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Abstract— Many numerical electromagnetic modeling techniques 
that work very well at high frequencies do not work well at lower 
frequencies. This is directly or indirectly due to the weak 
coupling between the electric and magnetic fields at low 
frequencies. One technique for improving the performance of 
boundary element techniques at low frequencies is through the 
use of loop-tree basis functions, which decouple the contributions 
from the vector and scalar electric potential. However, loop-tree 
basis functions can be difficult to define for large, complex 
geometries. This paper describes a new method for improving the 
low-frequency performance of boundary element techniques. The 
proposed method does not require special basis functions and is 
relatively easy to implement. Numerical errors introduced by the 
great difference in scale between the vector and scalar electric 
potential are corrected automatically during the LU 
decomposition of the impedance matrix. 
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I.  INTRODUCTION 
The boundary element method is a widely used numerical 

electromagnetic modeling technique. Boundary element 
modeling codes use the method of moments to solve an electric 
field integral equation (EFIE) or magnetic field integral 
equation (MFIE) to calculate the equivalent currents induced 
on a surface in the presence of an exciting field. There are 
many boundary element modeling codes available that do an 
excellent job of modeling complex geometries at high 
frequencies (megahertz and higher). At low frequencies 
however, these codes may exhibit instabilities, particularly 
when using general purpose basis functions such as the popular 
Rao-Wilton-Glisson (RWG) [1] basis functions [2, 3, 4]. These 
instabilities can be explained in terms of the natural Helmholtz 
decomposition of Maxwell’s equations [5]. At low frequencies, 
the magnetic vector potential and the electric scalar potential 
become more decoupled. Their representations in the 
impedance matrix become heavily unbalanced [3, 6] and this 
unbalance results in the loss of important information due to 
the finite precision of the numerical computations. 

Loop-tree basis functions have been proposed to overcome 
this difficulty [3]. These basis functions allow the divergence-
free and the curl-free components of the current, which have 
different frequency dependencies, to be separated [5]. The 
round-off error due to the difference in size of the scalar and 
vector potential contributions is avoided. Unfortunately, loop-
tree basis functions are not widely used because they can be 

difficult to work with; particularly if the geometry being 
modeled is large and complex. 

In this paper we present a new method for addressing the 
low frequency problem with boundary element techniques. 
This method is based on the fact that loop-tree basis functions 
can be formed from linear combinations of RWG basis 
functions. The new method performs similar linear 
combinations mathematically, without explicitly defining new 
basis functions. Thus, it can be easily applied to existing 
boundary element algorithms. 

The rest of the paper is organized as follows: Section II 
describes how boundary elements methods break down at low-
frequencies; Section III gives a brief description of loop-tree 
basis function method; Section IV describes the new LU 
recombination method and its relationship to the loop-tree 
method; Section V presents a numerical example; and finally in 
Section VI, we provide a brief summary. 

II. LOW-FREQUENCY PROBLEM 
Consider the electromagnetic scattering from perfect 

electric conductors (PECs). The “mixed-potential” form of the 
EFIE for scattering problems is expressed as 

 Φ∇−−= AE ωjsca . (1) 

The first term on the right-hand side of this equation is 
directly proportional to frequency while the second term is 
inversely proportional to frequency. When the frequency goes 
low enough so that the size of the scatterer becomes small 
compared to the wavelength, the contribution of the electric 
scalar potential, Φ, dominates that of the vector potential, A. 

The low frequency problem can be understood more clearly 
by examining the testing process [7]. A vector identity states 
that the integration of the gradient Φ∇  is path-independent. If 
the scatterer geometry is such that the current density can flow 
in closed loops, the testing of the scalar potential associated 
with the loops are not independent. So at low frequencies, 
where the scalar potential dominates the vector potential, the 
rank of the MOM matrix collapses. If for any reason the scalar 
potential cannot be accurately evaluated, the error will 
overwhelm the information from the vector potential and the 
solution to the matrix equation will be unstable. 
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A square loop example was created to demonstrate the low 
frequency problem while using the method of moments to 
solve the EFIE. The geometry of the loop is shown in Fig. 1. At 
low frequencies, this geometry can be modeled as a lumped 
circuit with a resistor and an inductor in series so that the 
current on the resistor can be calculated. Fig. 2 compares the 
full-wave solution to the circuit model result. For each curve, 
the impedance matrix was truncated with a different number of 
significant figures before solving the system of equations. The 
higher the number of significant figures, the better the result is. 
However, the method doesn’t work below 1 MHz, even if the 
number of significant figures is increased to 9. 

