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Perfectly Matched Layers Used as Absorbing

Boundaries in a Three-dimensional FDTD Code
David M. Hockanson

Abstract

The Finite-Di�erence Time-Domain (FDTD) method is a powerful tool for modeling open region problems. However, current
methods of mesh truncation, such as Mur absorbing boundaries, enlarge the computational domain undesirably and provide
nominal accuracy. The development of a new absorbing boundary is reviewed which increase the e�ectiveness of the FDTD
analysis method. The Perfectly Matched Layer (PML) absorbing boundaries developed by Berenger provide an order of magnitude
increase in accuracy compared to Mur absorbing boundaries. The PML boundaries function independent of frequency and angle
of incidence. PML requires a smaller extension of the computational domain than Mur absorbing boundaries. However, the
computation time necessary for calculating �eld values in the PML boundary is higher than the time required for free-space �eld
computations. The PML absorbing boundaries are implemented in the UMR FDTD code and comparisons between results using
Mur absorbing boundaries and PML absorbing boundaries are made for two geometries.
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I. Introduction

T
HE Finite-Di�erence Time-Domain (FDTD) analysis method is well documented and is not discussed here. The

reader is referred to [1], [2], and [3] for information on FDTD.

The FDTD analysis method models open region problems well, provided that the computational domain can be

truncated with minimal reections. Early attempts at absorbing boundaries involved placing lossy media far from all

scatterers. However, this method was very ine�cient as it required very thick layers and the absorbing characteristics

of the media were only e�ective for normally incident waves. More accurate techniques, such as Mur's absorbing

boundaries [4], were developed in the late 1970's which involved enforcing outgoing wave equations at the boundary of

the computational domain. Mur's absorbing boundaries, however, do not absorb waves with angles of incidence far from

normal and must be placed some distance (usually one-half to one wavelength) from all scatterers. Mur's absorbing

boundaries exhibit reection coe�cients between -40 dB and -50 dB [5].

A new method has been developed for very e�ective absorbing boundaries in two-dimensions [6] and extended to three-

dimensions [7] using Perfectly Matched Layers (PMLs). The PMLs absorb outgoing waves of any frequency and any

angle of incidence. PML boundaries can achieve reection coe�cients below -60 dB. Chew and Weedon's development

of three-dimensional PML boundaries will be presented.

Implementation of the PML boundaries is discussed and demonstrated using the UMR FDTD code [8]. A short dipole

in free-space and a dipole antenna in free-space are modeled with PML and Mur absorbing boundaries, alternately. The

results using the two di�erent boundary methods are compared for accuracy and e�ciency.

II. Theory

The Perfectly Matched Layer (PML) absorbing boundary establishes a lossy layer at the edge of the computational

domain which has no reections regardless of angle of incidence or frequency. The lossy PML is truncated by a perfect

electric conductor (pec) which encloses the computational domain in three dimensions. The absorbing layer is anisotropic

with special electric and magnetic loss terms. By choosing a particular level of loss the absorbing boundary can absorb

outgoing waves with reection coe�cients of less than -60dB.

The investigation begins with a rectangular coordinate system which is stretched along the axes and can be represented

by the modi�ed del operator [9]
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Maxwell's equations in a general source-free medium in a time-harmonic form can then be expressed as

re � ~E = �j!�~H (2)

rh � ~H = j!�~E (3)

rh � �~E = � (4)

re � �~H = 0; (5)

where Equations (4) and (5) can be derived from Equations (2) and (3). The operators are de�ned as
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where ~E and ~H are the electric and magnetic �eld vectors, respectively, � and � are the permeability and permittivity,

respectively and � is the volumetric charge density. The time dependence is ej!t. Note that if hx = hy = hz � 1� j �
!

then Equation (3) becomes

rh � ~H =
1

1� j �
!

r� ~H = j!~E

)
r� ~H = j!~E+ �~E: (8)

Equation (8) is Ampere's law in an electrically lossy medium.

For a general plane wave with a spatial functional dependence of the form e�j
~k�~r, where

~k � x̂kx + ŷky + ẑkz (9)

and j~kj = !
p
�� � k, Equations (2){(5) become

~ke � ~E = !�~H (10)

~kh � ~H = �!�~E (11)

~kh � �~E = � (12)

~ke � �~H = 0; (13)

where ~ke � x̂kxex + ŷ
ky
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+ ẑ kz
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ky
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. Therefore, ~ke� Equation (11) yields

~ke � ~kh � ~H = �!� ~ke � ~E

)
~ke � ~kh � ~H = �!2��~H = �k2 ~H: (14)

Using the vector identity ~A� ~B� ~C = ~B(~A � ~C)� ~C(~A � ~B), Equation (14) can be written as

