
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 44, NO. 4, NOVEMBER 2002 569

Problems associated with having the gap on the boundary can be
avoided by raising the FEM/MoM boundary above the gap, effectively
increasing the size of the FEM region. Then, small tetrahedral elements
can be used around the gap and a coarse triangular mesh can be used
on the MoM boundary. Computational resources are reduced using this
approach because the increased memory requirements to model the
FEM region are more than offset by the reduction in memory required
to model the MoM surface. Numerical results obtained using this ap-
proach agree well with measurements.
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Finite-Element Modeling of Coaxial Cable Feeds
and Vias in Power-Bus Structures

Hao Wang, Yun Ji, and Todd H. Hubing

Abstract—This paper presents three different models that can be used
to represent coaxial cable feeds or vias in printed circuit board power-bus
structures. Theprobe modelrepresents a coaxial feed or via as a current fil-
ament with unknown radius. Thecoaxial-cable modelenforces an analytical
field distribution at the cable opening or via clearance hole. Thestrip model
employs the equivalent radius concept to represent cylindrical feeds and
vias as rectangular strips. Although the strip model is functionally equiv-
alent to two closely positioned probe models, it accurately represents the
conductor radius and is more accurate in situations where the via or feed
radius is important.

Index Terms—Circuit board modeling, edge elements, finite-element
method (FEM), method of moments (MOM).

I. INTRODUCTION

Multilayer printed circuit boards (PCBs) and multichip modules
(MCMs) often employ a power-bus structure consisting of solid
power-return plane pairs. At low frequencies, the behavior of the
power-bus structure can be modeled using lumped elements [1]. At
frequencies where the dimensions of the board are not electrically
small, it is necessary to use complex distributed models. In the
frequency domain, two numerical methods often used to analyze PCB
structures are the method of moments (MoM) and the finite-element
method (FEM).

It is critical to accurately represent sources and vias when modeling
the behavior of PCB power-bus structures. When making measure-
ments, these structures are often driven with a coaxial cable. The outer
conductor of the coaxial cable is connected to the reference plane and
the center conductor extends through to the power plane. The refer-
ence plane is normally calibrated to the cable opening, where the center
conductor begins to extend beyond the outer conductor. The term via
commonly refers to a plated-thru hole in a PCB. A via can be used
for mounting a through-hole component or for routing signals between
layers. The geometry of vias and coaxial feeds is similar. Both consist
of an opening in one or both planes and a vertical conductor that may
or may not connect to each plane.

This paper investigates three models that can be used to rep-
resent sources and vias in a PCB power bus. Theprobe model
represents coaxial cable feeds and vias using one finite-element or
moment-method-element edge. Thecoaxial-cable modelenforces
the analytical field distribution at the opening in the reference plane
and includes the effects of the finite radius of the vertical conductor.
Thestrip modelemploys the equivalent radius concept [2] to replace
cylindrical feeds or vias with rectangular strips. These three models
have been implemented in a hybrid FEM/MoM code. Two practical
power-bus structures are investigated to validate and compare the
three models.
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Fig. 1. Cross section of a coaxial cable feed.

II. THE PROBE MODEL

Fig. 1 illustrates the cross section of a coaxial cable feed, which has
a center conductor, an outer conductor, and a dielectric between the
two conductors. The probe model uses an impressed electric current
to model the source [3], [4]. The center conductor is represented by
an infinitesimally thin current filament that extends between the power
and ground planes. The opening in the plane is replaced with a per-
fect electric conductor (PEC). The PEC boundary condition along the
center conductor cannot be enforced, otherwise the power and ground
plane would be shorted.

The weak form of the vector Helmholtz equation is shown in (1)
at the bottom of the page. A source term [gint] representing sources
located within the FEM region is given by

g
int = � s

V

J
int(r) +

1

j!�0�r
r�Mint(r) �w(r)dV (2)

wherew(r) is the set of volume basis functions.
An impressed current source inz-direction can be expressed as

J
int = I1� (x� xf) � (y � yf ) ẑ (3)

where (xf ; yf ) specifies its position,I1 denotes the electric current
magnitude and�(x) is the Dirac delta function. The contribution to
vectorgggint in (2) is then simply

g
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If the basis functionswm(r) are Whitney elements [5], the source term
in the FEM equation is given by

g
int

e

= I1l1 (5)

wherel1 is the edge length. The input impedance can be calculated as
follows:

Zin =
V1

I1
=

E1l1

I1
(6)

Fig. 2. A simplified coaxial cable model (N = 8).

Fig. 3. Block diagram of a system excited using the coaxial-cable model.

whereE1 is the electric field along the source edge.
It is a common practice to model the source using one edge. How-

ever, it is possible to model the source using several edges in series. In
such a case, the source voltage is the sum of the voltages on the source
edges. Vias can be modeled in a similar manner without enforcing a
source current. Commonly, vias are modeled simply by forcing the
electric field on a single vertical edge to be zero. The probe model is
widely used and is capable of generating satisfactory results for thin,
electrically short feeding structures [4].

