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Abstract—A hybrid formulation is presented, which combines
the method of moments (MOM) with the edge-based vector
finite element method (FEM) to solve electromagnetic radiation
problems from structures consisting of an inhomogeneous dielec-
tric body of arbitrary shape attached to one or more perfectly
conducting bodies. While either method alone fails to model
these structures efficiently, a combination of both finite element
and moment methods provides an excellent way to solve these
problems. The FEM is employed to handle the interior domain
of inhomogeneous dielectric bodies and the method of moments
is used to develop surface integrals that relate the field quantities
on boundary surfaces with the equivalent surface currents. These
integral equations are then coupled to the finite element equations
through the continuity of the tangential magnetic fields across the
hybrid boundaries.

Index Terms—Electromagnetic modeling, electromagnetic in-
terference, finite element method, method of moments.

I. INTRODUCTION

NUMERICAL electromagnetic modeling (EM) has had a
major impact on the way that high speed circuits and

systems are designed. EM modeling codes are used to design
everything from antennas to high-frequency circuits to compo-
nents. There are a large number of computer programs avail-
able for analyzing various electromagnetic problems. These
programs can be characterized by the technique they use to
solve the complex equations associated with EM field analysis.

Surface integral techniques (e.g. the method of moments
(MOM’s) or the boundary element method) solve Maxwell’s
equations in their integral form. Surface integral techniques
are very efficient at solving open radiation problems involving
long thin wires and/or conducting surfaces. These techniques
are often used to model resonant antennas or large resonant
structures such as ships or aircraft. However, configurations
with complex, arbitrary geometries (particularly those with
inhomogeneous dielectrics) are not readily modeled using
surface integral techniques.
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Numerical electromagnetic modeling techniques based on
the solution of Maxwell’s equations in their differential form
are very good at modeling complex geometries with in-
homogeneous dielectrics. Partial differential equation (PDE)
techniques divide the region under analysis into elements or
cells. Each cell can have it’s own electromagnetic properties.
The finite element method (FEM) and the finite difference time
domain method are examples of PDE techniques.

The primary disadvantage associated with PDE techniques
is their inability to efficiently model large unbounded radiating
structures. The entire volume under analysis must be meshed
and it is necessary to employ absorbing boundary elements
at the outer surface of the meshed region in order to model
unbounded geometries.

Since surface integral techniques excel at modeling the
types of problems that PDE techniques do not model well
and vice versa, several researchers have proposed combining
a surface integral technique and a PDE technique in the same
software [1]–[7]. These hybrid approaches take advantage
of the strengths of each numerical technique in order to
solve problems that neither technique alone could model
efficiently.

This paper describes the development of a new hybrid
numerical electromagnetic modeling technique. This work
was motivated by the need to model electromagnetic in-
terference (EMI) source configurations. EMI sources often
contain regions that are highly complex and inhomogeneous
[e.g. printed circuit boards (PCB’s)] and regions with large
conducting surfaces and/or wires (e.g. enclosures and cables).
Since neither a surface integral technique nor a PDE technique
alone can model this type of configuration effectively, a hybrid
approach is required.

EMI source configurations usually involve a direct elec-
trical connection between a highly inhomogeneous source
region and a region with large conducting surfaces. Hybrid
approaches previously described in the literature do not allow
the continuity of current flow between the conducting surfaces
and the inhomogeneous source region.

The approach described here combines a FEM with a
moment method technique resulting in an algorithm that can
use each technique to analyze the portions of the problem
to which it is best suited. The new hybrid technique permits
sources to be located anywhere within or outside of the finite-
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Fig. 1. Geometry of an inhomogeneous dielectric body attached to a conducting body: (a) the original problem, (b) its external equivalence, and (c)
internal equivalence.

element region and it permits conducting surfaces to lie on
or penetrate the boundary between the moment method and
finite element regions.

For the finite element discretization, tetrahedral elements are
chosen and an edge-based basis function is used. For the MOM
surface integrals, the dielectric and/or conducting bodies are
subdivided into triangular elements corresponding to the faces
of the tetrahedrons. A triangular patch basis function devel-
oped by Raoet al. [11] is used to represent the equivalent cur-
rents at the boundaries. A unique feature of these basis func-
tions is that they do not contain fictitious line or point electric
charges that (especially at low frequencies) may be the domi-
nant contributor to the electric field and may introduce serious
errors. Also, the junction basis functions described in [21] are
used to couple the dielectric bodies to the conducting wires.