~kh ( ~ke � ~H)| {z }
0

�~H( ~ke � ~kh) = �k2 ~H (15)

)
~ke � ~kh = k2: (16)

Performing the dot product in Equation (16) yields
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= k2; (17)
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Fig. 1. Geometry of a wave incident on an interface with an arbitrary angle of incidence.

which is the equation for an ellipse with solution

kx = k
p
exhx sin � cos� (18)

ky = k
p
eyhy sin � sin� (19)

kz = k
p
ezhz cos �; (20)

where (�; �) are spherical reference angles. If ~ke = ~kh then ~kh?~H, the magnitude of Equation (11) can be expressed as
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In the remaining theoretical discussion, a PML medium will be a material such that ~ke = ~kh.

A matched interface of PML media is indicated by a reection coe�cient which is zero independent of frequency

or angle of incidence. The necessary relationship between two PML media for null reections can be determined by

letting a plane wave be incident on an interface between two PML media normal to ẑ as depicted in Fig. 1. For TEz

polarization the electric �elds associated with the rays in Fig. 1 can be expressed as

~Ei = ~Eoe
�j ~ki�~r (22)

~Er = RTE ~Eoe
�j ~kr�~r (23)

~Et = T TE ~Eoe
�j ~kt�~r; (24)

assuming no depolarization. For the TEz case, ~ki � ~Ei = 0 and ~Eo is entirely in the x̂� ŷ plane. The boundary condition

on the tangential components of the electric �eld can be expressed as

�
~Eoe

�j ~ki�~r +RTE ~Eoe
�j ~kr�~r

����
z=0

= T TE ~Eoe
�j ~kt�~r

���
z=0

: (25)

Phase matching along the boundary constrains kix = krx = ktx and kiy = kry = ktz . The boundary condition on the

electric �eld is then expressed as

1 +RTE = T TE: (26)
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Since the interface is between two PML media, let ~ke = ~kh � ~ks for reference. Equation (10) yields

~Hi =
1

!�1
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�j ~ki�~r (27)
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!�1
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The boundary conditions on the magnetic �eld constrain

~z� ~Hi + ~z� ~Hr = ~z� ~Ht: (30)

Using the aforementioned vector identity yields

~z� ~ks � ~Eo = ~ks

0z }| {
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= � ~Eo(~z � ~ks (31)
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The boundary condition on the magnetic �eld can then be expressed as

1
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+
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The phase matching condition and Equation (9) further stipulate that kzi = �kzr � kz1 . For convenience de�ne

kzt � kz2 . The boundary condition on the magnetic �eld can then be expressed as

kz1
sz1

(1�RTE) = T TE kz2
sz2

(34)

Letting the permeability in both PML media be the same, and simultaneously solving Equations (34) and (26) results

in the reection coe�cient which is expressed as

RTE =
kz1sz2 � kz2sz1
kz1sz2 + kz2sz1

: (35)

The TMz problem yields an identical reection coe�cient (RTE = RTM � R).

Substituting Equation (20) into Equation (35) yields

R =
k1sz1sz2 cos �1 � k2sz2sz1 cos �2

k1sz1sz2 cos �1 + k2sz2sz1 cos �2
(36)

If �1 = �2 and �1 = �2, then k1 = k2 and the reection coe�cient can be reduced to

R =
cos �1 � cos �2
cos �1 + cos �2

(37)

Equations (18) and (19) in conjunction with the phase matching requirements kx1 = kx2 and ky1 = ky2 yields

k1sx1 sin �1 cos�1 = k2sx2 sin �2 cos�2 (38)

k1sy1 sin �1 sin�1 = k2sy2 sin �2 sin�2 (39)

Restricting sx1 = sx2 and sy1 = sy2 ) �1 = �2 and �1 = �2 and therefore

R = 0: (40)
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In general for planar PML interfaces in rectangular coordinate systems with normal x̂1 and unit vectors x̂2 and x̂3

parallel to the surface

sx2medium1
= sx2medium2

(41)

sx3medium1
= sx3medium2

(42)

sx1medium1
6= sx1medium2

; (43)

for an interface exhibiting no incident �eld reections.

