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Abstract — Analyzing interference problems in vehicle wiring 
harnesses requires fast and accurate methods of approximating 
crosstalk. Worst-case approximations using lumped element 
models are fast and easy to use, but run the risk of overestimating 
problems. Statistical methods that account for the random 
variation of wire position help prevent overdesign, but are often 
difficult and time-consuming to apply and lack a clear link 
between problems and their cause. Here we investigate the use of 
simple lumped-element models to predict the statistical variation 
of crosstalk in wire harness bundles. Models are based on 
lumped-element approximations, where inductance and 
capacitance values are calculated for a single bundle cross-
section, and only the circuit position is varied. Accuracy was 
evaluated by comparing results to numerical simulations. The 
method does a good job of quickly predicting the reasonable 
worst-case values of crosstalk due to inductive or capacitive 
coupling. 

Keywords: Approximation methods, crosstalk, modeling,  
vehicles, harness, statistics. 

I. INTRODUCTION  
Electrical systems in automobiles and other vehicles should 

be evaluated for electromagnetic compatibility (EMC) 
problems early in the design process. The challenge is 
developing methods that can account for the considerable 
complexity of modern vehicle designs while delivering 
estimates of acceptable accuracy at an acceptable speed. Full-
wave numerical models can deliver highly accurate solutions 
but may require considerable time to simulate and prepare 
models of geometry. Obtaining accurate models of geometry 
early in the design process may also be a challenge, since the 
vehicle geometry may not yet be fully specified. Even when 
available, there is the additional problem of refining the 
geometry to a form that allows simulations to be performed in a 
reasonable amount of time. This refinement process is not 
always straightforward and often requires considerable human 
interaction. Accounting for the wide statistical variation in 
system parameters like the position of wires within a harness, 
the height of the wires, circuit terminations, and the like only 
adds to the challenge of calculating results with these tools. 

One option for discovering EMC problems early in the 
design process is to use lumped-element approximations of 

crosstalk to determine worst-case coupling between circuits [1-
3]. The advantage of this approximation is that calculations can 
be made very quickly with a limited amount of information. 
This approach has been shown to work well up to several tens 
of MHz in experiments in an automobile [3], though there is a 
risk of overestimating the coupling that is likely to occur. 
Experiments have shown worst-case calculations may 
overestimate crosstalk by as much as 20 dB depending on 
harness configuration [4].  

Avoiding over design requires a statistical approach to 
analyzing crosstalk between circuits. Several statistical 
methods for analyzing crosstalk in a wire bundle have been 
proposed. Work in [4,5] experimentally examined the statistical 
variation of crosstalk as a function of wire position in the cable 
harness. The statistical variation in crosstalk was accounted for 
using a tolerance interval approach. Later work by Ciccolella 
and Canavero showed these results could be reproduced 
through simulation using a segmented multiconductor 
transmission line model, where wire position is varied from one 
segment to another and many configurations are explored using 
Monte Carlo methods [6]. Statistical variation can be better 
determined using methods that smoothly vary the wire path 
through the harness and that predict crosstalk from untried 
parameter configurations using interpolation techniques [7]. 
Such statistical methods have also been extended to predict 
common-mode radiation from cable harness bundles [8]. 
Attempts have been made to determine a closed-form 
expression for the probability distribution function of crosstalk 
in the harness [9], but so far numerical intervention is still 
required to calculate results.  

For a statistical approach to be effective early in the design 
process, the approach must be fast and must be able to be 
applied with a minimum of information. Many existing 
approaches do not meet either criterion – for example, they 
may require both considerable information about harness 
geometry and require numerically modeling crosstalk over tens 
or hundreds of possible configurations. One method that helps 
to avoid these pitfalls was proposed by Bellan and Pignari [10]. 
This technique is based on the statistics of the inductance and 
capacitance matrix for a single cross-section and shows 
promise for working well at low frequencies.  
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The following paper further explores the work in [10] to 
investigate the feasibility of this simple method to approximate 
statistical variation of crosstalk in wiring harnesses and to 
estimate “reasonable worst-case” coupling. Inductive and 
capacitive coupling is estimated using lumped-element models. 
Statistical distribution of crosstalk is estimated by assuming 
that wires may only take fixed positions within the harness and 
that crosstalk is dependent on the resulting statistical 
distribution of inductance and capacitance. The validity of the 
approach is examined through comparison to simulations made 
using the Random Displacement Spline Interpolation (RDSI) 
algorithm [8]. Crosstalk is first estimated using weak-coupling 
assumptions, where the influence of other circuits in the 
harness is ignored. The approach is then extended to find limits 
to possible crosstalk when the influence of other circuits 
becomes important. 

