplication shown in (12). 
Unlike the original LU recombination method, this new 
approach does not recover the original finite element matrix, 
but instead creates a new one.  

The new FEM formulation can be expressed in terms of the 
original formulation as,  
 

௡௘௪܍ ௡௘௪܇  ൌ ۷S௡௘௪ , (13) 
 
where: 
 

܍ ൌ  ௡௘௪   (14a)܍ ۱்
 

    ۷S௡௘௪ ൌ ۱ ۷S . (14b) 
  

The new FEM formulation can be translated into a circuit 
for SPICE simulation using traditional FEM-SPICE 
techniques. Circuits created from the new formulation will not 
suffer from low-frequency instability. Note that the linear 
combination is also applied to the source vector, so extra 
source elements may be added to the new circuit model. Since 
the FEM matrix Y is changed, the solution is also changed. 
However, the original solution can be easily derived by (14a). 

IV. VALIDATION AND DISCUSSION 
The first example used to validate the approach described 

in the previous sections is the circuit board power bus model 
shown in Fig. 3. The structure is composed of two metal 
planes and a dielectric substrate. The size of the planes is 20 
mm × 10 mm, and they are modeled as perfect electric 
conductors. The dielectric substrate between the two planes 
has a thickness of 2 mm and a relative permittivity of 4.4. The 
board is excited by an ideal current source located 2.5 mm and 
7.5 mm from the edges at one corner. There is a 50-ohm 
source resistor in parallel with the source. The fringing field 
was neglected and the four side walls of the board were 
modeled as perfect magnetic conductors. 
The input impedance was calculated using different methods 
and the results are shown in Fig. 4. The results obtained using 
a cavity model [8] are used as a reference, since the cavity 
model yields accurate results for this type of structure over  
the entire frequency range evaluated. The dotted line is the 
result obtained using a normal FEM-SPICE model. The solid 
line is the result obtained using FEM-SPICE with the LU 
recombination corrections  described  in  the previous section.  

 

  
 

Fig. 1  The geometry of a power bus structure. 

 

 
 

Fig. 4  Power bus structure input impedance. 
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Fig. 5  Metal box example: substrate with trace (a); enclosed by metal box (b). 

 
Fig. 6. The input impedance of the trace in a metal box.  

 
The normal FEM-SPICE results behave as if the planes were 
shorted at low frequencies. After LU recombination, the 
calculated input impedance matches the cavity model result 
very well. 

The second example is a dielectric substrate with a metal 
trace on it that is enclosed in a metal box, as shown in Fig. 5. 
The substrate has dimensions of 160 x 60 x 2 mm and a 
dielectric constant of 4.4. The trace is 60 mm long and 4 mm 
wide. The height of the metal box is 8 mm. A 50-ohm source 
is placed at one end of the trace. A 50-ohm resistor is placed 
at the other end.  

In this configuration, there are two materials in the 
computational domain, i.e., the dielectric substrate and the air 
above it. The trace input impedances calculated by FEM-
SPICE with and without LU recombination are compared in 
Fig. 6. Fig. 7 shows the time domain voltage responses at the 
source and load ends, when the source signal is a trapezoidal 
wave with a risetime of 50 ps and a period of 5 ns. The result 
with LU recombination is stable while the result without LU 
recombination becomes unstable after a couple of cycles. This 
example demonstrates that material properties affect the value 
of the FEM matrix elements, but they don’t change the linear 
relationships between the rows of the matrix. The LU 
recombination method is applicable to configurations 
containing different materials without additional modification.  

More results for the case of a substrate described by a 
Debye model will be provided in the extended version. 

 
Fig. 7. The time-domain response of the trace in a metal box.  

V. CONCLUSIONS 
FEM-SPICE is a mixed EM field and circuit analysis 

technique that combines the advantages of FEM and circuit 
solvers and is well suited for analyzing field-circuit coupled 
problems. Traditional FEM-SPICE techniques do not work at 
low frequencies due to numerical instabilities in the FEM 
formulation and small value resistors that are inserted by 
SPICE simulators. In this paper the LU recombination method 
has been applied to FEM-SPICE models in a manner that 
eliminates the effect of small numerical errors and prevents 
the unintended insertion of undesired resistors. The new FEM-
SPICE formulation works well in frequency domain 
simulations at arbitrarily low frequencies and can also be used 
for both DC and transient analyses.  
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