Knowing the requirements for si is not congenial to FDTD analysis methods because the development was made

using time-harmonic equations. Meaningful media properties can be determined by reinstating the time-dependence of

Maxwell's equations. equations for a PML media. Equations (2) and (3) for PML media can be expressed as

rs � ~E = �j!�~H (44)

rs � ~H = j!�~E; (45)

where rs � 1
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ẑ

�

+
1

sz

�
@Ex

@z
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Equation (45) can be expanded in a similar form. The electric and magnetic �eld components can be decomposed as

Ex = Exy +Exz Hx = Hxy +Hxz

Ey = Eyx +Eyz Hy = Hyx +Hyz

Ez = Ezx +Ezy Hz = Hzy +Hzx

(47)

Twelve scalar equations can then be written of the form

�j!�Hxz =
1

sy

@Ez

@y
: (48)

De�ne sy � 1�j
�y
!�

(sy � 1�j
�y
!�

for Exz equation), where � is the magnetic resistivity and � is the electric conductivity,

and rewrite Equation (48) as

�j!�Hxz � �yHxz =
@Ez

@y
: (49)

Re-instating the time dependence in Equation (49) yields a scalar time-dependent �eld equation for PML media

�
@Hxz

@t
+ �yHxz = �@Ez

@y
(50)

The conditions for a PML interface in this form for a interface with x̂1 normal and x̂2 and x̂3 parallel to the interface

are

�x1medium1 6= �x1medium2 (51)

�x2medium1 = �x2medium2 (52)

�x3medium1 = �x3medium2 (53)

where �medium1 = �medium2, �medium1 = �medium2, and
�
�
= �

�
in each PML medium. Eleven more equations can be

developed in the same manner and all twelve are given below for reference.
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Fig. 2. Two-dimensional view of an open region problem bounded by PMLs. The arrows indicate the direction of loss.
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III. FDTD Implementation

An open region problem can be modeled in FDTD by bounding the domain with a PML. The PML is truncated by

either a pec or Mur absorbing boundaries. However, if Mur absorbing boundaries are used, the correct phase velocity

must be known a priori which can be di�cult to ascertain. Pec boundaries are simple to implement and when used with

a PML with adequate loss function adequately.

The computational domain of interest contacts PML's along faces which have loss only along the direction of the

normal. The faces overlap along edges which have loss in two directions, and the edges overlap at corners having loss in

three directions. Fig. 2 shows a two dimensional view of a domain truncated with PML boundaries.

Ideally the PML would be implemented with a high, constant loss term. However, large step changes in loss in an

FDTD grid contribute undesirable numerical reections [6]. To prevent numerical reections, the electrical conductivity

(and therefore the magnetic resistivity) must be ramped to a maximum value. The maximum value can be found by

choosing a reection coe�cient that is acceptable for a given application. A wave with normal incidence on a PML with

thickness d which is truncated by a pec must travel through the medium twice. For a conductivity with a quadratic

ramp

�(r) = �max

�r
d

�2
; (56)

the reection coe�cient can be expressed as

R = e
�2 1

�c

R
d

0
�max( rd )

2
dr

= e�
2�maxd

�c3 (57)

If R was desired to be approximately -60 dB, then �maxd � 0:0275 for a PML matched to free-space. The speed of light

in the PML medium is or can be approximated to be the speed of light in free-space [6].

The di�erential equation is discretized at a single point in time and space for every element in the equation. Therefore,

PML �eld update equations are discretized using the value of the conductivity at the same location as the electric �eld

component in the equation, or the value of the resistivity at the location of a magnetic �eld component. However,

for materials with high loss, care must be given to maintain the di�usion stability criterion. By using exponential

di�erencing, the di�usion stability criterion is met regardless of the value of loss [1]. A discretized PML time-update



HOCKANSON: PERFECTLY MATCHED LAYERS USED AS ABSORBING BOUNDARIES IN A THREE-DIMENSIONAL FDTD CODE 7

equation using central di�erencing can then be expressed as
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IV. Results

The PML absorbing boundaries were implemented in the UMR FDTD code. Two geometries were modeled to compare

the results using PML boundary conditions and Mur second-order boundary conditions. The �rst simulation modeled

of a short dipole in free-space. The �eld results from simulations using each boundary technique were compared. The

second geometry was a dipole antenna. The input impedance for the center-fed dipole antenna was computed with mesh

truncation provided by second order Mur absorbing boundaries and PML boundaries.

A short dipole source was placed in a computational domain one wavelength cubed. The domain was discretized

with cubic cells of dimension �l = �
20

and a di�erential time element �t = �l
2c
. A ẑ-polarized, 1 A

cm2 electric current

density source was placed at Node (6,6,6). The Mur second-order absorbing boundaries were placed one half wavelength

(ten cells) from the computational domain. The PML boundaries were six cells thick and started four cells from the

computational domain for a total extension of ten cells beyond the computational domain.

The electric �eld components were computed along a line through the source in the x̂-direction and are shown in Fig.