This paper is organized as follows. Section II describes the
theoretical formulation of the hybrid FEM-MOM approach.
Section III explains how the FEM and MOM formulations
are discretized and coupled. In Section IV, junction basis
functions are added to the formulations allowing conduc-
tors to be modeled on the boundary between the FEM and
MOM regions. Numerical results are presented in Section V.
Section VI summarizes the primary results and conclusions
that can be drawn from this work.

II. FORMULATION

In this section and the following three, we present the
hybrid FEM-MOM formulation. Our goal is to develop the

formulation for the structure shown in Fig. 1, where a conduct-
ing body touches the dielectric structure and extends beyond
the dielectric-conductor interface. However, we first develop
the formulation for the simpler structure, shown in Fig. 2,
in order to more clearly demonstrate the application of the
equivalence principles. The formulation for the structure in
Fig. 1 is a slight modification of that for the structure in Fig. 2.
This modification will be discussed in Section IV-A. Fig. 2
shows an inhomogeneous dielectric structure partially covered
by a conducting body. The interior region of the dielectric
structure is characterized by [ ] and the exterior
region by and are the free space permeability
and permittivity, respectively. The relative permeability is
assumed to be constant in the dielectric structure. Since the
dielectric region contains different materials, is used to
denote the spacial dependence. The structure can either be
illuminated by an incident field ( ) or be excited by a
source internal to the dielectric region. The formulation to
be derived in the following subsections is generalized for
both types of excitations. By introducing the equivalence
principle, we separate the entire region
into the two subregions shown in the lower portion of Fig. 2.
The region external to the dielectric is denoted by and
the region inside the dielectric is denoted by. The re-
gions are coupled through proper boundary conditions. For
the interior region, the FEM is applied where the unknown
boundary information is represented by equivalent electric
currents and the tangential electric field. For the exterior
region, the method of moments is applied and a set of
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Fig. 2. Geometry of an inhomogeneous dielectric body partially covered by conductors: (a) the original problem, (b) its external equivalence, and (c)
internal equivalence.

surface integral equations are developed for dielectric and
conducting surfaces.

A. Finite Element Formulation

To derive the finite element formulation for the interior
region , we start with two basic Maxwell’s equations that
govern the time-harmonic EM fields in this region

(1)

(2)

where and are internal electric and magnetic sources
respectively. From these equations, it is possible to eliminate
one field variable and obtain acurl curl equation in terms of
the other field variable

(3)

(4)

Both (3) and (4) involve second derivatives. We can reduce
them to single derivative expressions by constructing their
weak forms. Multiplying (3) by a set of realvectorweighting
functions and integrating over the finite-element domain

we obtain

(5)

Using Stratton’s first theorem

(6)

and letting and yields
a weak form [22] of (5)

(7)
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This equation gives a relationship between the electric field
inside the inhomogeneous medium and the tangential magnetic
field at the boundaries.

B. Method of Moments Formulation

To derive the MOM formulation for our hybrid problem, we
consider the external equivalence of Fig. 2. The total tangential
components of electric field on surfacesand are obtained
from the following surface representation:

(8)

(9)

Since we use the electric field integral equation for our MOM
formulation, the electric field (after dropping the subscripts
and superscripts representing the region) due to the electric
current and the magnetic current is given by

(10)

where the vector potential functions and and the scalar
potential function are defined by

(11)

(12)

(13)

for on and

(14)

(15)

for on The vectors and are the source and
observation points, respectively, and

(16)

is the free space Green’s function.
The equivalent electric and magnetic currents on surfaces
and are related to the total electric and magnetic fields

on the surface

(17)

(18)

(19)

where is an outward unit normal on surfaces shown in Fig. 2.
The equivalent electric charges are related to the currents by
the continuity relations

Using (9)–(19) we obtain

(20)

(21)

These equations provide a relationship between the unknown
tangential magnetic field quantities and the unknown
electric field quantities on the boundary surfaces
and

III. D ISCRETIZATION

In this section, the discretization of both the finite element
weak form and the MOM surface integrals are described.
Linear tetrahedral elements have been chosen to be the basic
building blocks in the finite element discretization. Triangular
surface patches have been used to discretize the MOM sur-
faces. Prior to discretization, it is necessary to select suitable
basis functions to expand the unknown quantities in the
formulation.

