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Abstract For a microstrip structure modeled using a finite element 

technique with Whitney Elements, thinner traces require 
many more elements since the aspect ratios of the 
tetrahedral elements must be controlled. The requirement to 
keep aspect ratios low forces the modeler to use a relatively 
coarse mesh between the trace and ground plane when 
modeling microstrip geometries. Thus, it is not uncommon 
to model the space between the trace and the plane with a 
single layer of elements. This approach generally yields 
good results when the impedance of the trace is low, i.e., 
wide traces. However, when the impedance of the circuit 
being modeled is high, the results presented here indicate 
that a single layer of elements may not be adequate.  

Microstrip structures, formed by metal traces printed on a 
dielectric substrate above a reference plane, are frequently 
the object of electromagnetic modeling. In this paper, 
hybrid FEM/MoM formulations employing conventional 
Whitney elements and newly developed linear- 
tangent/linear-normal (LT/LN) tangential vector finite 
elements (TVFEs) are applied to the analysis of microstrip 
structures with thin traces. This paper shows that the 
variation of the electric field below the trace is a significant 
issue to be addressed in microstrip structure modeling. 
Different mesh methods are investigated and the 
advantages of the LT/LN TVFEs are discussed. 

Higher order hierarchical TVFEs are applied in this paper 
to model microstrip structures with a thin trace. These 
elements have a linear tangential value along each element 
edge and a linear field variation inside the element 
(LT/LN). The elements employed are referred to as 
“hierarchical” because the lowest order Whitney basis 
functions are a subset of the higher order basis functions 
[3].  

INTRODUCTION 
Microstrip structures, formed by metal traces printed on a 
dielectric substrate above a reference plane, are common in 
printed circuit boards and are frequently the object of 
electromagnetic modeling. Many techniques have been 
employed to analyze microstrip structures including circuit 
and transmission line models as well as full-wave 
techniques including FDTD, FDFD, MOM, FEM, TLM, 
PEEC and others.  

In this paper, a hybrid FEM/MoM formulation employing 
LT/LN TVFEs is developed and applied to microstrip 
structures with thin traces. The next section introduces the 
hybrid FEM/MoM formulation with LT/LN TVFEs. Only 
the FEM part is presented here. The MoM part and 
hybridization of FEM and MoM can be found in [4].  The 
following section uses the hybrid FEM/MoM based on 
CT/LN and LT/LN TVFEs to analyze a typical microstrip 
structure with a thin trace.         

Hybrid FEM/MoM methods employ a finite element 
method to model the geometrically complex regions of a 
structure and an integral equation method to model large 
simple structures and to bound the region being modeled 
with FEM [1]. When the hybrid FEM/MoM method is used 
to model a microstrip structure, the details of the structure 
are modeled by FEM, and MoM is used to provide an 
accurate radiation boundary condition to terminate the 
FEM mesh. In the FEM part, the lowest order tangential 
vector finite elements (TVFEs) have generally been used as 
basis functions. These elements are commonly referred as 
Whitney Elements. Because the functions do not impose 
normal component continuity between tetrahedral elements, 
they produce no spurious modes. However, these elements 
limit the accuracy of the finite element solution since they 
only provide a constant tangential field value along element 
edges and a linear field variation inside the element 
(CT/LN) [2]. Therefore, when electric fields in a certain 
area fluctuate very quickly, a large number of small 
tetrahedra has to be employed to achieve a reasonable 
accuracy.   

FORMULATION 
In the hybrid FEM/MoM, FEM can be used to analyze the 
interior equivalent part by solving the weak form of the 
vector wave equation as follows: 
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where S is the surface enclosing volume V, w(r) is the 
weighting function, and Jint is an impressed source [4]. 
Equation (1) shows that efficient finite-element analysis of 

1015
0-7803-7264-6/02/$17.00 © 2002 IEEE



 electromagnetic fields in 3-D regions requires computation 
of two element matrices. These two matrices are, 
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                          (2) ∫ ×∇•×∇=
V jiij dVE ww

and 

                                (3) ∫ •=
V jiij dVF ww

where represents the ith vector basis function and V 
indicates integration over one tetrahedron. The six edges of 
a tetrahedron are numbered as indicated in Figure 1. 
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 (a) 
       Table 1. Node and edge numbering scheme of a   

 tetrahedron 
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Edge# Node 1 Node 2 
1 1 2 
2 1 3 
3 1 4 
4 2 3 
5 2 4 
6 3 4 

