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Abstract - This paper describes the results of an investigation into 
the effects of salt water exposure on cable connector impedanc-
es. A series of tests were performed to explore the shunting resis-
tance across the pins of wiring harness connectors. The test 
results show that salt-induced corrosion and moisture may cause 
intermittent shunting resistances capable of affecting the normal 
operation of various systems. One important test result is that the 
induced shunting resistances are a nonlinear function of the 
applied voltage. This non-linear behavior can be important when 
evaluating the ESD or radiated RF susceptibility of products that 
may be exposed to a salt-water environment. An equivalent circuit 
based on measurements is developed to model the behavior of 
various salt-water/metal electrode interactions. 

I. Introduction

It is not uncommon for car owners to experience intermittent problems 
with their automobiles that can’t be reproduced at the repair shop. This 
can be particularly frustrating when the problem affects an electronic 
system that prevents the vehicle from being operated. Contaminants 
that produce an intermittent short are often suspect, but difficult to track 
down when the short is not present.

Relatively few papers have been published on the effect that typical 
automotive contaminants can have on electronic systems. Golnabi [1] 
investigated the electrical conductivities of pure, distilled, municipal, 
industrial and river water in liquid form. Fernandez [2] introduced a 
conductivity cell to measure the electrical resistance of various elec-
trolytic solutions. Warburg [3] first proposed that a metal electrode/
electrolyte interface could be represented by a polarization resistance 
in series with a polarization capacitance. Randles [4] proposed a well-
known model consisting of an interface capacitance shunted by a 
reactive impedance, in series with the solution resistance. Franks [5] 
proposed a measurement technique along with a corresponding 
equivalent circuit model to quantify the electrode-electrolyte interface 
impedance using electro-chemical impedance spectroscopy for vari-
ous electrode materials commonly used in biomedical applications. 
Troy and Cantrel [6, 7] explored the effects that the electrode-electro-
lyte interface has on AC potentials in neural science applications. 
However, there is a lack of published research that describes the 
effects that contaminants can have on the DC or low-frequency 
impedances in typical automotive applications.

This paper investigates the effects of contaminant exposure on the 
shunting impedance of common wiring harness connectors. While nor-
mal automotive oil and grease were not found to have a significant 
impact on typical automotive circuits; exposing a connector to salt 
water (even briefly) is shown to be capable of generating intermittent 
shunting impedances that can affect the operation of these circuits sig-
nificantly both during and long after the exposure occurs.

II. Measurements of the Shunt Impedance between Pins

In this section, the effects of various salt solutions on the shunt 
impedance between pins in a cable connector are investigated. The 
test setup is illustrated in Fig. 1. A voltage supply is connected in 
series with a known value resistor and a cable connector (3 round pin 
latching CB/audio cable, from MPJA online, stock no. 17861 CB), 
which is dipped into the solution being investigated. The distance 
between the two pins in the connector is about 8 mm. By measuring 
the voltage across the solution, V, the resistance between the con-
nector pins can be calculated as,  

   (1) 

where Req is the equivalent resistance of the solution between the 
two pins.

A. Effect of the stimulus voltage and concentration

The equivalent resistance was measured for solutions of salt at various 
salt concentrations and various stimulus voltages. For these tests, the 
mass ratio of salt to water, r, was varied from 0 to 25%; R was set equal 
to 100 ohms; and the stimulus voltage, V, was varied from 0 to 12 volts by 
adjusting the supply voltage, Vs. 

Fig. 2 shows the shunt resistance appearing across adjacent connector 
pins as a function of the stimulus voltage for various salt concentra-
tions. It is evident that the shunt resistance presented by the salt water 
depends on the salt concentration. For higher salt concentrations, the 
resistance is lower. Additionally, the resistance is a nonlinear function 
of the applied voltage. When the voltage is less than approximately 2 
volts, the resistance decreases rapidly as the stimulus potential 
increases. When the stimulus voltage is well above 2 volts, the resis-
tance levels out. When the mass ratio of salt to water is 0.5%, the resis-
tance levels out at about 400 ohms. The resistance falls below 100 ohms 
for mass ratios of 10% – 25%. 
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Similar measurements were performed using pure oil (NAPA Premium 
SAE 30 Motor Oil) and grease (NAPA Lubriplate No. 105 Motor 
Assembly Grease) instead of the salt solution. In these measure-
ments, R was equal to 337 kilohms. Fig. 3 shows the results of these 
measurements. Although there is a slight non-linear behavior below 1 
volt, the equivalent resistances of oil and grease level out at around 
106 ohms, indicating that these two contaminants have little effect on 
connector impedance.

