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Abstract—Airflow perforations in shielding enclosures can act
as apertures facilitating the coupling from internal sources to
external electromagnetic interference (EMI). This EMI radiation
for single- and dual-screen configurations was studied herein
experimentally and with finite-difference time-domain (FDTD)
modeling. A general EMI reduction of more than 20 dB was
achieved for dual-perforated screens spaced 1 cm apart when
compared to EMI for a single perforated screen. However, in the
dual-screen case, the space between the screens can act as a thin
cavity, which, in turn, can lead to significant radiation at distinct
angles. Damping the resonances by loading the space between the
screens with lossy material mitigates this problem and achieves
more than 20-dB reduction over a single screen.

Index Terms—Aperture, FDTD, shielding enclosure.

I. INTRODUCTION

T HE integrity of shielding enclosures is compromised by
slots, seams, and apertures for heat dissipation. Radiation

from unintended slots and apertures can usually be minimized
with gasketing, however, it is more difficult to mitigate the ra-
diation from intended apertures such as those designed for heat
dissipation and airflow. Enclosures for high-speed digital de-
signs use aperture arrays or perforated screens instead of large
apertures for airflow and heat dissipation to minimize electro-
magnetic interference (EMI), while allowing for adequate air
flow. Due to the total open area required for heat dissipation, as
well as structural and manufacturing reasons, there is a lower
bound on the minimum size of the apertures of the perforated
screen. Considerable work has been done in the study of EMI
coupling from perforated aperture arrays [1]–[6]. The radiation
from a perforated screen with a large number of apertures and
reasonable aperture size may result in EMI problems at high
frequencies, i.e., above the fundamental cavity resonance, even
though the aperture size might be electrically small. One ap-
proach to minimize this risk is to utilize a honeycomb configu-
ration instead of a perforated screen. The honeycomb configu-
ration works well but adds considerable cost to the design over a
perforated screen. A dual-perforated screen was tested here as a
means of further reducing EMI over a single perforated screen.
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Fig. 1. The geometry of the test enclosure with dual-perforated screens.

The finite-difference time-domain (FDTD) method has been
widely applied in solving many types of electromagnetic prob-
lems. It possesses the advantages of simple implementation for
relatively complex problems and high accuracy. A rectangular
test enclosure with faces accommodating perforated screens
was investigated experimentally and with FDTD modeling. The
measurements and modeling results for dual-perforated screens
were compared. Undesirable peaks in the EMI spectrum due
to the high- resonances of the small cavity between the dual
screens were observed and investigated. Those resonances
could be predicted and eliminated through the utilization of a
perforated lossy material. The perforation pattern of the lossy
material was chosen to avoid impeding airflow between the
dual perforated screens. The EMI reduction as a function of
spacing between the dual-perforated screens was also studied
with FDTD modeling.

II. M EASUREMENTS ANDFDTD MODELING

A shielding enclosure mimicking an actual product enclosure
for a file server is shown in Fig. 1. The interior dimensions of the
enclosure were 40 cm 20 cm 50 cm. One-inch copper tape
with a conductive adhesive was used as an electromagnetic seal
along the seams in the interior. The enclosure was constructed
of five pieces of 0.635-cm-thick aluminum and one plate of
0.165-cm-thick aluminum for the face containing the perforated
screens. A terminated feed probe at cm cm
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Fig. 2. The positions of the virtual surfaces against the PML and enclosure.

was employed as an exciting source driven through a type-
bulkhead connector. The center conductor of the connector was
soldered to a 0.16-cm diameter wire spanning the width of the
cavity and terminating on the opposite cavity wall with a 1206
package size surface-mount (SMT) nominal 47-resistor sol-
dered to a 1.5 in 1.5 in square of conductive adhesive copper
tape. A layer of lossy material (Milliken Contec®)
with a thickness of approximately 1 cm was placed against the

cm wall to reduce the artificially high of the enclo-
sure. This loss has previously been shown to approximate that
associated with a populated printed circuit board (PCB) [7].

An alternative source, consisting of a patch structure was also
used to mimic a driven heatsink within a computer server enclo-
sure [8]. The center of a 5-cm 9-cm copper patch was con-
nected to a 3-cm long wire extending from the center conductor
of the bulkhead connector. For the case of a patch source exci-
tation, a populated motherboard instead of a sheet of lossy ma-
terial was used to load the test enclosure.

Due to the limited availability of test sites, some of the
following measurements were performed in a 3-m anechoic
chamber, while the others were made in a shielded room loaded
with absorbing cones. Nevertheless, in all cases, was
measured with a Wiltron 37 247A network analyzer. Port 1 was
connected to the interior source in the enclosure under test and
Port 2 was connected to a log-periodic dipole-array receiving
antenna. The network analyzer was placed outside the anechoic
chamber or shielded room to measure . Calibration was
performed to the type- connector on the test enclosure and
the antenna connector.

