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Calculating Static Field and Charge Distributions
Using a Full-Wave Boundary Element Method
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In order to model configurations driven by broadband sources (e.g., digital signals), it is desirable to employ a full-wave modeling tech-
nique that works well at both high and low frequencies. This paper describes a method for improving the low-frequency performance
of existing full-wave boundary element techniques and demonstrates how the full-wave model can be used to solve static electric field
problems. The new approach performs linear transformations on the moment matrix utilizing an LU decomposition and matrix recon-
struction. It does not require special basis functions and is relatively easy to implement in existing boundary element codes. Examples
presented demonstrate how modified full-wave software is capable of calculating static field and charge distributions for a variety of
configurations using the same algorithms and the same input used to do high-frequency calculations.

Index Terms—Charge distribution, full-wave method.

1. INTRODUCTION

OST full-wave numerical electromagnetic modeling
Mtechniques lose accuracy and become unstable at very
low frequencies. These instabilities can be explained in terms of
the natural Helmholtz decomposition of Maxwell’s equations
or attributed to the imbalance between the vector and scalar
potentials. Various methods have been developed to overcome
these instabilities, such as using loop-tree or loop-star formula-
tions [1]-[4] or switching to static or quasi-static methods.

Loop-tree or loop-star formulations generally involve the
construction of special basis functions that depend on the
geometry and the mesh of the model. An imbalance between
vector and scalar potential terms remains even if the numerical
error is reduced. These formulations generally require software
that is tailored to specific types of geometries and are not well
suited to general purpose modeling codes.

Many static or quasi-static methods, such as those used
to calculate the capacitance of conductors, solve Laplace’s
equation subject to appropriate boundary conditions [S]-[7].
These methods are based on integral equations, in which the
electric potential and charge distribution are related by free
space Green’s functions. The electric charge densities are deter-
mined by forcing the potential function to satisfy the prescribed
boundary conditions. Static and quasi-static methods are gen-
erally incompatible with high-frequency analysis, since they
do not adequately model the interaction between time-varying
electric and magnetic fields.

Recently, a technique was introduced for extending the
frequency range of full-wave boundary element codes by per-
forming linear matrix transformations on the vector and scalar
components of the impedance matrix [8], [9]. This technique
allows accurate field calculations to be made at frequencies
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where the geometries being analyzed are many orders of
magnitude smaller than a wavelength. This paper more fully
explains this technique and extends it to allow static electric
field problems to be solved using this approach.

II. FULL-WAVE MODEL FORMULATION

For a closed perfect electric conductor (PEC) surface S, the
electric field integral equation (EFIE) is usually written as [10]

inc _ jknJ(r/)GO(r7 I‘/) /
E (I‘) - /S [—j%V’OJ(r’)V'GO(r,r’) dS (1)
where k is the wave number and 7 is the intrinsic impedance. J
is the equivalent surface current density, and
e—dklr—r']

Go(r,7') @)

Arlr — 7|
is the free space Green’s function. The integral in (1) is a
principal-value integral in which the singularity at r = 7/ is
excluded. The well-known Rao—Wilton—Glisson (RWG) basis
functions [11] are often used to expand the surface current
density as

(2a)

T=>"Jufn

By applying the method of moments, (1) is formulated into a
matrix equation as

CeJ=F (3a)
where J = [J,,] is a vector of the unknown surface current
densities, F = [F},] is an excitation vector, and C = [Ciyy]

isan N x N impedance matrix. C is composed of two parts,
C; and Cs, corresponding to the left and right terms inside the
brackets in (1)

[Cl + CQ] oJ=F. (3b)
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Comparing (3b) to the mixed-potential form of the scattered
electric field

E* = —jwA - Vo (G))
it is apparent that C; corresponds to the magnetic scalar poten-
tial term —jwA and C, corresponds to the electric scalar po-
tential term —V ®.

Solving (3) yields the current density J. The charge density
ps 1s related to the current density by [12]

V-J

_jw

Ps &)

where ps must be finite, suggesting that V - J must be propor-
tional to w as the frequency goes to zero. ps can be expanded in
terms of the basis functions as

ps = ;_i (v-ZJnfn) = ;—jZJn(V-fn). (6)

III. LU RECOMBINATION METHOD

Full-wave models based on this formulation experience in-
stability at low frequencies when using standard basis functions.
This can be seen from the mixed potential expression of the field
(4). The vector and scalar potentials do not scale with frequency
in the same way. At low frequencies, the magnetic vector poten-
tial contributions to the elements of the impedance matrix are
insignificant compared to the electric scalar potential contribu-
tions. The dominant part, i.e., the scalar potential contribution,
depends only on the surface divergence of J [12]. Knowledge of
V - J is not sufficient to determine J, because the integral over
closed loops is zero [13]. This leads to the failure of the E-field
solution at low frequencies. Mathematically, C; is much smaller
than C, at low frequencies, and C is singular when there are
closed loops in the mesh [8]. So the impedance matrix at low
frequencies is nearly singular, and the solution is sensitive to
small numerical errors resulting from the cancellation of large
numbers when integrating the scalar potential over closed loops.