B. Effect of distance and surrounding area

In the salt water tests in the previous section, there was noticeable cor-
rosion deposited on the connector electrodes that grew thicker with 
time during the course of the test. In order to investigate whether the 
measured shunt resistance was due to the corrosion or the salt water 
itself, measurements were made of the resistance between two metal 
electrodes separated by varying distances. A nickel electrode with a 
square cross section was used. The mass ratio of the salt solution was 
0.1%, R was equal to 50 ohms, and the container dimensions were 
either 14 cm x 5.5 cm (slim container) or 14 cm x 14 cm (square contain-
er). If the corrosion resistance was dominant, one would expect the 
measurement to be nearly independent of distance. The results in Fig. 4 
show that as the distance between the two electrodes increased, the 
equivalent resistance increased. In the slim container, where most of 
the current was confined to a uniform cross-section, the resistance 
was nearly a linear function of distance, indicating that the solution 

itself was the dominant contributor to the resistance and not the corro-
sion on the electrode. 

C. Effect of corrosion and moisture

To investigate the effects of corrosion and moisture on resistance, the 
resistance was measured every minute while: 

1.  The connector (3 small .110" flat pin CB/audio cable, from MPJA 
online, stock no. 17856 CB) was soaking in the salt solution; 

2.  the connector was removed from the solution and hung in the air;

3.  the connector was hung in the air again after spending a few 
hours in a cold environment (refrigerator). 

A 100-ohm resistor was utilized for these measurements; the DC volt-
age, Vs, was 6 volts. The equivalent resistance of a sample connector is 
shown in Fig. 5. It can be seen that equivalent resistance was around 1 
kilohm when the connector was first dipped in the salt water. After the 
salt water was removed and the connector was hung in the air, the 
measured resistance varied from less than a hundred ohms to hun-
dreds of thousands of ohms randomly. Finally, the system stabilized and 
a corrosion film deposited on the plastic appeared to form a conductive 
path between the connector pins with a resistance of only about 20 
ohms. After a few hours in the refrigerator, the conductive path was 
apparently degraded and the resistance resumed a high value; howev-
er as moisture condensed on the connector, the resistance again 
decreased to several kilohms. Fig. 6 shows the results of a similar test 
on another connector. This time, after the connector was taken out of 
the salt solution, the resistance steadily increased as the connector 
dried out. After removing the connector from the refrigerator, the resis-
tance was only a few hundred ohms. The resistance increased rapidly, 
then dipped again as time elapsed. 

Fig. 7 shows the results for another connector after the initial soaking 
process. The resistance increased as the water evaporated. After the 
connector was stored in the refrigerator, the resistance remained 
high for a couple of minutes and then dropped to several hundred 
ohms and then increased again. It is possible that moisture con-
densed between two connector pins after it was removed from the 
refrigerator; then as time went by, the moisture evaporated (possibly 
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Fig. 2. Effect of salt on cable connector impedance.
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Similar measurements were performed 
using pure oil (NAPA Premium SAE 30 Motor 
Oil) and grease (NAPA Lubriplate No. 105 
Motor Assembly Grease) instead of the salt 
solution. In these measurements, R was equal 
to 337 kilohms. Fig. 3 shows the results of 
these measurements. Although there is a slight 
non-linear behavior below 1 volt, the 
equivalent resistances of oil and grease level 
out at around 106 ohms, indicating that these 
two contaminants have little effect on 
connector impedance. 

Fig. 4. Measured resistance as a function of the 
distance between two electrodes.
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aided by the current flowing through the fault) and the connector 
impedance became high again.

Fig. 8 shows the results of another connector impedance measurement. 
For this measurement, the connector was first soaked in the salt solution, 
then hung in the air, and then (after the connector dried out) quickly 
dipped in the solution once again and hung in the air. After the quick dip-
ping, the resistance dropped to 10s of ohms as the connector dried out.

Measurements similar to those shown in Figs. 5 to 8 were repeated 
with several connectors. The results were different every time; but it is 
clear that the resistance between connector pins that have been 
exposed to a salt solution varies unpredictably with time. From these 
sample test results, it appears that a combination of corrosion and 
moisture are responsible for the conductive path that forms.

III. Equivalent Circuit Model

While distilled water is almost an insulator, salts and other contami-
nants can transform water into a relatively good conductor. With a DC 
voltage applied to the electrodes, the nonlinear changes in resistance 
as a function of voltage observed in the previous section make it more 
likely that a connector fault will exhibit a wide range of impedances. In 

this section, an equivalent circuit model is proposed to explain and sim-
ulate this nonlinear behavior. 

A. Equivalent circuit model for salt water

The equivalent circuit model proposed in this work is comprised of two 
diodes, which represent the interfaces between the electrodes and the 
salt solution, in series with the salt water resistance Rsalt. The model is 
shown in Fig. 9. 