Far-zone electric field measurements were made with a sep-
aration of 3 m between the enclosure and the receiving antenna

in the anechoic chamber. The far-zone electric field provides a
quantitative measurement of the levels of EMI and is related to
the -parameters by [9]

(1)

where is the antenna factor of the receiving antenna, and
is the incident voltage at Port 1, which is 0.5 mV for the

scaled 1-mV source with 50- source impedance. A scaled
1-mV source is used for the purpose of comparison with FDTD
modeling, and radiated EMI levels.

The FDTD method was employed to model the test enclosure
excited by a terminated feed probe. A cell size of 0.5 cm0.5
cm 1.0 cm was employed in the FDTD modeling. Aluminum
plates were modeled as perfect electric conductor (PEC) sur-
faces by setting the tangential electric field to zero on the cavity
walls. The wire feed probe was modeled with a thin-wire algo-
rithm [10]. The source was modeled by a simple voltage source

mV, with a 50- resistance incorporated into a single
cell at the feed point. The magnetic fields circling the source
were modeled in the same fashion as a thin wire thereby giving
the cross section of the source a specified physical dimension
[11]. The SMT resistor was modeled as a lumped element using
a subcellular algorithm [12]. The width of the SMT resistor is
approximately that of the feed-wire diameter and the physical
cross-section dimensions were modeled with the same diameter
as that of the feed wire by modifying the magnetic field compo-
nents circling the SMT in the same fashion as for the source.
The lossy material was modeled by a one-cell layer of con-
ducting material with conductivity S/cm. For the
electric field components inside the conducting layer, the con-
ductivity S/cm ( was the thickness of the
material) was employed, while the conductivity
S/cm was employed for the components on the interface of the
conducting layer and free-space [10]. Perfectly matched layer
(PML) absorbing boundary conditions were employed for the
three-dimensional FDTD modeling [13]. The PML absorbing
layers surrounding the enclosure were six cells away from the
conducting planes without the apertures and eight cells away
from the conducting plane containing the apertures. A time his-
tory of 10 000 time steps was recorded in all the FDTD mod-
eling. Prony’s method was then used to extrapolate an additional
80 000 time steps [14]. The number of modeled time steps was
chosen to satisfy general criteria on a sampling window [15].
The accuracy of the extrapolation was checked by running one
FDTD simulation out to 40 000 time steps. The relative devi-
ation between the extrapolation and the FDTD result was less
than 2%. The computational time required on a workstation was
then reduced from approximately 160 to 20 h.

The far-zone field was obtained by applying equivalence prin-
ciples to the FDTD modeling results. The FDTD method was
used to calculate the electric and magnetic fields on a virtual
surface completely surrounding the FDTD model of the enclo-
sure. From the calculated values of the electric and magnetic
fields on this surface, equivalent magnetic and electric surface
current distributions were determined [16],[17], and the fields at
3 m (far field) were extracted. The average of the magnetic field
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Fig. 3. The radiation from single- and dual-perforated screens from (a) FDTD
modeling; (b) measurements; and (c) comparison between the measurements
and FDTD modeling on the single and dual screens.

offset by one-half cell from the electric field was used to com-
pensate for the phase difference between the magnetic field and

electric field components. The positions of the virtual surfaces
were three cells away from the enclosure surfaces, as shown in
Fig. 2. The spacing between the virtual surface and PML was
varied from two to six cells and the change of the corresponding
far fields was within 1 dB. Thus, the above four-cell spacing
between the PML and enclosure surface was adequate for the
FDTD modeling.

A considerable number of cells is required in order to accu-
rately model an aperture using FDTD [18]. The FDTD modeling
results from the above discretization of 0.5 cm0.5 cm 1 cm
may result in significant inaccuracy of the absolute EMI level for
the apertures investigated. Since the size of the present computa-
tional problem including PML’s was 500 000 cells, further mod-
eling refinement in the apertures was not possible due to limi-
tations of computational resources. Consequently, the 1-cm
1-cm apertures were modeled using only four cells. Since only
relative radiation is of concern, the conclusions for the compar-
ison between the dual- and single-perforated screens are still re-
liable. However, in order to compare these numerical modeling
results with experimental measurements an additive correction
is found to be necessary [18].

The effect on the measurements of the aluminum plate thick-
ness of the aperture array panel was considered as well, using
the empirical estimate of attenuation of (dB) ( is the
diameter of the circle equivalent to the square) [1]. The attenu-
ation factor was 4.7 dB for the single-perforated screen, and 9.4
dB for the dual-perforated screen. These factors were applied to
the measurements to facilitate comparison with the zero-thick-
ness case used in the modeling.

FDTD modeling results are shown in Fig. 3(a) for the EMI
level for three cases. The first case results from EMI coupling
through a single screen configuration with the observation point
located 3 m away from the screen in the perpendicular (broad-
side) direction. In the second case, the single screen configura-
tion was replaced with a dual-screen configuration, while main-
taining the same observation point location. In the third case,
the observation point is located 3 m from the center of the front
screen in the direction parallel (end fire) to the plane of the outer
screen.

The high- EMI peaks observed at 0.83 and 1.04 GHz in
the “end-fire” case correspond to the two lowest calculated res-
onances [19]—0.84 and 1.06 GHz for the small (1-cm-thick)
cavity between the two perforated screens. More significantly,
these peaks indicate that the relative EMI advantage of the dual-
screen configuration, approximately 20 dB in the broadside di-
rection, is offset by the two peaks observed in the end-fire di-
rection.

