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SUMMARY

We examine four parametrizations of the unit sphere in the context of material stability analysis by means
of the singularity of the acoustic tensor. We then propose a Cartesian parametrization for vectors that lie a
cube of side length two and use these vectors in lieu of unit normals to test for the loss of the ellipticity
condition. This parametrization is then used to construct a tensor akin to the acoustic tensor. It is shown that
both of these tensors become singular at the same time and in the same planes in the presence of a material
instability. The performance of the Cartesian parametrization is compared against the other parametrizations,
with the results of these comparisons showing that in general, the Cartesian parametrization is more robust
and more numerically efficient than the others. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The numerical analysis of material instability plays an important role in the understanding and sim-
ulation of material failure in solid mechanics problems. A reliable and efficient method to determine
the onset of material instability and the bifurcation directions is required whether one is interested
in studying the instability itself or in devising numerical methods to regularize the solution at the
onset of the instability [1–7].

Herein, we adopt the classical definition of material instability as the loss of the strong ellipticity
condition. This is equivalent to the loss of the strong Legendre–Hadamard condition for stored energy
densities that are twice continuously differentiable [8]. Loss of ellipticity has also been associated
with the discontinuous acceleration of propagating waves by [9]. We use the term acoustic tensor
for the second-order tensor associated with the strong ellipticity condition, which is also known as
the localization tensor. Although this latter denomination may be more accurate, throughout this
work, we use the former for historical reasons.

The determination of the loss of the strong ellipticity condition for a very general class of
materials can be achieved by recourse to incremental variational constitutive updates. Within this
framework, an incremental stress potential embodies the constitutive behavior of the material during
a time increment, including elasticity, viscoelasticity, viscoplasticity, and rate dependence [10–16].
By using incremental variational constitutive updates, the stress and the tangent moduli can be
derived from a hyperleastic-like potential for constitutive behavior that may include viscosity and
rate dependence. This in turn provides the means to apply the tools developed herein for complex
inelastic materials.
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1.1. Previous work

Extensive work has been carried out on the subject of material instabilities. The basic theoretical
principles follow from the seminal work of [17] on elastic stability and were later extended to the
inelastic regime by [18], [9], and others. The work of [19] and [20], among others, tied the instability
in the constitutive description of homogeneous deformation to the onset of localized deformation,
which was linked to the loss of the positive definiteness of the acoustic tensor of the material at a
given state. See also Armero [4] and Garikipati and Miehe et al. [12] for a brief historical overview
of the development of classical localization analysis.

In the context of finite element analysis, existing approaches to detect material instability as well
as the bifurcation directions generally fall into two categories: analytical and numerical.

For certain material models under specific loading conditions, analytical solutions of the instabil-
ity problem can be derived. For instance, Schreyer and Neilsen [21] derived an analytical criterion
for the loss of ellipticity for a general class of symmetric constitutive equations. Becker [22] used
the Gurson constitutive model in combination with a failure criterion based on material stability and
bifurcation in a finite element model to predict fracture and fragmentation in a dynamic expanding
ring experiment. Oliver and Huespe [23] provided closed-form solutions for the detection of the sin-
gularity of the acoustic tensor for a wide class of small deformation isotropic and anisotropic damage
models. On the basis of the general Hadamard instability criterion, Xue and Belytschko [24] derived
a closed-form expression to determine the onset of instability and the bifurcation directions for a
particular damage plasticity model. These analytical approaches are computationally very efficient
and robust and avoid the pitfall of the inability to find global minima [25].