II. WIRE HARNESS MODEL  
Crosstalk was calculated using lumped element models. 

Lumped element models are reasonable when circuits are 
electrically short. Coupling may occur both due to capacitive 
and inductive effects. If one knows the impedance of the culprit 
and victim, one can make a reasonable assumption whether 
capacitive or inductive coupling will dominate and can estimate 
crosstalk using only mutual and self-capacitance or mutual and 
self-inductance. Estimation of the capacitance and inductance 
can be complicated in a wire-harness bundle due to the 
inhomogeneity of the medium. One question, then, is whether a 
reasonable estimate of the statistical distribution of coupling 
can be made by largely ignoring the influence of other circuits 
on the coupling between a particular culprit and victim and 
assuming a nearly homogeneous medium. This assumption 
greatly simplifies calculations and has generally worked well 
for worst-case approximations [2]. This possibility will be 
tested during the following study. 

Values of inductance and capacitance for a particular 
harness cross-section can be calculated from harness geometry. 
If one knows the statistical distribution of wire positions within 
the harness, one can calculate the statistical nature of the values 
of inductance and capacitance, and therefore of the crosstalk 
[10,11]. A common method is to use a fixed cross-sectional 
geometry and assume that only the wire position for a 
particular circuit changes from one distribution to another 
[8,10]. The advantage of using a fixed cross-sectional geometry 
is that the inductance and capacitance parameters may be 
calculated only once, even if wire position changes along the 
length of the harness. In addition, once the inductance and 
capacitance parameters are evaluated from the harness, their 
statistical distribution can be calculated quite readily. 

A wire-harness cross section used in this study is shown in 
Fig. 1. This bundle is constructed from 14 #19 AWG wires. As 
in [8], the thickness of the PVC insulation is assumed to be the 
same as the wire radius, the height from the center of the 
bundle to the return plane is 2 cm, and the length of the harness 
is 2 m. A particular culprit circuit, M, can be placed in any one 
wire position, from 1 to 14. A victim circuit, N, can then be 
placed in any of the remaining 13 positions. The statistical 
distribution of the inductance and capacitance for this cross-
section, then, can be calculated from the statistical distribution 

of the relative positions of the wires within the harness (for 
example, the likelihood that two wires lay directly next to one 
another). Here we assume there is a uniform probability that a 
circuit will use a particular wire position and the position of 
one circuit is independent of another. The probability 
distribution of mutual inductance (or capacitance) can then be 
determined from the upper-triangle of the inductance (or 
capacitance) matrix for this cross-section simply by 
determining the number of times that a particular value of 
mutual inductance (or capacitance) occurs within this matrix. 

 
Figure 1.  Harness cross section. 

In many harnesses, the wires are twisted causing the 
position of the wires to change along the length of the harness. 
This variation of position may significantly influence the 
crosstalk. One method of accounting for this change is to 
divide the harness into several segments. Circuits are assumed 
to remain in the same position along each segment of the 
harness and to take on new positions in adjoining sections. To 
simplify analysis, circuit positions were assumed to be 
independent from one section of the harness to another. 

III. DISTRIBUTION OF INDUCTANCE AND CAPACITANCE 
Ignoring inhomogeneities, the per-unit-length mutual 

inductance between any two wires, n and m, in the harness can 
be approximated as  

2

4ln(1 )
4

n m
nm

h hl
s

!
"

# $ , (1) 

where !  is the permeability of the medium, hn and hm are the 
distances from the centers of the wires to the return plane, and s  
is the distance between the centers of the two wires. Per-unit-
length self-inductance can be estimated in a similar manner.  

Per-unit-length inductance can also be estimated using 2D 
electromagnetic modeling tools. Values of self- and mutual-
inductance were calculated using simple equations like (1) and 
using a 2D modeling tool for the harness shown in Fig. 1. The 
two methods yielded very similar results, suggesting that 
values of inductance can be calculated using (1) and do not 
require a more sophisticated analysis. 