An LU recombination method was developed to overcome
this difficulty [9]. The LU recombination method applies the
following decomposition to the impedance matrix C:

C=C;+C,=LDL + LUL/

_|Li O Dyii Dya

B |:Ldi de} <[D1di DmJ

[ Dsii Daia ] > [LZL Ly } (7)
Dogi Do2aa 0 L),|°

In (7), L is a lower triangular matrix resulting from the LU
decomposition of Cs. D1 and D5 are matrices such that C; =
LD;L’ and C, = LDsL’. The prime indicates the transpose
of the matrix. Cs is not a full rank matrix. Linearly indepen-
dent rows in Cy are grouped together, while dependent rows
are moved to the end of the matrix. The same rearrangement is
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applied to the whole C matrix so that L, D, and D5 can be
partitioned as in (7), where the subscript ¢ means independent
and d means dependent.

The LU recombination method modifies Lgy; according the
linear relationship between rows of Cs. At the same time, it sets
Dyg4, Doyi, and Do,y to zero. The matrix equation to be solved
by the LU recombination method is then

[Dm‘-l-Dm‘ Dlid} [Jﬂ _ [Ff} )
D1y Diw | |5 | Fy
where
B L
and
F:- _ r\—1
5] -a@E 10

where the superscript » means modified. Previous work [9]
showed that the LU recombination method is capable of solving
for the low-frequency currents in simple circuit configurations
with good accuracy.

IV. FULL-WAVE MODEL AT ZERO FREQUENCY

As the frequency w — 0, the EFIE (1) reduces to
inc _ K Nor / 1 / 1
En(r) = / (319 36V Go(r. )] S 1)
s
or in terms of the scattered field

Esca(T) — /S [J%V/ ° J(’I")V’GU(T, r’):| ds’. (12)

The surface charge density is related to the surface current den-
sity through the equation of continuity (5), and

V'Go(r,7') = R—(l + jklr — 1)) e Ik =T']

Arc|r — 7|2 (13)

where R is the unit vector along (r — /).
Utilizing (5) and (13), (12) can be written as

E*“(r) :/S [jiV'oJ(r’)V'Go(r./r')} ds’
[ [E (T Qe ]
s

5 Jjw Ac|lr — 7|2
1 1+ 5klr—7' . al -
_ / —p(’l'l)( +Jk|’l‘ ’; |)e—jk\r—r | RdS' (14)
s|¢€ Ar|r — 7|

At very low frequencies, i.e., & — 0, (14) can be simplified to

sea = A » / __qpinc
E (T)_./s [4WE|T_T,|2]RdS_ E™(r). (15)

Equation (15) is the exact formula for the static electric field
due to a distribution of charges. If the unknown charge density
is represented by the divergence of RWG functions, as in (6),
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Fig. 1. Dipole antenna geometry.

and (15) is tested using RWG functions, the resulting moment
method matrix equation is
Cy-J=F. (16)
The solution to (16) as the frequency approaches zero is the
solution to the electrostatic problem. However, (16) cannot be
solved directly because Cs is singular when closed loops exist.
Note that for RWG basis functions, the unknown current den-
sity is defined on edges while the unknown charge density is de-
fined on triangles. Since the number of edges is larger than the
number of triangles, the static formulation is over-constrained
and there are redundant rows in the C5 matrix. The LU recom-

bination method can be used to solve this problem. Applying
LU recombination to solve (16), (8) reduces to

o) i = ]
0 0] [Jy F, |
This provides the solution for J7, and J; can be set to zero.
A solution for the original unknowns is then obtained using (9).
This is not the correct solution for the total current distribution
because the circulating part is neglected. However, this solution
provides enough information to calculate the charge distribution

using (6). Moreover, if the coefficient jw is moved from the
impedance matrix to the unknown, (16) becomes

a7

) J
[jwCs] - {j—] =F. (18)
This equation can be evaluated at zero frequency. The solu-
tion can then be employed to calculate the charge density using
(6). Thus, with the help of LU recombination, the full-wave
model can be applied directly to solve zero-frequency problems.

V. NUMERICAL RESULTS

Consider the dipole configuration shown in Fig. 1. The dipole
is composed of two conducting patches and a strip connecting
them. The dimensions of the patches are W, x W5 and the strip
is L x H. A voltage source is placed in the middle of the strip
to raise the potential between the two patches to 1 V. The static
charge density was calculated and the mutual capacitance ob-
tained using a full-wave moment method code with LU recom-
bination. The results are compared to those obtained using a
static field solver, Q3D [15]. Table I lists the mutual capacitance
calculated for dipoles with different dimensions. It also lists the
difference between the full-wave and static field solver results.