Closed-form solutions, however, are not available for more complicated material models under
general loading conditions, which motivates the development and implementation of numerical
approaches. Among the works that address the numerical resolution of material instability are those
of Ortiz and coworkers [26, 27]. Ortiz et al. [27] formulated the detection of instability as a con-
strained minimization problem. A two-step procedure is proposed, wherein a sampling is performed
over the parametric space of possible bifurcation directions followed by an iterative solution scheme
using a Lagrange multiplier to enforce the unit-vector constraint. The algorithm was applied to the
bifurcation analysis of a small deformation isotropic elastoplastic material model. Khen et al. [28]
formulated the localization criterion for finite deformation plasticity in a Lagrangian formulation
and searched the bifurcation direction using two characteristic angles in a spherical coordinate sys-
tem. Boussaa and Aravas [29] proposed an alternative approach where numerical and symbolic
computations were combined to detect the loss of strong ellipticity and applied this approach to a
Gurson-type porous material. Mosler [30] proposed a numerical algorithm based on sampling the
discrete parametric space and using the minimum of the sampling as initial guess for a Newton
method to find a better approximation to the exact minimum of the determinant of the acoustic
tensor and corresponding bifurcation directions. More recently, Oliver et al. [25] developed a new
efficient algorithm based on the iterative solution of a coupled eigenvalue problem in terms of the
acoustic tensor. The algorithm is very efficient and accurate for symmetric cases, where the material
tangent has both major and minor symmetries. For cases that lack minor symmetries, however, the
algorithm only gives an approximation, which limits its applicability to finite deformation material
models, or non-associative plasticity material models.

Compared with analytical approaches, numerical algorithms are more general in the sense that
they can be applied to different material models under different loading conditions, for both two-
dimensional and three-dimensional problems. The drawbacks are also clear; however, they are much
more computationally demanding and less robust. The convergence of an iterative method is sensi-
tive to the initial guess, for instance. In the context of a nonlinear finite element analysis, the material
instability condition has to be tested at every integration point and at every time step, and therefore,
both the computational efficiency and robustness of any numerical algorithm used for its detection
become a major concern.

In this work, we use a sampling-based algorithm followed by a Newton iterative method to solve
the minimization problem associated with the strong ellipticity condition for the detection of mate-
rial instability. We present several parametrizations for the representation of the unit normal vector
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used to construct the acoustic tensor. The hypothesis is that the parametrization of this normal vec-
tor significantly affects the computation time and robustness of the numerical solution algorithm.
To this end, we propose a new Cartesian parametrization to construct a tensor akin to the acous-
tic tensor and compare its performance and robustness against other four parametrizations. The
numerical algorithms developed in this work are general and can be applied to both small and
finite deformation material models with symmetric or non-symmetric tangents. To that end, we
analyze idealized isotropic and anisotropic damage models subjected to simplified loadings. The
resulting landscapes for minimization are sufficiently rich and differentiating to provide meaningful
quantified evaluations of the proposed parametrizations.

2. GENERAL FRAMEWORK

Incremental variational constitutive updates provide the means to determine the loss of the strong
ellipticity condition for a very general class of materials. Within this framework, the constitutive
behavior of the material during a time increment is characterized by an incremental stress poten-
tial that may include elasticity, viscoelasticity, viscoplasticity, and rate dependence [10–16]. See
Appendix A.

Within this framework, the stress and the tangent moduli can be derived from the hyperleastic-
like potential (A.11) for a very general class of constitutive behavior that may include viscosity and
rate dependence. This in turn provides the means to apply the classical analysis tools that are used
in hyperelasticity, such as the strong ellipticity condition, for complex inelastic materials as well.

2.1. The strong ellipticity condition

The ellipticity condition can be expressed as follows:

.m˝ n/ W A W .m˝ n/ > 0; 8m;n 2 R3 (1)

where the tangent moduli A are defined in (A.13). Note that for simplicity in notation and unless
otherwise stated, henceforth, we omit the time indices n and nC1 with the understating that further
developments take place at time tnC1. If condition (1) holds strictly for nonzero vectors m and n,
then it is called the strong ellipticity condition [12, 17, 31]. It is customary to assume that m and n
are unit vectors, that is, m;n 2 S2 where S2 WD ¹t 2 R3 j ktk D 1º is the unit sphere. Define

n �A WD npApjklej ˝ ek ˝ el ; n ıA WD npAipklei ˝ ek ˝ el ;

A ı n WD npAijplei ˝ ej ˝ el ; A � n WD npAijkpei ˝ ej ˝ ek ;
(2)

and the acoustic tensor as follows:

A WD n ıA � n or Aik ei ˝ ek WD njAijklnl ei ˝ ek; n 2 S2; (3)

then the strong ellipticity condition becomes

m �A �m > 0; m 2 S2: (4)

In order to satisfy the strong ellipticity condition, the acoustic tensor must be positive definite.
Therefore, (1) and (4) reduce to

detA > 0; (5)

which provides a method to determine the onset of a material instability.