 
   

 

(b) 

Figure 2. Plot of the basis functions. (a) ,  (b) w   
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Using these basis functions, the electric field E in the 
interior region can be expanded as the sum of two terms  
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The basis function  has the following properties: kw 

The linear-tangential, linear-normal (LT/LN) basis 
functions associated with edge i are 
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where  is a unit edge vector corresponding to the 

edge. Hence, the terms associated with “e1” elements 
can be considered to be the main terms, which describe 
fields along tetrahedron edges roughly, while the terms 
associated with “e2” elements can be considered to be the 
adjustment terms that describe the field’s linear variation 
along the tetrahedron edges. Since CT/LN functions have 
one unknown per edge, they generate 6× 6 local matrices. 
LT/LN functions have two unknowns per edge, and they 
generate 12 

ke
thk

× 12 local matrices. Applying the LT/LN basis 

and 
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where “e1” represents the first type of edge basis function, 
and “e2” represents the second type of edge basis function. 

 is the area coordinate associated with the node i. It is 
unity at node i and decays in a linear fashion to zero at the 
other three nodes of the cell.  is the length of edge i. 
Figure 2 shows vector plots of these two edge-based 
functions in a face of a tetrahedron.   

iL

il

1016



functions to discretize Equation (1), a global FEM matrix 
can be constructed as follows, 
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The unknown coefficients [En] are partitioned into three 
types according to their corresponding basis functions and 
edge functions. The three categories are interior edges of 
“e1” type, which are denoted by the subscript i; dielectric 
boundary edges of “e1” type, which are denoted by the 
subscript d; and interior edges of “e2” type, which are also 
denoted by the subscript i.  is set equal to zero on the 
MoM boundary to enforce the continuity of the tangential 
electric fields. Thus, the MoM part (employing linear basis 
functions) can be left unchanged during the whole process. 
[JS] is a set of unknown complex scalar coefficients for the 
surface electric current densities on the FEM and MoM 
boundary S. [g

e2
kE

int] is the source term, representing sources 
located within the FEM region. The elements of [A], [BdS], 
and [gint] are given by, 
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where fn(r) is the surface basis function. 
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Equation (13) can be solved using iterative solvers.  

A TYPICAL MICROSTRIP GEOMETRY 
Figure 3 shows the geometry of a typical microstrip 
structure with a thin trace. The board is made of a dielectric 
material with rε =4.2. The trace is excited by a source at 
one end, and is terminated by a 47-ohm resistor at the other 
end. The primary challenge is to model the thin trace 
structure. 
The electric field lines around the trace are illustrated in 
Figure 4(a). Figure 4(b) and (c) show two possible meshes 
for the microstrip geometry. The coarse mesh is one layer 
of elements and the fine mesh is three layers of elements. In 
Figure 4(c), the three layers are labeled “bottom layer”, 

“middle layer”, and “top layer” corresponding to their 
location in the figure. Because the electric fields vary 
quickly only underneath the trace, the element size on the 
ground plane transitions from a fine mesh underneath the 
trace to a coarse mesh far away from the trace. A top view 
of the mesh is shown in Figure 5. 
The hybrid FEM/MoM is used to calculate a near field 
parameter (input impedance) and a far field parameter 
(radar cross section) for this microstrip geometry. Figure 6 
illustrates the measured and calculated results for a 47-ohm 
termination from 200 MHz up to 1.8 GHz. For the coarse 
mesh with one layer of tetrahedra, the result dividing the 
thin trace into 20 segments along the trace is denoted “20 
coarse”. The results dividing the thin trace into 25, 31, 40 
and 50 segments are similarly labeled. For the fine mesh 
with three layers of tetrahedra, the “3 layers” curve 
illustrates the result using the fine mesh shown in Figure 4 
(c) with 40 segments along the thin trace and three layers of 
tetrahedra in the board thickness direction.  
 

