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Abstract--EMAP5 is a numerical software package
designed to model electromagnetic problems. It employs
the finite element method (FEM) to analyze three-
dimensional volumes, and the method of moments (MOM)
to analyze the current distribution on the surface of these
volumes. The two methods are coupled through the fields
on the dielectric surface. This paper describes the
formulation of the EMAP5 code and demonstrates how it
can be used to analyze simple printed circuit board
configurations.

I. INTRODUCTION

EMAP5---ElectroMagnetic Analysis Program
Version 5 is a 3D numerical electromagnetic modeling
code developed at the University of Missouri-Rolla
(UMR). The code can be freely downloaded from the world
wide web at http://www.emclab.umr.edu/emap5.  EMAP5
is a hybrid FEM/MOM code designed primarily to simulate
electromagnetic interference (EMI) sources at the printed
circuit board level.

Generally, printed circuit boards and their
components are composed of many different materials with
arbitrary shapes.  Thus, the Method of Moments (MOM)
does not model this kind of problem efficiently. A hybrid
method combining FEM with MOM has been proposed by
many researchers [1][2][3] as a means of modeling
structures that are both open (i.e. unbounded) and complex.
FEM is applied to model the fields within a fictitious
boundary containing regions of high complexity, while
MOM is used to model the fields on the fictitious
boundary. The two methods are coupled by the fields at the
dielectric boundary.

Details of the hybrid formulation for EMAP5 are
presented in [4][5]. This paper demonstrates how EMAP5
can be used to model 3D microstrip configurations.

II. FORMULATION

The general structure of interest is shown in Figure 1.
A dielectric volume V2 has electrical properties (ε2, µ2). It
is enclosed by a surface S2.  A conductive volume V3 is
enclosed by a conductive surface Sc. The fields within V3

vanish. V1,  which denotes the volume outside of V2 and
V3, is assumed to be free space, hence has electrical
properties (ε0, µ0). (E1, H1) and (E2, H2) denote the electric
and magnetic fields in V1 and V2, respectively. The unit
normal vectors for S2 and Sc are defined pointing outward
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Fig. 1.  A dielectric obect and a conductive object
illuminated by Ei, Hi or Jint, Mint.

toward V1. The structure is excited by an incident wave (Ei,
Hi) or impressed sources (Jint, Mint). The scattered electric
and magnetic fields are (Es, Hs). The dielectric surface Sd,
is defined as S2 if the conductive body is not adjacent to the
dielectric body; Otherwise, Sd= S2 - (S2 ∩ Sc). The
objective is to solve for the scattered fields (Es, Hs) or the
surface electric current density on Sc.

A. Discretization of FEM

 From the double curl equation in terms of E, the weak form
of FEM equation can be expressed as:
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where w(r) is a weighting function.
Tetrahedral elements are used to discretize the volume

V2. Basis functions proposed by M. L. Barton and Z. J.
Cendes [6] are chosen here. Each basis function is defined
within a tetrahedron and is associated with one of the six
edges. The electric field E within volume V2 can be
expanded as:
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where Nv is the total number of interior edges and
boundary edges on the dielectric surface,  and {En} is a set
of unknown complex scalar coefficients. The weighting
functions chosen are wn(r), n=1,…Nv. After the weighting
functions are applied to Eq. (1), Eq.(1) can be discretized
as:
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where {Ei} are the unknown electric fields within the FEM
volume. {Ed} are the unknown equivalent surface magnetic
currents on Sd. {Jd} are the equivalent electric currents on
the dielectric surface, which is discussed in later section.
{g int} are the impressed current source terms. {Aii}, {A id},
{A di}, {A dd} and {Bdd} are the coefficient matrices.

B. Discretization of MoM

The MOM surface integral equation is [7]:
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where r ∈ S,  S=Sc∪S2, η0 and k0 are the intrinsic
impedance and wavenumber in  free space, respectively,
and
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is the Green’s function in free space. The equivalent
surface electric and magnetic currents are defined as:
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M(r′) vanishes on Sc. J(r′) and M(r′) can be approximated
by using the triangular basis function fn(r) proposed by S.
M. Rao et al. [8].  On surface Sd, the MOM basis function
fn(r) and the FEM basis function wn(r) are related by:
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where Ns is the total number of edges on the surface S, and
Nd  is the total number of edges on the surface Sd. {Jn} and
{En} are unknown complex scalar coefficients. The
weighting functions chosen are fn(r), n=1, ... Ns. After the
weighting functions are applied to Eq. (3), Eq. (3) can be
discretized into,
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where {Jd} and {Jc}  are the unknown equivalent surface