2.2. Bifurcation

By using the strong ellipticity condition (1) or its equivalent with the acoustic tensor (5), the detec-
tion of bifurcation or loss of ellipticity in the material is fully characterized by its fourth-order
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tangent moduli (A.13). The onset of bifurcation is then posed as a minimization problem. First, we
assume that the normal vector n is parametrized by a set of parameters q, thus turning the determi-
nant of the acoustic tensor detA into a function of q. Then the determinant of the acoustic tensor
detA.q/ is minimized with respect to q. Thus, the loss of strong ellipticity may be stated as follows:

f .q/ WD detA.q/; min
q
f .q/ D 0; n.q/ 2 S2: (6)

If the determinant function f .q/ is differentiable, the minimization problem can be rewritten
equivalently as follows:

@f

@q
.q/ D 0; (7)

which can be solved by standard numerical optimization techniques, for example, a Newton-type
iterative procedure.

3. PARAMETRIZATIONS FOR BIFURCATION ANALYSIS

Efficient computation of the minimization problem (7) requires a careful choice of the parametriza-
tion for the normal vector n.q/ 2 S2, which is equivalent to selecting a parametrization for the
unit sphere. This choice has a significant effect on the complexity of the determinant function f .q/
and its derivatives with respect to q needed to solve the optimization problem. Herein, five differ-
ent options are explored. The first four (spherical, stereographic, projective, and tangent) are indeed
parametrizations of the unit sphere. The last parametrization, which we term Cartesian, relaxes the
restriction that the normal vector be an element of the unit sphere. We describe the parametrizations
in detail next, assuming that a Cartesian frame of reference originates from the center of each one.

3.1. Spherical parametrization

This parametrization is the most commonly used in numerical bifurcation analysis, for example,
[30, 32–34]. In the spherical parametrization, elements n of the unit sphere S2 are simply para-
metrized by their spherical coordinates with polar angle ' 2 Œ0; ��, azimuthal angle � 2 Œ0; ��, and
radial distance r D knk D 1. The reduced range in the angle � is due to symmetry of the bifurcation
condition, as for this purpose n and�n yield the same result; see Figure 1a. In terms of the canonical
basis,

n.'; �/ WD

8<
:

sin' cos �
sin' sin �

cos'
:

9=
; : (8)

3.2. Stereographic parametrization

The unit sphere is parametrized with the aid of an equatorial plane as shown in Figure 1b. Consider
a point P that is both on this plane and on a line that passes through the north pole Q of the
sphere and the tip of the vector n. The Cartesian coordinates x and y of P provide the desired
parametrization, which can be easily derived by finding the intersection of the line and the sphere.
The upper hemisphere can be ignored because of the symmetry of the bifurcation condition, thus
avoiding the singularity in parametrizing a normal vector that points to the north poleQ. The normal
vector n in terms of the canonical basis is as follows:

n.x; y/ WD

8̂̂̂
<̂
ˆ̂̂̂:

2x
x2Cy2C1

2y

x2Cy2C1

x2Cy2�1

x2Cy2C1

:

9>>>>=
>>>>;

(9)

where the parameters x 2 Œ�1; 1� and y 2 Œ�1; 1�.
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Figure 1. The five parametrizations used for the detection of loss of ellipticity.