The probability distribution of the per-unit-length mutual 
inductance for the wire cross-section in Fig. 1 is shown in 
Fig. 2. The maximum value of mutual inductance is 650 nH/m 
and the minimum value is 350 nH/m. Probability distributions 
for the per-unit-length self-inductance can be generated in the 
same manner.  
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Figure 2.  Probability distribution of per-unit-length mutual inductance for a 

single segment of the wiring harness containing 14 AWG #19 wires 2 cm 
above a return plane. 

Variation in the position of the circuit within the harness 
can be determined by dividing the harness into separate 
segments and assuming the circuit takes on a new position 
within each segment. Assuming the distribution of positions is 
uniform and independent between segments and that segments 
are of equal length, the collective distribution of mutual 
inductance can be found by taking the convolution of the 
distributions for each segment. That is, if the distribution of 
per-unit-length mutual inductance is given by the function 

1( )f x then the distribution of the “effective” per-unit-length 
mutual inductance for a harness with two sections is given by: 

2 1 1( ) ( ) ( )f x f x y f y dy
%

&%
' &( . 

The probability distribution of the effective per-unit-length 
mutual inductance for the harness in Fig. 1 using 8, 16, or 32 
segments (calculated by convolution of the probability 
distributions in Fig. 2) is shown in Fig. 3. The probability 
distribution narrows toward the average value of inductance as 
the number of segments is increased, reducing the probable 
worst-case mutual inductance. For the case with 32 segments, 
an effective per-unit-length mutual inductance of 570 nH/m is 
larger than the effective inductance that will occur in more than 
99% of configurations for this amount of twist. The worst-case 
value of 650 nH/m will only occur rarely when wires change 
position throughout the harness (on the order of 1 out of 1041 
configurations for 32 segments). 

Values of per-unit-length capacitance were calculated using 
Q2D for a cross-section of the harness. In this case, 
calculations of capacitance like (1) using 2-wire models were 
unable to provide suitable estimates of capacitance within the 
harness. The probability distribution of mutual capacitance as 
calculated using Q2D is shown in Fig. 4. The maximum value 
of mutual capacitance is around 28 pF/m and the minimum 
value around 4 fF/m. 
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Figure 3.  Probability distribution of  “effective” per-unit-length mutual 
inductance for twisted wire bundles containing 14 AWG #19 wires 2 cm 

above a return plane. 
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Figure 4.  Probability distribution of per-unit-length mutual capacitance for a 

single segment of a harness containing 14 AWG #19 wires 2 cm above the 
return plane. 

The wide distribution of possible values of mutual 
capacitance makes it especially important to account for the 
variation in wire position along the length of the harness [6]. 
Similar to the inductive coupling case, the bundle was divided 
into 8, 16, or 32 segments of equal length. Assuming the per-
unit-length mutual capacitance between two wires in any 
segment has a distribution as shown in Fig. 4 and wire 
positions are independent from segment to segment, the 
distribution of the effective per-unit-length mutual capacitance 
over the length of the bundle can be obtained through 
convolution. The resulting distributions are shown in Fig. 5. 
Because of the distribution of possible values of capacitance, 
unlike inductance, increasing the number of segments widens 
the distribution and moves it to the right, increasing the 
probable worst-case mutual capacitance. The ratio of likely 
minimum to maximum values of mutual capacitance, however, 
is reduced.  
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Figure 5.  Probability distribution of the  “effective” per unit length mutual 
capacitance for twisted wire bundles containing 14 AWG #19 wires 2 cm 

above a return plane. 

IV. CROSSTALK ASSUMING WEAK-COUPLING 
Calculations assuming weak coupling assume that the 

influence of other circuits has minimal impact on the voltage or 
current in the culprit or victim circuits. This assumption is 
typical of many crosstalk calculations. 

While values of mutual and self inductance are not 
independent of one another, the variation in mutual inductance 
is generally greater and more important to crosstalk than the 
variation in self inductance, especially when the harness height 
above the return plane is on the order of the harness diameter or 
more. In this case, the statistical analysis of inductive crosstalk 
can be simplified significantly by only considering the 
variation in mutual inductance and using the average value of 
self inductance. Using this and the weak-coupling assumption, 
the far-end inductive crosstalk may be calculated as: 

_ _

_

( ) ( )
fem

s L s ave ne fe s ave

xtalk ind
Rjwl length

R R jwl length R R jwl length

#

$ $ $ $

  (2) 

where Rs and RL are the near end and far end loads in the culprit 
circuit, respectively; Rne and Rfe are the near end and far end 
loads in the victim circuit; lm is the effective per-unit-length 
mutual inductance; ls_ave is the average per unit length self-
inductance, and the crosstalk is defined as the ratio of the 
voltage across the victim load to the culprit source voltage 
(VFE/VS).  

