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Derivation of a Closed-Form Approximate Expression for
the Self-Capacitance of a Printed Circuit Board Trace

Hwan W. Shim and Todd H. Hubing

Abstract—The electric fields that couple traces on printed circuit boards
to attached cables can generate common-mode currents that result in
significant radiated emissions. Previous work has shown that these ra-
diated emissions can be estimated based on the self-capacitances of the
microstrip structures on a board [6]. In general, the determination of these
self-capacitances must be done numerically using three-dimensional static
modeling software. In this paper, an approximate closed-form expression
for the self-capacitance of microstrip traces is derived. This expression
can be used to estimate the voltage-driven common-mode emissions from
boards with various microstrip trace geometries. The expression also pro-
vides insight relative to the microstrip parameters that have the greatest
effect on radiated emissions.

Index Terms—Absolute capacitance, radiated self-

capacitance, voltage-driven radiation, wire antenna.

emissions,

1. INTRODUCTION

Common-mode currents induced on cables attached to printed cir-
cuit boards (PCBs) are a primary source of unintentional radiated
emissions [1]. One source of these currents is the potential differ-
ence induced across the board by the time-varying magnetic fields.
This source mechanism is often referred to as current driven because
the magnetic field strengths are generally proportional to the signal
currents on the board. Electric fields can also couple directly to at-
tached cables and induce the common-mode current on the cables. In
this case, the coupling is proportional to the signal voltage and to the
mutual capacitance between the attached cable and the source. This
is generally called a voltage-driven mechanism. These basic mecha-
nisms are illustrated in Fig. 1. Although the current-driven mechanism
has been studied by several researchers [1]-[5], less research has been
done on the voltage-driven mechanism. Nevertheless, voltage-driven
common-mode currents induced by the microstrip structures on a PCB
can be strong enough to cause electronic devices to fail to meet radiated
emissions requirements [6]. A simple wire antenna with an equivalent
common-mode voltage source, as shown in Fig. 2, can be used to
calculate the radiated emissions.

The amplitude of the equivalent common-mode voltage source Vo
is proportional to the self-capacitance of the PCB trace. This capaci-
tance can generally be calculated using three-dimensional (3D) elec-
trostatic modeling codes. In this article, the parameters affecting the
self-capacitance of a trace are investigated, and a closed-form expres-
sion is derived. Using this expression, the radiated emissions due to
the coupling between microstrip traces and cables can be estimated
without requiring numerical simulations.

II. EFFECT OF DIELECTRIC ON SELF-CAPACITANCE OF A TRACE

In practice, a PCB has a dielectric material that separates the sig-
nal traces from the return plane. The dielectric material changes the
electric field distribution, which affects the self- and mutual capac-
itances of the trace and plane. Considering a typical geometry, e.g.
Fig. 3, the differential-mode capacitance, Cpy, strongly depends on
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Fig. 1. Common-mode current mechanisms: (a) current-driven source and (b)
voltage-driven source.
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Fig. 2. Equivalent model of voltage-driven radiation mechanism.
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Fig. 3.

the dielectric permittivity of the insulator because the electric fields are
primarily coupled through the dielectric. The self-capacitance of the
trace, however, is a relatively weak function of the dielectric because
the corresponding fields exist primarily outside the dielectric. In this
section, two-dimensional (2D) electrostatic field simulations are used
to investigate the effects of the dielectric on the self-capacitance of a
microstrip.

Assuming a quasi-TEM model, the field distribution of a microstrip
structure can be obtained using a free-space Green’s function formu-
lation in terms of equivalent surface charge sources on the boundaries.
A set of coupled integral equations in terms of the equivalent sources
was formulated and enforced to satisfy the boundary conditions.
The details can be found in the literature [7]-[9]. Using a technique
based on this approach, the charge induced on various 2-D microstrip
geometries was calculated.

The calculated induced charges for one example are shown in Fig. 4.
The charges induced on each side of the conductors are illustrated
separately. As expected, a significant portion of the charge is induced
on the dielectric side of each conductor. The charge distribution on the
trace is similar to that obtained for an infinitely wide return plane [13].
The charges on the reference plane, however, exhibit a peak near the
edge due to the truncation of the plane. This peak is associated with the
concentration of the electric fields at the edges. In general, the amount
of charge on the dielectric side is greater than that on the opposite side.