III. LOOP-TREE BASIS FUNCTION METHOD 
The construction of the loop-tree basis functions starts from 

the physical decomposition of current 

 is JJJ +=  (2) 

where Js is the solenoidal current and Ji is the irrotational 
component. The loop basis functions are used to expand Js and 
the tree basis functions for Ji. 

A loop basis function is associated with an inner node and 
its surrounding edges. Explicitly, the definition in terms of 
RWG basis functions is [2] 
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where fi is the RWG basis function for the ith edge connected to 
node n. li is the length of the edge and the coefficient σi = ±1 
forces the current to flow in the same direction around node n. 
A tree basis function is simply chosen from a subset of the 
RWG basis functions and is complementary to the loop basis 
functions. The loop and tree basis functions form a complete 
set in the RWG space. It is easy to show that the loop basis 
function is divergence-free. Physically, that means there is no 
charge associated with the loop basis function. 

The loop-tree basis function scheme inherently replaces the 
numerical integration of Φ∇  over closed paths with the exact 
value of zero and preserves the information contained in A. 
The new basis function is a superposition of conventional 
rooftop basis functions. The new testing integral is a 
superposition of the original testing integrals so the matrix 
solution is preserved. However, to take this advantage of this 
technique, one has to identify all possible closed paths in the 

mesh. This requires searching the mesh to locate the inner 
nodes, identifying shared edges for each inner node, and 
adjusting the basis functions associated with the edges to orient 
them properly. This procedure can be quite complicated [2]. 

IV. LU RECOMBINATION METHOD 
The new method we propose modifies the matrix equation 

using LU decomposition. This idea is based on the fact that the 
loop basis functions are constructed as linear combinations of 
the RWG basis functions and the tree basis functions are 
individual RWG functions that are complementary to the loop 
basis [5]. 

Consider the following N×N matrix equation 

 FJC =•  (4) 

obtained after applying the method of moments using RWG 
basis and testing functions. C = [Cmn] is an N×N matrix and J = 
[Jn] and F = [Fm] are column vectors of length N. The elements 
of C and F are given by [8] 
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where k is the wave number and η is the intrinsic impedance. J 
is the equivalent surface current density, and 
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Figure 1.  The geometry of a square loop 

 

Figure 2.  The current through the resistor 



is the free space Green’s function. Here the integral is a 
principal-value integral in which the singularity at rr ′=  is 
excluded. 

The function fn is the RWG basis function. An important 
property of these functions is that the surface divergence, 
which is proportional to the surface charge density, is 
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where ln is the length of the nth edge and ±
nA the area of the plus 

or minus triangle ±
nT [1]. 

Comparing (1) and (5), it is clear that C1mn corresponds to 
the vector potential while C2mn corresponds to the scalar 
potential. As indicated previously, the matrix C2 is a singular 
matrix if closed loops exist. We can also prove this 
mathematically.  First we write the elements of C2 as 
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and define 
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Combining (8), (9) and (10), yields 
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Suppose there is an inner node surrounded by 4 triangles, 
Ta, Tb, Tc, and Td. The edges shared by these four triangles are 
edges 1, 2, 3 and 4, as shown in Fig. 3. For simplicity, the 
orientations of the edges are defined to be counterclockwise. 

Now consider the integrals for these observation edges and a 
source edge n. We can write C21n, C22n, C23n, and C24n in the 
form of (11). It is easy to show that 
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If any of the orientations is defined in an opposite way, we can 
simply change the corresponding plus sign in (12) to minus and 
(12) still holds. 