Capacitive crosstalk may be estimated similarly as:  

) *
_

_

// ,L
ne fe m

S s ave L

xtalk cap
R R R jwC length

R jwL length R

#

$ $

  (3)  

where Cm is the mutual capacitance per-unit-length from Fig. 4. 
 

To test how well variation in crosstalk may be estimated 
using the proposed approach, crosstalk estimated using this 
method was compared to simulation results generated by the 
RDSI algorithm [8]. The RDSI algorithm includes a parameter 
that simulates twist or variation in wire position along the 
harness length. This parameter was adjusted to correspond to 
our calculations using approximately 32 independent harness 
segments. The RDSI algorithm was performed for 273 
independent distributions of wire positions and twist.  

Figs 6 and 7 show the distribution of inductive crosstalk at 
10 kHz and 10 MHz when the culprit and victim circuit were 
loaded with 50-ohm loads at both the near and far ends so that 
inductive coupling would dominate and the other circuits were 
loaded with 1-kohm loads to minimize their influence. While 
the proposed algorithm did not precisely predict distribution of 
simulated crosstalk at these frequencies, the results are close. 
The difference between the probable minimum or maximum 
crosstalk predicted by the distributions is within about one 
decibel. 
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Figure 6.  Predicted and simulated probability distribution of inductive 
crosstalk at 10 KHz  (victim, culprit load = 50 ohm, others = 1 kohm). 
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Figure 7.  Predicted and simulated probability distribution of inductive 
crosstalk at 10 MHz (victim, culprit load = 50 ohm, others = 1 kohm).  
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Figs 8 and 9 show the distribution of capacitive crosstalk at 
10 kHz and 10 MHz when all circuits in the harness were 
loaded with 1-kohm loads at both the near and far ends so that 
capacitive coupling would dominate. The algorithm did a good 
job of predicting coupling at 10 kHz, but overestimated results 
at 10 MHz because the weak coupling assumption no longer 
applies, as will be shown later. 
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Figure 8.  Predicted and simulated probability distribution of capacitive 

crosstalk at 10 KHz (all circuit loads = 1 kohm). 
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Figure 9.  Predicted and simulated probability distribution of capacitive 

crosstalk at 10 MHz (all circuit loads = 1 kohm). 

Using the technique presented here, the “reasonable worst-
case” crosstalk can be calculated using the largest value of 
mutual inductance or capacitance that occurs over some 
percentage of cases. For example, 570 nH/m is the worst 
effective per-unit-length mutual inductance that will occur in 
99% of cases for the configuration studied here. It will give the 
worst value of crosstalk in 99% of cases using (2). Figs 10 and 
11 compare the reasonable worst-case inductive crosstalk 
predicted using (2) with the 273 simulation results generated 
using the RDSI algorithm. Fig. 10 shows crosstalk when the 
victim and load were terminated with 50 ohms and all other 
circuits with 1-kohm loads. Fig. 11 shows crosstalk when all 

circuits were terminated with 50-ohm loads. Because crosstalk 
only varied by about 1 dB, the 273 simulation results appear 
like a single curve in the graph. Prediction was performed to 10 
MHz, since the lumped element model becomes invalid above 
this frequency. When other circuits were terminated with 1-
kohm loads, the proposed technique estimated the simulated 
worst-case crosstalk within about 1-2 dB over the entire 
frequency range. When all circuits were terminated with 50-
ohm loads, crosstalk was overestimated above 1 MHz because 
the weak-coupling assumption no longer applied. 
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Figure 10.  Predicted “reasonable worst case” inductive crosstalk compared to 
273 crosstalk simulations using the RDSI algorithm (victim, culprit load= 50 

ohm, others = 1 kohm). 
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Figure 11.  Predicted “reasonable worst case” inductive crosstalk compared to 

273 crosstalk simulations using the RDSI algorithm when the influence of 
other circuits is important (all circuit loads = 50 ohm).  