3.3. Projective parametrization

In the projective parametrization, the norm of the position vector of a point P with respect to the
center of the sphere is constrained to obtain a unit vector n [27]. This is equivalent to projecting the
point P onto the unit sphere S2, as shown in Figure 1. The normalization is affected by means of a
constraint enforced by a Lagrange multiplier as follows:
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n.x; y; ´/ WD

8<
:
x

y

´
;

9=
; subjected to x2 C y2 C ´2 D 1 (10)

where the parameters x 2 Œ�1; 1�, y 2 Œ�1; 1� and ´ 2 Œ�1; 1�.

3.4. Tangent parametrization

This parametrization of the unit sphere is defined by a tangent plane [35]. Let u 2 R3 be the position
vector of the point P in the tangent plane with respect to the contact pointQ between the sphere and
the plane; then let e 2 S2 be the position vector of the contact point Q with respect to the center of
the sphere O , as shown in Figure 1d. Define a rotation vector E� WD e � u; then the rotation angle is

� WD
���E���� � kuk. Let also

LE� 2 so.3/ be the skew-symmetric tensor such that
LE� �v � E��v 8 v 2 R3.

The expression for the exponential map for
LE� is as follows:

exp
LE� WD

´
I 2 SO.3/; if � D 0I

I C sin �
�

LE� C .1�cos �/
�2

LE�2 2 SO.3/; if � > 0I

μ
; (11)

which is often accredited to Rodrigues [36]. Next, define

expe u WD exp
LE� � e D cos �e C

sin �

�
u 2 S2: (12)

The parametrization follows immediately by setting the contact point Q to the north pole of the
sphere, that is, e D Œ0; 0; 1�T and u D Œx; y; 0�T with the normal vector n given by the following:

n D expe u 2 S
2; (13)

which leads to a more explicit representation for the normal vector in the canonical basis as follows:

n.x; y/ WD

8̂̂
ˆ̂̂<
ˆ̂̂̂̂:

x sin
p
x2 C y2p

x2 C y2

y sin
p
x2 C y2p

x2 C y2

cos
p
x2 C y2

:

9>>>>>=
>>>>>;

(14)

where the parameters x 2 Œ��=2; �=2� and y 2 Œ��=2; �=2�. Note that although the normal vector
n is a unit vector, the position vector on the tangent plane u D Œx; y; 0�T is not subjected to the
constraint x2Cy2C´2 D 1 and the range Œ��=2; �=2� is sufficient for the position vector to cover
all points on the plane.

3.5. Cartesian parametrization

The previous four are parametrizations of the unit sphere. Here, we propose a new parametrization,
termed Cartesian, where the restriction that the normal vector be of unit length is relaxed. To set the
stage for the Cartesian parametrization, we revisit the strong ellipticity condition

.u˝ v/ W A W .u˝ v/ > 0; 8u; v 2 R3 n ¹0º: (15)
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Note that this condition only requires that the vectors u and v be nonzero. Thus, the condition
that they belong to the unit sphere S2 may be relaxed. In analogy to the classical acoustic tensor (3),
define

B WD v ıA � v or Bik ei ˝ ek WD vjAijklvl ei ˝ ek; v 2 R3 n ¹0ºI (16)

thus, the strong ellipticity condition may be expressed as follows:

u � B � u > 0; u 2 R3 n ¹0º: (17)

As in (5), the strong ellipticity condition becomes

detB > 0: (18)

Proposition 1
The tensor B from (16) leads to the same bifurcation condition as the acoustic tensor A from (3),
that is, if the minimum for detA is equal to zero for a vector a 2 S2, then the minimum for detB is
also zero for a vector b 2 R3 n ¹0º that is parallel to a.