A. Choice of Basis Functions

To avoid the possible occurrence of nonphysical solutions,
a class of tangentially continuous finite “edge” elements, and
consistent boundary surface elements are used. There are a
number of different edge elements reported in the literature.
For the interior domain of volume , we chose the vector
basis functions to be those proposed in [16]. They are defined
within a tetrahedron and are associated with the six edges of
the tetrahedron. Assuming the four nodes of a tetrahedron are
numbered in a manner consistent with the left-hand rule and
the edges are numbered as shown in Table I and Fig. 3, then
the vector basis function associated with theth edge of that
tetrahedron is defined as

in the tetrahedron
otherwise

(22)

with

(23)

(24)

where and

volume of the tetrahedron

unit vector of theth edge

length of the
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TABLE I
NODE AND EDGE NUMBERING SCHEME OF A TETRAHEDRON

Fig. 3. Edge definition of a tetrahedron.

and and denote the location of the
and nodes, respectively. A more detailed explanation
of the basis function can be found in [17].

Using these basis functions, the electric field in the
interior region can be expanded as

(25)

where is a set of unknown complex
scalars.

The expansion functions for the unknowns on the surface
and are chosen to be those proposed in [11], which are

given as

in

in

otherwise

(26)

in

in

otherwise

(27)

where and are two adjacent triangles with the nth edge
common, is the length of the th common edge, is the
area of the triangle and are the position vectors of the
node that are not related to theth edge in triangle Fig. 4
shows the parameters associated with the basis function
The reader may refer to [11] and [18] for a detailed discussion
on various properties of this basis function.

Using these basis functions, the unknown surface tangential
field can be expanded as

(28)

(a) (b)

Fig. 4. (a) Coordinates of common edge associated with two triangles. (b)
Geometry showing normal component of basis function at edge.

It can be shown that, on the boundary surface S, the basis
functions and are related by

(29)

A description of this relationship can be found in [20, ch. 8].

B. Discretization of FEM Weak Form

To discretize the finite element interior region, we divide
the volume into several tetrahedral elements and use the
volume basis function for expanding the state variable

in this region, and the surface basis function for
expanding the intermediate quantity on the boundary
surface

(30)

(31)

If we use the Galerkin procedure for discretizing the weak
form of the formulation and assume the weighting functions
to be the same as the expansion functions, then the discretized
version of (7) becomes

(32)

The elements of and are

(33)

(34)

(35)

where is a sparse, banded, and symmetric matrix
and and are column vectors. Here,
is the total number of edges. The matrix is a sparse and
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symmetric matrix, where only the bottom-right
submatrix contains nonzero elements. is the total number
of edges on the dielectric boundary. The unknown electric
field vector consists of all field expansion coefficients
with respect to the element edges interior to the finite element
region.

C. Discretization of the MOM Surface Integrals

To discretize (20) and (21), we use (30) and (31) to expand
the field quantities and respectively. Then
testing these equations with the surface basis function
and integrating over the boundary gives

(36)

(37)

The elements of the and matrices and the vector are

(38)

(39)

(40)

where and are submatrices with di-
mensions
and respectively. and are the total number
of edges on and respectively.

Equation (39) involves a singularity when the source and
observation points are located on the same surface patch.
For such cases, we may evaluate the singularity contribution
analytically [20, ch. 9], and doing this, (39) can be written as

—–

(41)

where the bar across the integral indicates that the singular
point has been removed. With the singularity removed, (36)
and (37) become

(42)

(43)

which can be written more concisely as

(44)

(45)

where and

IV. COUPLING

After partitioning the elements of matrices and in
(7) for inner and boundary edges, and setting the tangential
field on the conducting walls to zero, we obtain the following
form of the finite element equation

(46)

where subscripts and refer to interior and boundary edges
in the finite element volume , respectively. Prior to coupling
this equation with the MOM integrals, it is necessary to define
the location of the source with respect to the volumeThe
following two cases can be considered.