Similar comparisons for the reasonable worst-case estimate 
of capacitive crosstalk are shown in Fig. 12 and 13. Fig. 12 
shows crosstalk when all circuits where terminated with 1-
kohm loads. Fig. 13 shows crosstalk when the culprit and 
victim were terminated with 1-kohm loads and all other circuits 
were terminated with 50-ohm loads. The proposed technique 
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again works well up to 1-2 MHz, but begins to fail above this 
frequency as the weak-coupling assumption breaks down. 
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Figure 12.  Predicted “reasonable worst case” capactive crosstalk compared to 

273 crosstalk simulations using the RDSI algorithm when the influence of 
other circuits is important (all circuit loads = 1 kohm).  
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Figure 13.  Predicted “reasonable worst case” capacitive crosstalk compared to 
273 crosstalk simulations using the RDSI algorithm when influence of other 
circuits could be ignored (victim, culprit load= 1 kohm, others = 50 ohm).  

V. CROSSTALK ASSUMING STRONG COUPLING 
Calculations using weak-coupling assumptions begin to fail 

when the coupling to the rest of the harness significantly loads 
the culprit and victim circuits. This loading can be accounted 
for in the limit by assuming strong coupling. For inductive 
coupling, when strong coupling applies, all circuits besides the 
culprit can be thought of as a single (strongly coupled) circuit. 
For the case where each potential victim has a similar load, 
crosstalk to this circuit from the culprit can be approximated as: 

1_
2

xtalk ind
N

#  

where N is the number of potential victim circuits. This limit is 
shown in Fig. 11 and does a good job of predicting reasonable 
worst-case crosstalk above 1 MHz when the weak-coupling 
assumption does not apply. 

A similar approximation can be applied to estimate 
capacitive coupling. In Fig. 12, where all circuits are loaded 
with 1k-ohm loads on both ends, the culprit circuit is heavily 
loaded by the harness above 1 MHz because 

_1harness o avg LZ jwC length R$ ++ , where Zharness is the parallel 
combination of all the circuits in the harness except the culprit 
and C0_ave is the average value of the per-unit-length 
capacitance between one wire and all the other wires plus the 
return plane. The approximation 1 //m ne fejwC length R R,,  does 
not apply either. To a rough approximation, one can think of 
the culprit as coupling to all the potential victims, who are 
shorted in parallel. In this case, the crosstalk from the culprit to 
the victim is approximately: 

) *_

_
1
harness

S harness o avg

Zxtalk cap
R Z jwC length

#
$ $

. 

When the other circuits in the harness are loaded with 50-ohm 
loads, both conditions

_1harness o avg LZ jwC length R$ ++  and 

1 //m ne fejwC length R R,,  apply from 1-10 MHz. In this case 
crosstalk can be approximated by accounting only for the 
loading on the culprit and victim circuits: 

_

_
/ / / // / ,1/ / / / / /

ne fe xL x

S s ave L x
ne fe x
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R R ZR Z

R jwL length R Z R R Z
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_

1
x

o a v g

Z
jw C le n g th

' . 

These limits are plotted in Figs 12 through 13 and do a good 
job of predicting the reasonable worst-case crosstalk when the 
weak-coupling assumption does not applies. 

VI. DISCUSSION AND CONCLUSIONS 
The relatively simple method of calculating inductive and 

capacitive coupling in a wire harness bundle suggested here is 
able to predict the reasonable worst-case crosstalk well up to 
10 MHz. Below 1 MHz, the reasonable worst-case is predicted 
well using a weak-coupling assumption. Above 1 MHz, the 
reasonable worst-case is predicted well using approximations 
that assume strong-coupling. 

The technique presented here for estimating statistical 
variation in crosstalk shows promise both as a means of 
improving the speed of estimating crosstalk as well as a means 
of improving the understanding of the major causes. Results 
suggest that the variation in crosstalk from inductive coupling 
will generally be small and the variation from capacitive 
coupling will be large, as seen in earlier studies [4]. The 
insensitivity of inductive coupling to wire position indicates 
that a statistical analysis may not be required – at least for the 
case studied using a return plane rather than a return wire. For 
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this case, a worst-case analysis that ignored the contribution of 
the other wires would have given a result within a few dB of 
the reasonable worst-case found here. The wide distribution of 
mutual capacitance with position indicates that a statistical 
analysis of wire position is appropriate when capacitive 
coupling dominates. 2D numerical models may be required to 
find the capacitance values in many cases. One should also 
carefully consider the influence of twist (i.e. movement within 
the harness) for capacitive coupling, as the amount of twist can 
significantly influence the reasonable worst-case value of 
mutual capacitance. For both inductive and capacitive 
crosstalk, the loading influence of the harness must be taken 
into account at higher frequencies. 
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