The capacitances associated with the microstrip can be determined
from the net charge on the trace and the plane when the potentials
of the trace and plane are 1.0 and 0.0 V, respectively. The calculated
capacitances as a function of dielectric permittivity are shown in Fig. 5.
For a board with a plane width much greater than the separation between
the trace and the plane, the differential-mode capacitance, Cpyi, is a
function of the dielectric permittivity and the ratio of the trace width to
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IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 47, NO. 4, NOVEMBER 2005

1005

1.0r 0.0 ¥ i
""" Dielectric side W L/
— 0.8 f Air side T
g N £
B R 5 -10f
E 06| E 00
S
O
< 04} 2
2 S 20
2 k poos
02 y. Y 10.0
0.0 ad | 3.0 1 1 1 1 J
-0.5 0 0.5 0.0 2.0 4.0 6.0 8.0 10.0
x [mm)] x [mm]
) (b)

Fig. 4. Charge distribution on the trace (a) and plane (b), W = 20.0 mm, ¢« = h = 1.0 mm, &, = 4.0, Virace = 1.0V, Vplane =0V
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Fig. 5. Calculated capacitances of a microstrip with a finite return plane: (a)

mutual capacitance and (b) self-capacitance of the trace.

the dielectric thickness, as shown in Fig. 5(a). The self-capacitance of
the trace, C;, is shown in Fig. 5(b). The capacitance decreases as the
relative dielectric constant increases. However, the variation in self-
capacitance due to the substrate is less than 40% for relative dielectric
constants up to 5.0 for a typical microstrip where the ratio of board

width to trace height is 20. The variation is less than 45%, even when
the relative dielectric constant is 10. In practice, the variation is even
smaller because most PCBs have dielectric constants less than 5.0 and
width/height ratios greater than 0.1. For typical board geometries, the
variation in the trace self-capacitance due to the dielectric material will
generally be less than a few decibels. Considering the approximate
nature of most radiated electromagnetic interference estimates, the
dielectric permittivity plays a relatively minor role in the calculation of
C;. However, the geometry of the microstrip, such as the width of the
return plane and dielectric thickness, has a significant effect.

III. CLOSED-FORM EXPRESSION FOR ESTIMATING SELF-CAPACITANCE
OF A TRACE

When the length of the board is much greater than the width, the
effects of stray fields at each end of the trace can be taken into account
by adding an equivalent stub length to the microstrip. This approach
has been used to model the open ends of microstrips [10]. Thus, an
equivalent expression for the self-capacitance of a trace may take the
following form:

Ct = C’t,pul X (lt + leq) (1)

where C; 1 is the per unit length self-capacitance of the trace, and [,
and [ are the actual length and equivalent stub length of the microstrip,
respectively. However, this expression cannot be used for a board when
the length is comparable to the width. Because the length of most
PCBs is comparable to the width, 3D simulations of various trace/board
geometries were conducted to explore the effects of trace position and
aspect ratio of the board on C;. The closed-form expression for C;
should have the following form:

% Qex(Wa a, h7 li)

Ot:f(W7Ladt) V.
t

@)
where W and L are the width and length of the board, d; is distance
of the trace from each edge, and Q. is the available excess charge
per unit length in an infinitely long 2-D configuration with a plane
width W. To investigate the effects of distance between the trace and
the edges of the board, a trace was evaluated at different positions on
a board. The self-capacitance was calculated using FastCap [11]. The
results for a 2-cm-long, 1-mm-wide trace that is located 1 mm above a
plane are shown in Fig. 6.

The simulated results show that the distance of the trace from the
longitudinal edges (i.e., offset of the trace along the y-axis) has a strong
effect on the self-capacitance of the trace, whereas the distance from
other edges has little effect. The results are not surprising because most
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Fig. 6. Trace self-capacitance as a function of position above a finite plane.
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Fig. 7. Charge distributions on return planes: (a) microstrip geometry and
(b) charge redistribution due the truncation of return plane.

of the excess charge is induced on the longitudinal edges. An interesting
observation is that the capacitance does not change significantly if the
trace is located more than ten times the trace height » away from the
edge of the board. This implies that the distance between the trace and
each edge can be neglected, as long as the trace is not located too near
an edge. For traces located away from the edges of the board, (2) can
be simplified as

¢ = fw, 1) x Qe ehl), 3
t

A. Quantifying Excess Charges

The self-capacitance of the trace is associated with the electric fields
terminating at infinity when the potentials at the return plane and infinity
are set to 0 V. To express the amount of the charge induced at infinity, a
2D model is used again. Fig. 7 illustrates the geometry considered and
the charges induced on the return plane with infinite and finite planes.
Due to the truncation of the plane, a portion of the charge induced off
the plane is redistributed, resulting in a dense charge distribution at the
edges of the plane, as shown in Fig. 7(b). Intuitively, one might expect
the total charge induced at infinity to be proportional to the total charge
induced over |z| > W/2 for the infinite plane.