Case I) The source is outside of: For this case, the last
term in (46) is eliminated and the new equation becomes

(47)

From (45), we obtain

(48)

Substituting the value of from (48) into (44) one obtains

(49)

Solving for yields

(50)

where and
In matrix form

(51)

This equation can easily be coupled to the finite element
equation (47). The resulting hybrid matrix equation becomes

(52)

where and
Once the solution of (52)

is available, one can easily obtain and from (50) and
(48), respectively.

Case II) The source is inside : In this case, (44) and (45)
are simplified as

(53)

(54)

From (54)

(55)
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Fig. 5. Dielectric-conductor junction.

Fig. 6. Geometry of a dielectric box covered by two conducting plates placed
on the top and bottom surfaces.

Substituting the value of from (55) into (53) one obtains

(56)

Solving for yields

(57)

where and
In matrix form

(58)

This equation can easily be coupled to the finite element
equation (46). The resulting hybrid matrix equation becomes

(59)

where Once the solution of
(59) is available, one can easily obtain and from (55)
and (57), respectively.

A. Extended Hybrid Method

Now we extend the method developed in the previous
sections to allow the conducting body to extend beyond the

(a)

(b)

Fig. 7. Comparison for far fields: (a) 20log
10

jE� j versus� at � = 0�. (b)
20 log

10
jE�j versus� at � = 90�.

dielectric surface, as shown in Fig. 1. Using the equivalence
principles, we obtain the interior and exterior equivalence
shown in Fig. 1(b) and (c). The method of handling the
interior region is identical to that described in the previous
sections. However, the exterior equivalence is handled in a
slightly different fashion. In this case, a “2-way” junction
basis function [21] is used to represent the equivalent surface
currents at dielectric-conductor junctions. For the type of
junction shown in Fig. 1, two basis functions represent two
types of current flowing across each junction edge. This
is shown in Fig. 5. The basis function represents the
component of current that flows from the external conductor
surface to the exterior surface of the dielectric-conductor
interface. The basis function represents the current com-
ponent that flows into the dielectric body from the external
conductor surface. These two currents are related in such a way
that they obey Kirchhoff’s current law and maintain current
continuity at the junction. Since the current represents
the dielectric equivalent current at the junction, this current
is set equal to the interior equivalent current corresponding
to that edge.

V. RESULTS

In this section, we present some numerical results obtained
using the hybrid FEM-MOM technique described in the pre-
vious sections.
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(a)

(b)

(c)

Fig. 8. Geometry of a center-fed dipole antenna placed on a dielectric box: (a) side view, (b) top view, and (c) front view.

Fig. 9. Dipole current distribution at frequency 300 MHz.

A. Scattering by a Dielectric Body Partially
Covered by a Conductor

As a first example, we consider the electromagnetic scat-
tering from a 0.1 0.1 0.1 dielectric box (
4.0) covered by two conducting plates of dimension 0.1
0.1 . The conducting plates are placed on the top and
bottom surfaces of the dielectric cube. The volume of the
structure is discretized into 1280 tetrahedrons and the number
of unknowns in the final hybrid matrix is 1684. The structure
is illuminated by a normally incident plane wave as shown in
Fig. 6. The scattered fields are plotted in Fig. 7 and compared
with the results available in [24]. As is evident from the
figures, the two solutions compare reasonably well.

B. Center-Fed Dipole Antenna Placed on an Air Dielectric Box

In this example, a center-fed dipole is placed on an air
dielectric box with 1.0. This example demonstrates

Fig. 10. Dipole current distribution in the presence of a dielectric box.
Frequencyf = 300 MHz.

the ability of the proposed hybrid method to analyze the
current behavior near the dielectric-conductor junctions. The
configuration is shown in Fig. 8. Two cases are considered
for this demonstration. In the first case, a center-fed dipole
is placed on an air dielectric box with 1.0. The dipole
is excited by a voltage source with magnitude 1 volt/meter.
The length of the dipole is 47 cm and the width of
the dipole is . The dimensions of the dielectric box are

and it is placed cm away from the
center of the dipole. To discretize the model, the volume of
the dielectric is divided into 480 tetrahedrons and the dipole
is divided into 128 triangular patches. Theoretically, this box
will have no effect on the current distribution along the dipole.
Fig. 9 shows hybrid results for the current distribution at 300
MHz. For comparison, the current distribution at the same
frequency obtained with a MOM formulation (no dielectric)
is also provided. Very good agreement is obtained between