1.3 mm

24.25 mm 1.5 mm 24.25 mm

(a)

1.3 mmresistor1 v

50 mm 50 mm 50 mm

(b)

 (c)
x

y
z

x

z

y

z

  = 4.2ε r

 
 

Figure 3. The geometry of a microstrip structure 

E Field 

H Field 

(a) Thin trace electric field lines 
 

 

 

          (b) Coarse mesh                             (c) Fine mesh          

Figure 4. Cross-sectional view of the electric field and  
FEM meshes 
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Table 2 Aspect ratios of tetrahedra comparison 
 (*AR = max. aspect ratio of tetrahedra) 

Figure 5. The FEM mesh in the plane of the trace   

The aspect ratio of a tetrahedron is defined as the ratio of 
the length of the longest edge of the tetrahedron to the 
length of the shortest edge. Table 2 compares the maximum 
aspect ratios of the tetrahedra below the trace for the 
different meshes.  From Figure 6 and Table 2, as the thin 
trace is divided into more segments, the aspect ratios of 
tetrahedra are smaller and the results with one layer of 
elements are closer to the measured result. However, the 
coarse mesh results do not converge to the measured result.  
Although the fine mesh with 40 segments along the trace 
has larger aspect ratios than the coarse meshes that have 
more than 30 segments, it yields a more accurate result.  
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    Figure 7. The calculated radar cross section 

E
le

ct
ri

c 
fi

el
d 

ra
tio

Frequency (MHz)  Figure 6. The measured and calculated input impedance 
    Figure 8.  Comparison of the magnitudes of electric 

field on different layers below the trace 
 

 Figure 7 illustrates the calculated bistatic radar cross 

section, 
2a

σ =
22 ||4 Erπ , when the angle of incidence is 

equal to 0 (directly above the structure). The frequency of 
the incident field is 800 MHz, where the difference 
between the coarse mesh input impedance result and that of 
the fine mesh was found to be the largest. The far field 
results have the same tendencies as the near field parameter 
results. 

Figure 8 compares the magnitudes of the electric fields 
along the edge whose location coincides with the current 
source from 200 MHz to 1.8 GHz. The magnitude of the 
electric field in the bottom layer is denoted “Z1”, and the 
magnitudes of the electric field in the middle layer and top 
layer are denoted “Z2” and “Z3”. From Figure 8, the ratio 
of Z1 to Z3 is about 0.63 across the entire frequency range 
while the ratio of Z2 to Z3 is about 0.74. This means the 
electric field in the z direction in the top layer is much 
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CONCLUSIONS stronger than the field in the middle and bottom layers. The 
single–layer mesh tries to represent this field with a single 
uniform value. This is the reason that the coarse mesh does 
not yield accurate results.  
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It is evident from this paper that the dramatic variation of 
the electric field below the trace is a significant issue to be 
addressed in microstrip structure modeling. The main 
parameter affecting the electric field variation is the ratio of 
trace width to trace height. There is a trade-off between the 
aspect ratio and the number of layers of tetrahedra. As 
illustrated in Figure 6, for microstrip structures with thin 
traces, it is important to have more than one layer of linear 
elements below the trace. 
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Higher order hierarchical tangential vector finite elements, 
LT/LN TVFEs were also employed in the hybrid 
FEM/MoM to analyze the microstrip structure. It was 
found that results calculated using the LT/LN TVFEs were 
significantly more accurate than the CT/LN TVFE results 
with a one-layer mesh. The LT/LN elements with the one-
layer mesh provided results as accurate as the CT/LN 
elements with the three-layer mesh, but they required 
significantly less computational resources. 
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Figure 9 illustrates shows the calculated input impedance 
for the previous geometry using the LT/LN basis functions 
presented in the previous section. The length of the trace 
was divided into 40 segments. In this figure, “coarse” 
denotes a mesh with one layer of tetrahedral below the 
trace and “Fine” denotes a mesh with 3 layers below the 
trace. Note that the coarse mesh yields a poor result with 
CT/LN elements while the LT/LN result with the coarse 
mesh yields an accurate result. Table 3 presents relevant 
parameters for the three results. For this configuration the 
LT/LN FEM basis functions yield provide improved 
accuracy with far less computer resources.                   
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