If the potentials are known, the charge distributions on the return
plane can be expressed as

UW:oc(l’) = an—qb(ac,y) . 4)

Y y=0
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Using the 2D Green'’s function, the potential at an arbitrary point can
be represented as an integral form:

mm:/Gmmdmw' ®)

where G(p, p') = —In(p — p')/2we,, C represents the conductor con-
tour where the charges are located, and p and o’ are coordinate vectors
representing the observation and source positions, respectively. When
the plane width is infinite, image theory can be used, and the potential
can be calculated by integrating over the trace and its image. By plug-
ging (5) into (4), the charge distribution on the return plane is given
by
ho[7? o) )

oW = (T) = - /0/2 @) 12 dx’. 6)

If the charge distribution on the trace is known, the charge distribution
on the return plane can be determined from (6). The simplest expression
is obtained by assigning a uniform charge distribution to the trace. In
this case, the charge on the plane is given by

o1 = - [ (252) -t (B29)]

where () is total charge on the trace and is approximately Cpy Vi, where
Cp is the capacitance of the trace with an infinitely wide return plane.
Note that the dielectric material is not considered in this case. A closed-
form expression for C'py; can be found in the literature [10], [12] and
is given by

-1

CDM = 271'60 In

(®)

where
0.7528
Fi =6+ (2r —6)exp < — (30.666 X a) . ()]

Because the charge distribution is assumed to be uniform, (7) works
well if a/h = 1. The effects of nonuniform charge distribution are
investigated by comparing charge distributions on the plane for dif-
ferent widths of the trace. Approximate closed-form expressions for
nonuniform charge distributions on the trace are available in the lit-
erature [10], [14]. These nonuniform trace distributions were used to
calculate the charge distribution on the return plane, and the results
are shown in Fig. 8. The results show that the charge distribution
on the plane is a little greater directly below the trace for nonuniform
trace charge distributions; however, at observation points away from
the trace, little difference can be found, and a simple uniform distri-
bution of the trace charge can be used without a significant loss of
accuracy. This implies that (7) can be used to calculated the charge at
|z| > W/2, even for a wide trace (a/h > 1), when the board is much
wider than the trace (i.e., W > a).

Using the expression for charge distribution on the plane in (7), the
total excess charge on |z| > W /2 can be expressed as

Qex

o0
:2/
li w/2

~ —L/['CDM h [talf1 (2x+a> —tan~ ! (23U _ a)} dx
am w/e 2h 2h .

= 5o ()
~ - | < —tan

oW = () dx

s 2 2h

NM for W > h

aw (19)
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Fig. 9. Effects of board dimensions on the self-capacitance of the trace.

where [; is the length of the microstrip. Substituting (10) into (3), the
self-capacitance of the trace can be rewritten as

4hCpomly

C, = f(W,L) x W

an

B. Consideration of Board Dimensions

The effects of board dimensions on C, are represented by the
f(W, L) term in (11). Values of this term were numerically calcu-
lated for various geometries using FastCap. One set of numerical data
is illustrated in Fig. 9. A simple closed-form expression that fits the
data collected with the minimum root-mean-square error is given by

1.547

T In[1+3.845 (&)] 12

fW, L)

and is illustrated in Fig. 9. Combining (12) with (11), a closed-form
expression for C; is obtained and is given by

_ 6.189 i Comle

W (143845 (&)] =

3.29
2.63

2.34 2.5
2.06

2.50 33
2.00 2.7

0.0 5.0 1.7 1.64 2.4
4.0 0.0 1.3 1.32 2.0 1.87

Unit: 10" F.

NUM, numerical data; CF, closed-form expression.