In this model, the interface diode exhibits the following exponential 
relationship between the diode current iD and the voltage across the 
diode (vD),

   for     (2) 

Fig. 5. Resistance between the pins of a connector, soaked in a salt solu-

tion, hung in the air, and hung in the air after being cooled.

Fig. 6. Resistance between the pins of another sample connector. 

Fig. 7. Resistance between the pins of another sample connector.
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Fig. 8. Resistance between the pins of a twice-
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has units of ohms/cm. d is the distance 
between the two electrodes in centimeters. 
Therefore the relationship between the total 
equivalent resistance and the stimulus voltage 
can be determined by solving the equations, 

ln 1 ln 1T S T
S S

i iv nV iR d nV
I I

   
       

   
    

         (4) 

vR
i


  (5) 

where the first and the third terms in (4) are 
the voltages across the diodes formed in the 
electrode region and the second term is the 
voltage across the salt water. 

B.  Validation 
To validate the proposed circuit model, 

measurements were performed using various 
metal electrodes including copper, aluminum, 
zinc, stainless steel, magnesium, and nickel; 
and the results were compared to simulation 
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where Vz is the reverse breakdown voltage, Is is the saturation current, 
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results using the circuit model. The electrodes 
used for these measurements were rods with 
square cross-sections of the same size (20-mm 
width, 1.2-mm thickness, and 12-mm height). 
Table 1 gives a summary of the fitted 
parameter values. The salt water resistance for 
these measurements was determined to be 
133 ohms/cm. 

Figs. 10 to 15 show both the measured 
results and the model results for copper, 
stainless steel, zinc, magnesium, aluminum, 
and nickel electrodes, respectively. The model 
results fit very well for each electrode metal. 
For different electrode materials, the different 
interface characteristics result in different 
equivalent resistances. 

Fig. 10. Comparison between the 
measurements and model for copper electrodes. 

Fig. 11. Comparison between the 
measurements and model for stainless steel 
electrodes. 

Fig. 12. Comparison between the 
measurements and model for zinc electrodes. 

Table 1. Model parameters obtained by fitting the experimental data. 
Copper Stainless steel Zinc Magnesium Aluminum Nickel

Is (A) 1.859e-9 1.146e-11 6.584e-9 6.691e-9 6.678e-9 3.638e-11
n 2.0 2.0 1.34 1.0 1.89 2.0

VT (V) 0.025 0.025 0.025 0.025 0.025 0.025
Rs (ohms/cm) 133 133 133 133 133 133
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taminants; the results presented here confirm that contaminants 
containing salt are capable of producing low shunt resistances on 
the order of 10 ohms to several kilohms. The non-linear nature of 
these impedances makes them difficult to detect with typical 
hand-held resistance meters that apply less than 1 volt across the 
shunt during a measurement. This non-linearity can also rectify or 
partially rectify applied RF signals in a manner similar to the “rusty 
bolt” effect that is well known to most EMC engineers. This could 
effectively demodulate RF signals with an amplitude modulation. 
Another possible effect of this non-linear behavior is the unwanted 
rerouting of transient currents (e.g. due to electrostatic discharge 
or power line spikes). 

It probably wouldn’t surprise many engineers to learn that salt water in 
an electrical circuit can have undesirable consequences. However, the 
non-linear nature of salt water shunting impedances and the fluctuating 
behavior of these impedances with time and moisture are less well 
understood. These factors can potentially have a significant impact on 
EMC and reliability testing of products that have to function in less than 
ideal environments.  EMC
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Fig. 13. Comparison between the 
measurements and model for magnesium 
electrodes. 

Fig. 14. Comparison between the 
measurements and model for aluminum
electrodes. 

Fig. 15. Comparison between the 
measurements and model for nickel electrodes.

IV. Conclusion 
The effect of salt, oil, and grease on the 

shunt resistance of cable connectors was 
investigated. Oil and grease had little effect on 
connector impedance; however exposure to 
salt water had a significant effect on the 
impedance. The impedance of connectors that 
had been exposed to salt water was found to 
be a function of several factors including the 
stimulus voltage, time since the last exposure, 
and moisture. The experiment results suggest 
that corrosion and moisture can form an 
effective conductive path between connector 
pins. A nonlinear relationship between the 
equivalent resistance and the applied DC 
voltage was observed, and a model was 
developed to characterize this nonlinear 
behavior. This equivalent circuit model 
consists of two interface diodes in series with 
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It probably wouldn’t surprise many 
engineers to learn that salt water in an 
electrical circuit can have undesirable 
consequences. However, the non-linear nature 
of salt water shunting impedances and the 
fluctuating behavior of these impedances with 
time and moisture are less well understood. 
These factors can potentially have a significant 
impact on EMC and reliability testing of 
products that have to function in less than 
ideal environments. 
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