III. T HE COAXIAL -CABLE MODEL

In some applications, the probe model is too simplistic and a more
detailed representation of the source is required. A coaxial-cable model
for FEM proposed by Gong and Volakis [6] assumes a TEM field dis-
tribution in the cable opening
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Fig. 4. The mesh for the center conductor of a coaxial-cable feed or a via.

Fig. 5. Electrical equivalent radius.

whereI1 is theincidentcurrent in the cable,"rc is the relative permit-
tivity of the dielectric inside the cable,� is the reflection coefficient
andZc1 is the characteristic impedance of the cable. The equipotential
condition is enforced at the cable opening as follows:

�V =Ei(b� a) = e0 ln
b

a

Ei 2funknowns at the cable junction; i = 1; . . . ; Ng
(12)

wherea andb are the radii of the center and outer conductors andN is
the total number of unknowns on the cable interface. In [6], the cable
excitation was derived from an FEM formulation based on the varia-
tional method, which is equivalent to an FEM formulation based on the
weak form and Galerkin’s method. Analytical evaluation of the field in
the cable opening [first term on the right-hand side of (1)] is given by
[6]

f
c
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Ci is added to the diagonal entries corresponding to the cable edges
in the FEM matrix andfci is added to the FEM source entries corre-
sponding to the cable edges. AfterEi is determined, the input admit-
tance is given by

Yin =
2I1
V1

� 1

Zc1

(16)

whereV1 is the voltage along the cable edges. In the coaxial-cable
model, the PEC boundary condition along the center conductor
is strictly enforced. The dielectric opening at the coaxial cable is
modeled using FEM.

Fig. 2 illustrates a relatively simple coaxial-cable model withN = 8
elements representing the field in the opening. The elements are con-
nected in parallel therefore the total impedance isZc1: The current
sources are also connected in parallel so the total current flowing from
the center conductor to the outer conductor is 2I1. Fig. 3 shows a block
diagram of an electromagnetic system excited by a coaxial cable model.
Yin satisfies the relationship in (16). Fig. 4 illustrates a triangular mesh
for the center conductor of the coaxial cable model in Fig. 2. This tri-
angular mesh also can be used to model a via. The PEC boundary con-
dition is enforced on the via’s cylindrical wall.

IV. THE STRIP MODEL

Although the coaxial-cable model can be used to represent coaxial
cable feeds and vias accurately, it is relatively complicated to work
with. Generating the mesh can be time consuming and the computa-
tional resources required can be excessive when the number of vias is
large. A compromise between the complex coaxial-cable model and the
simplistic probe model is achieved by using the concept of equivalent
radius to represent cylindrical vias using flat elements. A thin rectan-
gular strip of width,w, has an equivalent radiusae = 0:25w as illus-
trated in Fig. 5 [3]. Fig. 6 shows a mesh employed around the coaxial
cable feed or via using the rectangular current strip. To model a coaxial
feed, two current sources are located at the two sides of the rectangular
strip and connected in parallel so that the total current flowing from the
lower plane to the upper plane is 2I1. To model a via, the two sides of
the rectangular strip are modeled as two PEC edges.

V. NUMERICAL AND EXPERIMENTAL RESULTS

Two PCB power-bus geometries were investigated to validate
and compare the three feed and via models. Fig. 7 shows the first
geometry consisting of two copper planes representing the power and
ground planes of a PCB. The board dimensions are 100 mm� 50 mm
� 1.1 mm. The dielectric between the PEC layers has a relative per-
mittivity of 4:7(1 � j0:02). A coaxial standard connector designator
(SMA) connector feeds the structure at the locations (30 mm, 20 mm)
indicated in Fig. 7. The radius of the center conductor of the SMA
connector is 0.635 mm. An impedance analyzer was used to measure
the input impedance at the cable opening. Numerical results were
obtained using a hybrid FEM/MoM code. Fig. 8 shows the magnitude
of the input impedance. It is evident that the measurements and the
numerical results, obtained using the coaxial-cable model and the strip
model, agree with the measurement very well from 100 to 600 MHz,
while the probe model fails to generate satisfactory results. The input
impedance null near 360 MHz is shifted 40 MHz (10%) to the left
in the probe-model results. This null correspondences to the zero in
the expression for the input impedance and can be calculated in a
straight-forward manner using [1]

fO =
1

2�
p
LCb

(17)
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(a)

(b)

(c)

Fig. 6. The EMAP5 mesh around the current strip source or the via. (a) Three-dimensional view. (b) Top view. (c) Side view.

whereCb is the interplane capacitance andL is the “effective” induc-
tance of the via [7], [8].

It is perhaps not surprising that the probe-model results are not accu-
rate. The effective inductance of the SMA connector is a function of the
conductor radius [7], [8]. The probe model does not have a well-defined
conductor radius. Although the strip model has a well-defined radius,
it is essentially just two probe models located very near each other.

Table I shows the number of tetrahedra and FEM unknowns used to
model the cylindrical volume surrounding a via as shown in Fig. 6(a).

Improved accuracy is obtained with less computer resources using the
strip model.