It is worth noting that all metals are modeled as perfect elec-
tric conductors with zero thickness in the full-wave model. The
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TABLE 1
CAPACITANCE OF THE DIPOLE ANTENNA

Wy x W LxH F'uu_ Statie Difference Source %
(mm) (mm) wave | solver %) charge of
(rF) (rF) (pF) total
50x50 100x10 | 1.667 | 1.953 14.6 0.1604 8.2
50x70 60x10 1.840 | 2.115 13.0 0.1610 7.6
50x50 100x2 1.377 | 1472 6.4 0.0484 33
50x75 50x2 1.652 1.769 6.6 0.0489 2.8
Voltage
/ source
Fig. 2. Parallel plate geometry.
TABLE 11

CAPACITANCE OF PARALLEL PLATES—10-mm SPACING
(Q3D VALUE: 42.0 pF)

Mesh Edge mesh #of Capacitance | Difference
type density triangles (pF) (%)
SC3_u 20x 20 1656 37.8 10.0
SC3_b 20x20 1694 38.0 9.52
SC5_u 30x30 3692 38.9 7.38
SC5 b 30x 30 3708 39.0 7.14
SC7_b 32x32 4194 393 6.43

source divides the structure into two conductors although there
is no distance between them. In the static solver model, how-
ever, the metal has a nonzero thickness, and there is a small gap
of 0.1 mm between the two conductors, so the charge distribu-
tion near the source is slightly different in the two models.

Table I also shows the charge on the elements nearest the
source in the full-wave model. This charge makes a relatively
significant contribution to the total capacitance. Changing the
size of the patches does not affect the percentage of this charge
or the difference between the two models. This suggests that the
source is the primary cause for the discrepancy between the two
results. In this example, the difference is reduced if a narrower
source strip is used.

The second example is a parallel plate capacitor as shown in
Fig. 2. The size of the plates is 200 mm X 200 mm. The distance
between them is 10 mm. The capacitor is charged to 1 V by a
voltage source between the plates as shown.

Table II summarizes the capacitance calculated by the
full-wave model, when different meshes were employed. The
results are compared to the capacitance calculated using the
static solver. For mesh type SC3_u, for example, the plate
has 20 elements on one edge of the plate, and there are a
total of 1656 triangular elements in the mesh. The calculated
capacitance is 37.8 pF. The error is about 10% compared with
the value obtained using the static solver.
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TABLE III
CAPACITANCE OF PARALLEL PLATES— 40-mm SPACING
(Q3D VALUE: 14.536 pF)

Mesh Edge mesh # of Capacitance Difference
type density triangles (pF) (%)
SC3_u 20x 20 1666 13.38 7.72
SC3_b 20x20 1688 13.54 6.84
SC5_u 30x 30 3748 13.643 6.14
SC9_b 60 x 60 2604 13.644 6.14
Z4 il -
{ X *
IAAv.
(@ (®)

Fig. 3. Parallel plate meshes: (a) SC5_u. (b) SC9_b.

The third example is also a parallel plate capacitor with
200 mm x 200 mm plates spaced 40 mm apart. A total of 5082
triangular patches were used by the static solver to obtain an
accuracy of 0.1%. The results obtained using the full-wave
model are listed in Table III, as well as the percent difference
compared with the static solver results.

The results in Tables II and III demonstrate that the mesh
geometry can be very important. A full-wave modeling code
generally cannot afford to employ as many elements as a static
field solver. Therefore, it is important to structure the mesh
wisely.

Note that the results differ when using different types of
meshes, even though the total number of elements is almost the
same. In the meshing types, “u” indicates that the size of the
elements is about the same, while “b” means the mesh is biased
so that the elements near the edges are smaller. Fig. 3 compares
the meshes SC5_u and SC9_b in Table III at one corner of the
plate. The size of the element away from the edge in SC9_b
is more than twice that in SC5_u, but the size of the element
near the edge in SC9_b is about half of that in SC5_u. SC9_b
yields a better result even though it employs a smaller number
of elements.

VI. CONCLUSION

This paper presents a method to calculate static electric fields
and charge distributions using full-wave boundary element soft-
ware. An LU recombination approach is used to remove linearly
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dependent rows from the discretized scalar potential term of
the EFIE. A considerable advantage of this method lies in the
fact that neither special models, such as those used in the static
and quasi-static methods, nor special basis functions, such as
loop-tree basis functions, are necessary. The same models and
methods used to perform a high-frequency analysis can be em-
ployed at arbitrarily low frequencies.
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