IV. EVALUATION OF CLOSED-FORM EXPRESSION

To evaluate the effectiveness of the derived closed-form expres-
sion for the trace self-capacitance, boards with various trace and plane
geometries were analyzed. Numerically calculated capacitances were
compared with the closed-form results (13). For all configurations,
the trace was located away from the edges of the board so the distance
between the trace and the edges was at least ten times greater than
the trace height. Two of the test boards are illustrated in Fig. 10. The
self-capacitance of the trace was calculated for various lengths of each
segment.

Table I shows the calculated capacitances. Total closed-form capac-
itances were obtained by summing the contribution of each segment.
Numerical values were calculated using FastCap. For all configura-
tions evaluated, the error was less than 20% (<2 dB). The results also
show that the greater the offset of the trace from the edges, the smaller
the error. This level of accuracy is generally more than sufficient for
estimating the common-mode current on attached cables.

V. CONCLUSION

A closed-form expression for estimating the self-capacitance of a
PCB trace, C;, above a solid plane was derived. The value of C; was
found to be relatively independent of the dielectric permittivity of the
substrate for typical configurations. The derived expression can be used
for traces that are located away from the edges of the board by at least
ten times the height above the plane. For the tested configurations,
this expression provided capacitance values within 20% of the values
obtained from a 3-D static field modeling code.
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The derived closed-form expression in this article can be used to
estimate the voltage-driven common-mode current due to microstrip
traces on PCBs [6]. Using the closed-form expression, calculations
can be performed more quickly and easily than they can be using a
field modeling code. The closed-form expression also provides insight
regarding the effects that various geometric parameters have on the
voltage-driven emissions from PCBs.
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Long Range Propagation of Lightning Pulses Using
the FDTD Method

Jean-Pierre Bérenger

Abstract—The numerical dispersion of the finite-difference time-domain
(FDTD) method is a serious drawback in view of computing long range
propagation of lightning pulses in the Earth-ionosphere waveguide. In this
paper, it is shown that most of this dispersion can be removed by postpro-
cessing the FDTD results. This makes possible the propagation of lightning
pulses up to thousands of kilometres with reasonable computational times.

Index Terms—TFinite difference, finite-difference time-domain (FDTD),
low frequency (LF), lightning, propagation, very low frequency (VLF).

1. INTRODUCTION

In recent years, the finite-difference time-domain (FDTD) method
[1], and [2], has been applied to the propagation of waves in the Earth-
ionosphere waveguide at frequencies ranging from extreme low fre-
quency (ELF) to low frequency (LF). This numerical technique is used
in [3] and [4] for predicting VLF-LF radio links in a frequency band
from 15 to 70 kHz. In [5], it is applied to the propagation of ELF-VLF
lightning pulses over a 1000 km ground path. Finally, as discussed
in [6] and [7], it allows the propagation of ELF waves to be computed
around the entire Earth.

In this paper, it is shown that the FDTD method can also be used for
propagating lightning pulses over paths of several thousands kilometres
in length. From this, the contribution of lightning to the natural noise
can be computed up to large distances from the lightning location.
This will permit the FDTD method to be used in further investigations
of the natural noise in the frequency band of interest for VLF-LF
communications.

Numerical dispersion, which is a general drawback to the FDTD
method [1], is emphasized in VLF-LF propagation because the ratio
of the path length to the wavelength is quite large at the frequen-
cies of interest. From this, time domain pulses are strongly distorted
as they propagate in the FDTD grid. It is shown that this drawback
can be widely reduced by means of a simple method that consists
of post-processing the FDTD results as if the propagation were one-
dimensional. This allows the propagation of lightning pulses to be
computed up to distances larger than 5000 km with reasonable FDTD
cell sizes; i.e., with reasonable computational times.

II. THE FDTD METHOD FOR COMPUTING PROPAGATION OF PULSES
IN THE EARTH-IONOSPHERE WAVEGUIDE

The computational code used in this paper has been described in
detail in [3] and [4] for the propagation of radio waves. Only minor
changes have been introduced to account for the time domain aspect of
the pulse that replaces the sinusoidal wave.

Maxwell’s equations are solved in a two-dimensional system of
spherical coordinates whose origin is the center of the Earth. The FDTD
scheme [4] can account for the natural magnetic field. This scheme is
basically a second order Yee scheme [1], with the adjunction of an
auxiliary differential equation within the anisotropic ionosphere [4].

As with radio waves, Maxwell’s equations are solved only within a
moving domain (Fig. 1) so as to reduce the computational time. Some
changes have been introduced to the settings of this domain. First, its
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