electric currents on Sd and Sc respectively. {Ed} are the
unknown equivalent surface magnetic currents on Sd.
{Cdd}, {Cdc}, {Ccd}, {Ccc},{Ddd} and {Dcd} are coefficient
matrices. {Fd

i} and {Fi
c} are forcing terms due to the

incident wave.
The FEM Eq. (2) and the MOM Eq. (4) are coupled

through {Ed} and {Jd}. By solving the two equations, all
fields within the FEM region and the surface equivalent
currents can be obtained. Details of how to construct the
matrix equation and solve it are provided in [4][5].

III. NUMERICAL RESULTS

Two numerical examples are provided in this section
to demonstrate the application of the EMAP5 code to
printed circuit board geometries.

A. Determining the Characteristic Impedance of a
Microstrip Geometry

This example simulates a microstrip line on a printed
circuit board. The geometry of the structure is shown in
Figure 2. The board is made of a dielectric with εr=4.0. The
trace is excited by a 1V source at one end, and is
terminated by a resistor at the other end. To determine the
characteristic impedance Z0 of the transmission line, we
need to determine the input impedance when the load side
is shorted or open, respectively. The input impedance Zin of
a transmission line is given by,
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where ZL is the load impedance;  β is the wavenumber;  l is
the length of the transmission line. When the load side is
shorted, the input impedance is given by,

( ) ) tan(Z jZ 0shortin  lβ=

when the load side is open, the input impedence is given
by,
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Thus, the characteristic impedance is given by,

( )openinshortin0 Z)Z(Z =

Since the source is electrically short and small, it can
be modeled as a current filament [9]. The source can be
expressed as,
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where (xf, yf) specifies its position, I denotes the electric
current magnitude, and  δ(x) is the Dirac delta function. Jint

is the impressed current source that is included in Eq. (1) as
the source term. After the E fields along the source edges
are obtained, the voltage drop along the current filament
can be calculated.  Thus, the input impedance Zin can be
obtained.
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Fig. 2. Grounded printed circuit board with an active trace.
(a) y-z plane view.

(b) x-z plane view. and  (c) 3D view.

Table 1 shows inductance and capacitance obtained by
EMAP5 when the load side is shorted or open, respectively.
The characteristic impedance Z0 of the trace then can be
determined. Three frequencies have been investigated. At
each frequency, the calculated value of Z0 is 56.4 Ω. We
can put a 56.4 Ω resistor at the load side to terminate the
transmission line. Theoretically, there should be no
reflection if Z0 is 56.4 Ω. Figure 3 shows the numerical
results obtained by EMSIM when the trace is terminated
with a 56.4 Ω resistor. It is evident that the transmission
line is almost perfectly matched.

B. Determining the Input Impedance of a Microstrip
Line with a Resistive Load.

In this example, the configuration is the same as shown in
Figure 2. Now however, the load is a 50 Ω resistor. A load
ZL can be modeled as an element with finite conductivity
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Fig. 3. The input impedance obtained by EMSIM when the
trace in Fig. 2. is terminated by a 56.4 Ω resistor.

given by σ=l/(ZLS) , where l is its length, and  S is the cross
section. If the load is treated as a lumped element, its
contribution to the finite element matrix is as follows [8]:
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where (xL, yL) is the position of the load impedance. Only
edges coinciding with the load are affected by the load.

Figure 4 shows the impedance obtained by EMAP5
and compares them with results obtained by EMSIM. Since
the characteristic impedance of the microstrip line is about
56.4 Ω, the 50 Ω load does not match the microstrip line
perfectly. As shown in Figure 4, the input impedance is not
exactly 50 Ω due to the mismatch.  The EMAP5 results
agree very well with the EMSIM results for this example.

Table 1.   Characteristic impedance obtained by EMAP5.

Source Frequency
(MHz)

( )openinZ  (Ω) ( )shortinZ  (Ω)  0Z  (Ω)

300 -j187 +j17 56.4
500 -j106 +j30 56.4
700 -j69 +j46 56.3
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Fig. 4.  The input impedance of the structure in Fig 2. when
the trace is terminated by a 50 Ω  resistor.

IV. CONCLUSION

This paper introduces the hybrid FEM/MOM code
called EMAP5.  Examples of the application of EMAP5 to
printed circuit geometries were presented and good
agreement was achieved with theoretical results and results
obtained using EMSIM.
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