Proof
Introduce the bijective map g W R3 n ¹0º 7! S2 � RC that allows the representation of nonzero
vectors in R3 as unit vectors in the unit sphere (direction) and the corresponding nonzero norm
(magnitude). Then define

v 2 R3 n ¹0º; v WD kvk 2 RC; n WD
v

v
2 S2I (19)

therefore, from (4) and (17),

B.v;n/ D v2A.n/ and detB.v;n/ D v6 detA.n/: (20)

Now, let the bifurcation condition for A be

min
n

detA.n/ D 0; a WD arg min
n

detA.n/ 2 S2 H) detA.n/ > 08n ¤ aI (21)

then it follows from (20) that

detB.s; a/ D 0; detB.s;n/ > 0; 8n ¤ a and 8 s 2 RC; (22)

which means that

min
v;n

detB.v;n/ D 0; ¹s; aº WD arg min
v;n

detB.v;n/8 s 2 RC; (23)

as required. �

In order to remove the multiple minima associated with the arbitrary value of the scalar parameter
s and obtain a parametrization, we restrict the range of the Cartesian coordinates such that jjvjj1D1
and set the normal vector to

v.x; y; ´/ WD

8̂̂
<
ˆ̂:
Œx; y; 1�T ; ifx 2 Œ�1; 1� and y 2 Œ�1; 1/�I
Œ1; y; ´�T ; if y 2 Œ�1; 1� and ´ 2 Œ�1; 1/I
Œx; 1; ´�T ; if ´ 2 Œ�1; 1� and x 2 Œ�1; 1/I
Œ1; 1; 1�T ; otherwise:

(24)

This confines the normal vector to the cube of side length two centered at the origin as shown
in Figure 1e. Only three faces of the cube need to be considered because of the symmetry of the
bifurcation condition.

The spherical parametrization commonly used in bifurcation analysis has a singularity at the poles
as the azimuthal angle � can adopt any value at those points. This leads to numerical diffculties
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when minima lie near or at the poles. The Cartesian parametrization advocated here does not contain
any singularities of this kind.

4. BIFURCATION DETECTION

Within an incremental update setting, the numerical detection of the bifurcation condition for each
time increment using any of the parametrizations just described consists of the following two steps:

� An initial sampling is performed over the parametric space for q for the normal vector
n 2 S2 or v 2

®
u 2 R3j jjujj1 D 1

¯
associated with the parametrization. This leads to a

rough estimate of the minimum of the determinant function (6) and the associated bifurcation
directions.
� The coarse estimate can be used to initiate an iterative procedure to find a more accurate

estimate of the onset of bifurcation and its associated directions by solving the optimization
problem (7).

In an actual finite element simulation, the previous two-step procedure may not yield estimates of
the bifurcation condition that are accurate enough within a time increment, in particular if the size
of the increment is relatively large. One way to improve the solution is to introduce adaptive time
increments for the detection of the bifurcation condition. Define

�nC1;k WD min
q
fnC1;k.q/ D min

q
detBnC1;k.q/ (25)

where the tensor BnC1;k.q/ may be either the one from (3) or the one from (16), depending on the
parametrization in use and the index nC 1; k indicates that the evaluation occurs at time tnC1;k 2
Œtn; tnC1� for a kth adaptive iteration.

Consider the original time increment from tn to tnC1, where �n > 0 and �nC1 < 0. This means
that between time tn and tnC1, the strong ellipticity condition is violated and, hence, the material
exhibits bifurcation. Assume also that�n=�0 > �, where�0 is the value of the determinant function
evaluated at time t0 and � is a target tolerance. We wish to find a better estimate for the determinant
function �nC1;k , and hence the bifurcation time tnC1;k , such that �nC1;k=�0 6 �. This is achieved
by an adaptive time increment procedure by means of bisection, as shown in Algorithm 1. This algo-
rithm repeatedly decreases the time increment in half until the convergence criterion�nC1;k=�0 6 �
is met.

Algorithm 1 AdaptiveStep.�0; �nC1; tnC1; �/
Require: �nC1 < 0
Ensure: �nC1;k 2 Œ0; ��0�

initialize k  1; ˛  1
2
; 4t  tnC1 � tn; �nC1;k  �nC1

while �nC1;k < 0 or �nC1;k=�0 > � do
tnC1;k  tn C ˛4t
compute F.tnC1;k/ using the global solution scheme
compute4Z.tnC1;k/ by solving (A.12)
compute A.tnC1;k/ using (A.13)
compute �nC1;k by solving (25)
if �nC1;k > 0 then
˛  ˛ C 2�k�1

else
˛  ˛ � 2�k�1

end if
k  k C 1

end while
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The adaptive time increment procedure allows the accurate (up to the tolerance �) detection of the
bifurcation time during a loading process. The procedure described in this section to detect material
bifurcation can be applied to a very general class of materials, and its numerical performance is
demonstrated in the following section.