312 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 39, NO. 4, NOVEMBER 1997

Fig. 11. Geometry of a simple PCB model.

the two results. Note that the hybrid method determines the
equivalent currents exterior to and on the boundary of the
finite element region. In the region where the dielectric box
contacts the conductor surface, the hybrid method solves for
the current on the topside of the conductor only. Currents on
the underside of the conductor are part of the interior problem.
Fig. 9 shows only the equivalent current values that correspond
to actual currents. The hybrid approach could be used to
find the actual currents on the conductor in the region where
it contacts the dielectric surface by meshing the conductor-
dielectric interface and solving for these values explicitly. This
additional complexity is unnecessary however, since all of the
interior and exterior field quantities can be determined from
the equivalent currents on the boundary surfaces.

C. Center-Fed Dipole Antenna Placed
on a Lossless Dielectric Box

In this example, the dielectric box used in the previous
example is filled with a lossless dielectric material ( 4.0).
All other specifications are kept unchanged. This example
illustrates the current behavior near the dielectric-conductor
junction. The current distribution on the dipole is plotted
in Fig. 10. For comparison, results from the MOM surface
formulation [12] are also presented. The agreement between
the two results is good.

D. PCB Dipole

The last example is the dipole antenna structure shown
in Fig. 11. The model consists of a small printed circuit
board (PCB) source that drives two quarter-wavelength traces.
The primary difference between this configuration and those

in the previous examples is that the source is located in
the finite element region. When the relative permittivity of
the dielectric in the finite element region is set to 1.0, the
configuration is a half-wave dipole. The current distribution
calculated using the hybrid code is shown in Fig. 12. For this
calculation, the volume of the dielectric slab was divided into
1440 tetrahedrons and each off-board trace was divided into 48
triangular patches. The driving frequency was 533 MHz. Also
plotted in Fig. 12, is the current distribution on a cylindrical
dipole antenna with an equivalent wire radius [page 338, [23]]
calculated using the numerical electromagnetics code (NEC).
Fig. 13 shows the current distribution when the permittivity of
the dielectric was set to 10.0. The results are compared to the
currents calculated for the same configuration using the IBM
Electromagnetic Simulator [8]. There are small differences in
the peak current amplitude due to differences in the way that
the voltage sources are implemented in the two models. In the
hybrid model, voltage sources in the finite element region are
implemented by forcing the electric field at one edge of an
element. Voltage sources in the moment method region (and
the voltages sources impressed by the IBM EM simulator) are
applied to the face of an element. Field distributions in the
vicinity of the source can affect the input impedance of the
radiating structure.

VI. CONCLUSION

In this paper, a FEM-MOM hybrid method is presented
and has been applied to the analysis of dielectric structures
attached to conducting bodies. The hybrid method is capable
of modeling structures with complex conductor-dielectric re-
gions that would be difficult or impossible to model with a
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Fig. 12. Current distribution along the dipole length.�r = 1.0. Frequency
= 533 MHz.

Fig. 13. Current distribution along the dipole length.�r = 10.0. Frequency
= 533 MHz.

moment method approach. The method also has advantages
over FEM’s employing absorbing boundary conditions. The
fictitious boundaries, where the FEM interior regions couple
to the MOM exterior regions, can be placed very near or
directly on the surface of the radiating structures. The finite
element analysis may be applied to highly inhomogeneous or
complex regions of the problem while modeling long wires
or large metal surfaces using the method of moments. Also,
the incorporation of the junction basis functions to couple
dielectric bodies to external wires and surfaces makes it
possible to analyze structures where the wires or surfaces
contact or penetrate the boundary between the two regions.

The technique described in this paper has been implemented
and validated by modeling a number of simple structures and

comparing the results obtained to theory and to results obtained
using other numerical approaches.
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