In order to demonstrate that the improved accuracy of the strip model
is not due to the slightly finer mesh density required to place two edges
in close proximity, the strip model example was rerun using the same
mesh, but with only one source edge (probe model). Fig. 9 illustrates
the probe-model result that uses the strip model’s fine mesh and com-
pares it with other results. Despite using the same mesh, the strip model
yields a more accurate result than the probe model. In fact, the strip
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Fig. 7. Geometry of an open power-bus structure.

Fig. 8. Comparison between models and measurements for the open
power-bus structureC .

TABLE I
COMPARISONBETWEEN DIFFERENTMODELS

model result is nearly identical to the much more complex coaxial-
cable model result.

The second geometry investigated here is a shorted power-bus
structure that has the same dimensions and feed location as the first
power-bus structure as illustrated in Fig. 10. A via centered at (40 mm,
20 mm) connects the power and ground planes. The radius of the via
is 0.254 mm. Fig. 11 compares the numerical and measured results.
The probe model fails to generate satisfactory results while good
agreement is achieved between the measurement and numerical results
using the coaxial cable model or strip model. For the probe-model
result, the left shift at the first peak (369 MHz) can be equated to
excess inductance at the coaxial cable feed, while the left shift at the
second peak (440 MHz) equates to excess inductance at the via [7].
The probe model does not accurately represent the via radius and

Fig. 9. Comparison between the probe-model and strip-model results.

Fig. 10. Geometry of a shorted power-bus structure.

Fig. 11. Comparison between models and measurements for the shorted
power-bus structure.

therefore does not correctly determine the effective inductance of the
via.
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VI. CONCLUSIONS

Three different approaches for modeling coaxial cable feeds and
vias in power-bus structures have been described. The probe model
is easy to implement and is very effective for modeling thin, electri-
cally short feeding structures. However, it cannot be used to accurately
model configurations where the feed or via radius is an important pa-
rameter. The coaxial-cable model assumes a TEM field distribution at
the cable opening. The field in the opening is analytically evaluated and
the boundary conditions along the center conductor and at the cable
opening are strictly enforced. Although the coaxial-cable model can
represent the coaxial-cable source and vias accurately, it is relatively
difficult to generate meshes for the center conductor and the clearance
hole. When the number of the vias is large, the additional elements re-
quired by the coaxial-cable model can consume significant computer
resources.

A relatively simple strip model employs the equivalent radius con-
cept to simplify the mesh procedure by representing the feeds and the
vias as rectangular strips. This model can be used at all frequencies
where the structure being modeled is electrically small. The strip model
is simpler to implement than the coaxial-cable model, but accurately
represents coaxial feeds or vias with a finite radius.
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Simple Deterministic Solutions for Cables Over a
Ground Plane or in an Enclosure

Richard H. St. John and Richard Holland

Abstract—The use of statistical electromagnetics to determine cable
currents in an enclosure consists of two basic parts: 1) determination of
the probability density function (pdf) for the ambient electromagnetic
fields and 2) substitution of this field pdf in cable-coupling formulas
to evaluate the pdf for the cable currents. The application of the work
reported here pertains to the second of these operations. Previously,
determination of cable-current pdfs was a fairly tedious process involving
the solution of finite-difference-like transmission-line equations. Unlike
the field-distribution pdfs, the cable-current pdfs could not be expressed,
or even approximated, in closed form. The contribution reported here
relates the unknown cable-current pdfs to the known field pdfs in closed
form and does not require the manipulation of finite-difference entities.
Additionally, it turns out that some rather arcane issues concerning the
autocorrelation of the electromagnetic cable-driving fields as functions
of position or frequency no longer seem to matter.

Index Terms—Cable coupling, cable currents, frequency-domain finite
differencing (FDFD), reverberation chambers, statistical electromagnetics
(STEM), transmission lines.

I. INTRODUCTION AND EQUATION PRESENTATION

There are two kinds of response in the general case for the current
response of a cable in the presence of electromagnetic interference.
First, there is the propagating part, which roughly corresponds to the
homogeneous portion of the solution of the wave equation on the cable.
Next, there is the nonpropagating solution, which represents the driven,
or particular, part of the cable current. Much to our surprise, we have
recently observed that the homogeneous component is often negligible
and may be totally ignored. This approximation appears to work if the
cable in question is at least�=10 distant from other cables or a ground
plane. It may work for even smaller separations, but we have not inves-
tigated that case at this time.

For a copper cable of lengthl, radiusa and heighth over a ground
plane, illuminated by a fieldE0 of wavelength�, terminated at one
end by its characteristic impedance (see Fig. 1),Zc(a; h; l; �) and at
the other byrload, the propagation-only current on the cable atrload is
approximately given by

I (E0; a; l; h; rload; �) =
Ee� (E0; h; �) � le�(l; �)

Zc(a; h; l; �) +R(a)le�(l; �) + rload
(1)

wherele�(l; �), the effective cable length, is

le�(l; �) =
1

1

l
+

1

�

=
�; for l� �

l; for �� l
(2)

Ee�(E0; h; �), the effective electric field, is

Ee� (E0; h; �) =
E0

1 +
�

4�h

=
E0; for 4�h� �

2 _B0h; for �� 4�h
(3)
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