5. NUMERICAL EXAMPLES

The performance and applicability of the proposed Cartesian and the other four parametrizations
are examined by using them for the bifurcation analysis of two material models under different
loading conditions. The analysis is performed at the material point level. Of particular interest are
the robustness and computational efficiency of the different parametrizations.

5.1. Small deformation isotropic elastic damage model

We start the bifurcation analysis on a simple small deformation isotropic damage model. The
model formulation is briefly presented first. The material model is then subjected to simple shear to
determine the performance of the different parametrizations on the detection of material bifurcation.

5.1.1. Model formulation. The stress and constitutive tangent of the small deformation isotropic
damage model are derived from the strain-energy function that has the form

A.�; �/ WD
1

2
.1 � �/� W Ce W � (26)

where � is the infinitesimal strain tensor, Ce is the fourth-order elastic moduli tensor, and � is
a damage parameter introduced to trigger material bifurcation. For isotropic linear elasticity, the
elastic moduli tensor Ce is given as follows:

Ce WD �I ˝ I C 2�I (27)

where � and � are the Lamé constants, I is the second-order identity tensor, and .I/ijkl D
1
2
.ıikıjl C ıilıjk/ is the fourth-order symmetric identity tensor with ıik being the Kronecker delta.
We adopt the following evolution law for the scalar damage parameter � [37]

�.˛/ WD �1Œ1 � exp.�˛=	/� (28)

where �1 describes the dimensionless maximum damage and 	 is referred to as the damage sat-
uration parameter. The parameter ˛ is the maximum thermodynamic force [37] with the same
dimensions as the effective strain energy. Within the closed time interval Œ0; t �, ˛ is given as follows:

˛.t/ WD max
s2Œ0;t�

A0.s/ (29)

where A0.s/ is the undamaged strain energy at time s.
Given the strain-energy function (26) and the damage evolution (28), the fourth-order tangent

moduli tensor can be obtained by differentiating the strain-energy function with respect to the strain
measure �e twice, which results in

C WD .1 � �/Ce � ˇ
@�

@˛
.
0 ˝ 
0/ (30)

where 
0 is the effective (undamaged) Cauchy stress and ˇ D 1 , P̨ > 0, ˇ D 0 otherwise. In
a small deformation setting, this tangent can be used to compute the acoustic tensor (3), which can
then be tested for material bifurcation.
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Figure 2. Schematic of the the applied loading for simple shear for infinitesimal deformations. The solution
bifurcates on planes with normals n1 and n2.

5.1.2. Simple shear test. In this section, a simple shear test illustrated in Figure 2 is simulated with
the following material properties: �D80, �D80, �1D1:0; and 	D1:0. The resulting shear stress
and shear strain are plotted in Figure 3a. The softening response is due to the evolution of the
introduced damage parameter � . For the numerical detection of material bifurcation, the two-step
procedure described in Section 4 is adopted, that is , (1) an initial sampling performed over the
parametric space and (2) a Newton iterative procedure to obtain a better estimate of the onset of
bifurcation and its associated directions. Figure 3b shows the degradation of the determinant det A
for all five parametrizations up to the point when material bifurcation is detected. When det A D 0,
the material model bifurcates. In this example, all five parametrizations detect bifurcation at the
same time, that is , when the shear strain �12 D 0:0559 as marked in Figure 3a. With the adaptive
time-step algorithm, the precise time of bifurcation, up to the specified tolerance, can be detected.