Measured results for the same three cases are shown in Fig.
3(b). In addition, a fourth case consisted of placing two pieces of
5-cm 15-cm lossy material ( ) in the small cavity be-
tween the two perforated screens. In this fourth case, included
in Fig. 3(b), the high- resonances associated with the small
cavity have disappeared, and a general EMI reduction of ap-
proximately 20 dB was achieved even though the amount of
lossy material was insufficient to completely fill the region be-
tween the two screens. The broadside radiation was used in the
single-screen configuration to compare the effect of single and
dual screens since both measurements and modeling indicated
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Fig. 4. The design of the lossy material pattern utilized between the dual-perforated screens to eliminate the unwanted high-Q resonances due to the small cavity
between them.

that the EMI from a single screen was maximum at the broad-
side observation point.

Finally, Fig. 3(c) shows a comparison of the measured and
modeled single and double-screen EMI levels in the broadside
direction. As previously noted, the FDTD modeling results have
been raised by 10 dB to compensate for the inadequate number
of computational cells in each aperture.

All of the measurements and modeling results cited above
were performed for a feed-probe excitation source with the mea-
surements being made in an anechoic chamber. Additional mea-
surements were subsequently made for a test enclosure excited
with a patch source. The enclosure was loaded with a populated
motherboard from a production system. These measurements
were made in a shielded room loaded with absorbing cones
along the walls. Only relative measurements were of concern.
No attempt was made to compare the measurements and FDTD
modeling because of the limitation in the measurement envi-
ronment. Specifically, the shielded room measurements had a
higher noise floor and also had several spurious EMI peaks as-
sociated with room resonances. Further, the room was too small
for 3-m measurements.

A lossy material pattern was designed to accommodate
four apertures in the conducting screens for each aperture in
the lossy material, as shown in Fig. 4. A Milliken polyester
nonwovenmaterial with a surface conductivity of
was used. In contrast with the previous lossy material, the
Milliken material was sufficiently stiff to allow for the cutting
of apertures. As indicated above, only a partial filling of the
small cavity was required. It was not necessary to have a
one-to-one correspondence of the metal aperture and lossy
material aperture. The measured frequency band was from
0.5 to 2.1 GHz. The measured results for the observation
point broadside to the aperture array face are shown in Fig.

5. The measured curves were not as smooth as those in the
anechoic chamber due to the resonance effects of the shielded
room. The EMI peaks due to the small cavity introduced
by the dual perforated screens without the lossy material
pattern in between resulted at approximately 1.04, 1.52, 1.64,
1.84, 2.02, and 2.08 GHz. These undesirable resonances and
EMI peaks were significantly reduced, as shown in Fig. 5,
with the addition of the perforated lossy material between
the screens. An overall EMI reduction of more than 20 dB
resulted.

A similar set of measured results for end-fire observations
is shown in Fig. 6. The broadside single-screen measurement
is provided as a reference. The dual-screen end-fire results
in this figure contain a number of resonant peaks. Many
of these peaks line up closely with the calculated resonant
frequencies of the small cavity between the screens. A few
peaks seem to correspond to room resonances—for example,
the peak at around 0.85 GHz was probably associated with
a room resonance since it was absent from the anechoic
chamber data shown in Fig. 3. Nevertheless, the incorporation
of lossy material between the two perforated screens can be
seen to significantly reduce many of the dominant EMI peaks
in the end-fire direction.

Finally, the effect of spacing between the dual-perforated
screens was investigated with FDTD modeling only since
the modeling results suggested that the measured results for
larger spacing (1 cm) would fall below the noise floor of the
measurements. Spacings of 2 and 4 cm were modeled, and the
results are shown in Fig. 7. For the spacing of 1, 2, and 4 cm,
EMI reductions of 20, 30, and 45 dB, respectively, resulted.
Here the observation point was broadside to the array panels
in front of the perforated screens. The undesirable resonances
were not observable at this point. They can be eliminated with
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Fig. 5. Measured results in broadside direction for patch source excitation.

Fig. 6. Measured results in end-fire direction for patch source excitation.

the utilization of a lossy material between the dual-perforated
screens. In practice, however, large spacings between the perfo-
rated screens may not be acceptable because they could impede
the airflow by introducing turbulence between the screens.
However, for close spacings such as 1 cm, this thickness can
be filled with a perforated lossy material pattern to reduce EMI
without disturbing the airflow.

III. SUMMARY AND CONCLUSION

Measurements and numerical modeling were utilized to study
EMI reduction utilizing dual-perforated screens for airflow ar-
rays in a shielding enclosure. The results show that a dual-perfo-
rated screen with an interstitial lossy material pattern can signif-
icantly reduce the EMI from shielding enclosures as compared
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Fig. 7. The FDTD modeled EMI reduction for different spacings between the
dual-perforated screens.

to a single perforated screen. This design may offer a cost-effec-
tive alternative to waveguide air vents for airflow in shielding
enclosures.
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