3. The values found above and below the source for Ex and Ey were averaged to provide the �eld values in the plane of

the source, because Ex and Ey are not computed by the FDTD algorithm in the plane of the source. The agreement for

Ez computed in the presence of the two di�erent absorbing boundaries is very good. However, there are discrepancies

for the computations of Ex and Ey using the two di�erent absorbing boundaries. Ex and Ey should be zero in the plane

of the source and are not because of numerical reections from the absorbing boundaries. The PML boundaries were

found to be more accurate by almost an order of magnitude. The disadvantage of the PML absorbing boundary was

the PML boundaries require approximately three times the computational time to analyze the �elds associated with a

node inside the boundary layer than a free-space node.

Fig. 4 shows the dipole antenna that was numerically modeled by the UMR FDTD code. The domain was discretized

with cubic cells of side dimension �l and a di�erential time element �t = �l
2c
. The antenna was center-fed by a voltage

source of length �l. Taove's thin wire algorithm [10] was used to give the wire a radius of a = 0:2�l, where a was

the wire radius and �l was the cell discretization. The input impedance was calculated for the antenna as a function of

the ratio of length L, to wavelength �, over the range 0:10 � L
�
� 2. Other dimensions are given in terms of the ideal

halfwave resonance wavelength, which is denoted by �o � 2L.

The input impedance for the antenna was computed using Mur's second order absorbing boundaries placed one-half

the longest wavelength of interest from the antenna and PML absorbing boundaries six cells thick placed four cells from

the antenna. The input impedance results are shown in Fig. 5. The �gure shows good agreement between the results

for the two boundary conditions. The results with PML di�er slightly at the lowest frequency point. The error may be

attributed to the PML boundaries being too close to the antenna with respect to wavelength at that frequency, e�ectively

loading the antenna. The primary advantage of the PML boundaries was that the simulation ran in approximately a

tenth of the time required with the second-order Mur absorbing boundaries because less domain was required for the

PML boundaries.

V. Conclusion

Perfectly Matched Layer (PML) absorbing boundaries were reviewed and implemented in the UMR FDTD code. The

code modeled two geometries with computational domains truncated with PML absorbing boundaries and Mur second-

order absorbing boundaries, alternately. The �rst geometry involved a short electric dipole in free-space. The results

with the PML absorbing boundaries were an order of magnitude better than the results for the same problem using Mur

absorbing boundaries. However, the computations for a PML node require three times as much time per time-step than
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Fig. 3. Results for the short dipole in free-space along a line through the source in the x̂-direction for (a) Ez and (b) Ex and Ey using PML
and Mur absorbing boundaries.
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Fig. 4. The geometry of the dipole antenna model.
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Fig. 5. Input impedance results for a dipole antenna with the domain truncated by Mur's second order boundary conditions, and a PML
boundary six cells thick.

the �eld computations for a free-space node. The last geometry was a very thin, center-fed dipole antenna in free-space.

The input impedance was calculated for a mesh truncated with Mur absorbing boundaries and then PML absorbing

boundaries. The results showed good agreement, however the case with the PML absorbing boundaries was completed

in less than twenty percent of the time necessary for the input impedance calculations using Mur absorbing boundaries.

Mur absorbing boundaries must be placed at least a half-wavelength from all scatterers. The computational domain for

problems employing �ne spatial discretization may be largely white space necessary for the Mur absorbing boundaries.

The PML boundaries were placed four cells from the scatterers regardless of discretization requiring a lower number of

total nodes, which may o�set the longer run-time necessary for PML nodes.

More simulations are required to determine the optimum location and thickness of the PML boundaries. However,

the initial results are very encouraging. The greater accuracy provided to the FDTD analysis by the PML boundaries

will permit FDTD modeling of geometries where accuracy is very important, such as aerospace applications. The

PML boundaries increase the computational domain to a lesser degree than Mur absorbing boundaries for �ne mesh

discretization permitting more accurate models of geometries such as printed circuit boards.

VI. Conjecture

The following statements are conjecture and no results or theory are given as support. The PML boundaries will

probably work more accurately if placed a little farther away from the scatterer. Especially when the scatterers are

expected to have highly reactive �elds. For �ne discretization, four cells may be in the near �eld and the PML will
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absorb reactive �elds which may consist of important information such as in the case of input impedance. Thicker

PML walls allow a more gradual change of loss while allowing more loss overall and may prove to be worth the extra

computational time and memory consumption. The thicker walls seemed to result in impedance calculations that were

identical to the impedance results with Mur absorbing boundaries. The increase in memory required by PML is worth

the time it can save for problems necessitating �ne meshes. The value of the PML boundaries will be further evident

when Gaussian pulse sources are implemented in the UMR FDTD code. The Mur absorbing boundaries may result in

some \ringing" in the computational domain while the PML boundaries shoule absorb the outgoing pulse to the same

degree over the whole spectrum.
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