While all five parametrizations detect bifurcation at the same time, Figure 3b provides little infor-
mation on their computational efficiency and robustness, which are the focus of this work. The
computation time of bifurcation detection mainly consists of two parts: (1) the computation time of
the initial sampling over the parametric space and (2) the computation time of the Newton iterative
scheme.

The computation time of the initial sampling depends on the number of sampling points or,
equivalently, the density of the initial sampling grid. The denser the initial sampling grid, the more
expensive it is computationally to perform a complete pass of all the points in the grid. The compu-
tation time for the Newton iterative scheme, on the other hand, depends mainly on the complexity
of the objective function, that is , det A, as well as the quality of the initial guess.

To compare the computation times of different parametrizations, we record the time spent on the
bifurcation detection at a particular loading increment, for example , at the increment leading to
bifurcation. We also vary the density of the initial sampling grid to determine its effect on different
parametrizations. The density of the initial sampling grid is represented by the sampling interval
and the number of sampling points, as shown in Figure 4.

A robust parametrization should be insensitive to the initial sampling grid. The computation time
results are summarized in Table I. The table only shows the number of sampling points, N , along
one dimension of the parametric space. Assuming the same number of intervals for each parameter,
the total number of sampling points is ND where D is the total dimension of the parametric space.

As expected, it can be seen from Table I that as the number of sampling points N per dimen-
sion decreases, so does the computation time. The spherical and the Cartesian parametrizations are
the most efficient. The stereographic, projective, and tangent parametrizations are more computa-
tionally expensive. In the extreme case with N D 1, that is, only one initial sampling point, the
stereographic, projective, and tangent parametrizations fail to correctly detect bifurcation, shown as
a dash in the table.

As mentioned before, the choice of parametrization directly affects the complexity of the objective
function det A in (7). This in turn affects the computational efficiency and robustness of the different
parametrizations for the detection of material bifurcation, as shown in Table I. To illustrate this point,
the landscapes of the objective function det A at bifurcation, that is , at �12 D 0:0559 are shown in

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
DOI: 10.1002/nme



CARTESIAN PARAMETRIZATION FOR MATERIAL INSTABILITY

Figure 3. Simple shear test on small deformation isotropic damage model: (a) stress strain behavior, with the
X indicating bifurcation, and (b) degradation of det A for different parametrizations upto the point material

bifurcates (�12 D 0:0559).

Figure 4. Schematic drawing shows the interval along one dimension of the normalized parameter space
Œ�1; 1� for the cases of interval = 0.3 (top) and interval = 1.0 (bottom). Black solid circles indicate the

locations of grid points

Figure 5. The corresponding plane views of the determinant landscapes are shown in Figure 6, where
the white stars indicate global minima. The projective parametrization requires three parameters,
and therefore, it is not shown.

It is clear from these landscape plots that the complexity of the shape of the determinant func-
tion depends greatly on the choice of parametrization. Even for the very simple small deformation
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Table I. Computation time of the different parametrizations for the simple shear test
in the loading increment leading to bifurcation.

Sampling Run time (�s)
Interval Points Spherical Stereographic Projective Tangent Cartesian

0.05 41 318 155 5636 226 347
0.1 21 124 89 884 107 115
0.2 11 70 60 183 64 81
0.3 7 63 184 178 157 39
0.4 5 73 181 197 145 27
0.5 5 51 37 88 53 27
0.6 3 62 174 200 215 23
0.7 3 61 180 188 188 23
0.8 3 50 170 188 144 24
0.9 3 51 177 156 159 23
1.0 3 47 37 79 51 23
1.5 1 51 – – – 21

The dash ‘–’ indicates that the parametrization fails to detect bifurcation in this loading
increment.

Figure 5. Landscapes of the determinant of the acoustic tensor at bifurcation for simple shear for the small
deformation isotropic damage model. The normals to the planes of bifurcation are n1 D .1; 0; 0/ and n2 D

.0; 1; 0/.

isotropic model adopted in this example, the landscape of the determinant function can be quite
complex as in the cases of the spherical, stereographic, and tangent parametrizations.