Since n can be any edge in the mesh, (12) means rows 1, 2, 
3, and 4 of the C2 matrix are linearly dependant. So if there is 
an inner node in the mesh, the row elements in the C2 matrix 
associated with the edges connecting to this inner node are 
linearly dependant and the C2 matrix is singular. 

Comparing (12) to (3), we see how the singularity property 
of C2 is related to the loop basis function. Each of the loop-tree 
basis functions can be viewed as a linear combination of the 
RWG basis functions. Thus the testing on the loop-tree basis 
function is also a linear combination of the testing on the 
rooftop basis functions. That is to say, the matrix based on the 
loop-tree basis function set can be obtained from the matrix 
based on the rooftop basis functions by linear transformation. 
The purpose of the transformation is to find the closed loops 
and eliminate the integral of Φ∇  on the loop. LU 
decomposition is a kind of linear transformation. After the 
decomposition, the matrix can be written as the product of a 
lower triangular matrix, L, and an upper triangular matrix, U. If 
the matrix is a singular matrix, U is also a singular matrix 
which has zeros on its diagonal. 

We have shown that the matrix C2 resulting from the scalar 
potential is a singular matrix. That is, there should be at least 
one zero component on the diagonal of its U matrix. In the 
numerical computation, however, this zero is always a small, 
non-zero value due to the limited precision of the numerical 
computation. As the frequency goes lower, the unbalance 
between C1 and C2 is larger. So this non-zero value can 
become relatively large compared to the elements of C1. If we 
sum C1 and C2, we lose the information in C1 and are left with 
the numerical errors in C2. 

We calculated two C2 matrices for a same example but with 
different computation accuracy and compared the U matrices. 
After carefully examining the elements, we found that most of 
the elements were nearly the same except for the values very 
near zero. The more accurate the computation was, the smaller 
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Figure 3.  Source and observation triangles 



these values were. Thus, the errors accumulated in these near-
zero values. Since we know the exact value of these elements, 
we can simply set them to zero. Moreover, since these values 
near zero imply the associated row is linearly dependant on 
other rows, the entire row should be zero. 

Setting those rows to zero is the same as eliminating the 
contribution of Φ∇  from the closed loops in the loop-tree 
basis function method. However, we don’t need to explicitly 
create these loops in the mesh. 

We summarize our LU recombination method here.  

• Do the LU decomposition on the C2 matrix. 

• Find the near-zero elements on the diagonal of U 
matrix. 

• If these elements are not at the end of the U matrix, 
rearrange the C2 matrix and do the LU decomposition 
again. 

• Set the near-zero rows of the U matrix to zero 

• Construct a new C2 matrix with L and the new U 
matrix. 

After the new C2 matrix is created, we can continue with 
the conventional algorithm to solve the problem. 

V. NUMERICAL RESULTS 
Fig. 4 shows the modeled results for the loop example in 

Fig. 1 using our proposed method. After the LU recombination, 
the boundary element solution is accurate down to 100 Hz 
without significant error. 

Fig. 5 shows the results for a smaller (3 × 3 mm) loop 
example with a dense mesh. Note that the x axis is now a 
logarithmic scale. There were 4 inner nodes in this new mesh, 
so an additional permutation step was taken to set all four near-
zero elements to zero. The figure shows the results from 1 kHz 
to 1 GHz. In fact, an accurate solution was obtained down to 
1 Hz for this example. 

VI. CONCLUSION 
In this paper we present an LU recombination method to 

remove the low frequency instability inherent in the boundary 
element method using rooftop basis functions. This new 
method uses a linear transformation of the impedance matrix to 
find the dependent component in the integration of the scalar 
potential. This approach has the same effect as using a set of 
loop-tree basis functions. It accurately accounts for the 
cancellation over closed loops and preserves the information 
from the vector potential that otherwise would be lost due to 
numerical error. 
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Figure 4. The current in a square loop modeled with and without LU 
recombination 

Figure 5. The current in a smaller loop  modeled with and without LU 
recombination 
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