The Cartesian parametrization results in a simple bowl-shaped objective function, which renders
the Newton iterative scheme to be particularly robust and insensitive to the initial guess. Evidence
for this can be seen in Table I as the Cartesian and spherical parametrizations are the only ones able
to detect bifurcation when the sampling grid is reduced to a single point.

We now elaborate further on the robustness of the parametrizations by considering the situation in
which the initial sampling is eliminated altogether. In the absence of the initial sampling, a random
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Figure 6. Plane views of the landscapes of the determinant of the acoustic tensor at bifurcation for simple
shear on the small deformation isotropic damage model. The white stars indicate global minima. The normals

to the planes of bifurcation are n1 D .1; 0; 0/ and n2 D .0; 1; 0/.

Table II. Isotropic small deformation model: success rate and computation time of the
Newton iterative scheme with a single random initial point.

Spherical Stereographic Projective Tangent Cartesian

Success rate (%) 12.8 22.7 59.9 20.6 100
Average iteration count 4.39 4.70 8.86 5.12 5.35
Average run time (�s) 211 242 495 264 207

A total of 1000 random trials are performed for each parametrization. Note that the average
run time is for successful bifurcation detections only, which is 100% for the Cartesian
parametrization.

point within the corresponding parametric space is provided as initial guess for the Newton iterative
scheme when �12 D 0:0559, that is , at the onset of bifurcation. If Algorithm 1 is able to correctly
detect the onset of bifurcation and its associated directions, the parametrization is said to succeed
for this one set of randomly generated parameters. This process is repeated 1000 times for each
parametrization.

Table II shows the rate of successful bifurcation detection for all five parametrizations. The aver-
age number of iterations and the computation time of those successful detections are also recorded
and shown in the table. It can be seen that the proposed Cartesian parametrization is much more
robust than the commonly used spherical parametrization, compared with 100% vs. 12:8% success
rate. Furthermore, the Cartesian parametrization also outperforms the remaining three parametriza-
tions. In terms of computation time, the Cartesian parametrization is efficient with respect to the
other tested parametrizations because of its average run time of 207 �s.

The better performance of the proposed Cartesian parametrization in terms of computational
efficiency and robustness can be attributed to its relatively simple determinant function landscape.
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Figure 7. Isotropic small deformation model: results of the Newton iterative scheme with a single random
initial guess plotted on contours of the determinant function at bifurcation. A solid circle (�) indicates that
the initial point leads to a successful detection of bifurcation and its directions. A cross (�) indicates failure.

A total of 1000 random trials are performed for each parametrization.

Figure 7 shows contours of the determinant functions corresponding to Table II. One thousand ran-
dom initial points are also plotted. If the initial guess leads to a successful detection of bifurcation
and its directions, the point is marked as a solid circle (�). Otherwise, it is marked as a cross (�).
This figure provides a very direct visualization of the robustness results.

This first example illustrates the performance of different parametrizations on a very simple small
deformation material model with tangents possessing both major and minor symmetries. For such
material models, an alternative single-stage approach as in [25] could also be applied, which is
based on the solution of a coupled eigenvalue problem in terms of the acoustic tensor. A preliminary
analysis shows that this approach is able to correctly detect bifurcation and is more computationally
efficient than the two-stage approach advanced herein for this type of material models. Our focus,
however, is in the full finite deformation case, and therefore, more complex material tangents that
do not posses minor symmetries will be investigated next.

5.2. Finite deformation anisotropic hyperelastic damage model

The second material model tested is a finite deformation anisotropic hyperelastic damage model.
Our aim is to study the effect of adding complexity to the material model, and hence the tangent
moduli, on the performance of the different parametrizations. As in the previous example, we first
present the key features of the material model.

5.2.1. Model formulation. The free energy function of the finite deformation anisotropic hyperelas-
tic damage model consists of an isotropic term and direction-dependent terms. The motivation for
this type of energy formulation is to capture the behavior of materials with an isotropic matrix and
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embedded microfibers with preferred directions, such as the model proposed by [38] to describe the
behavior of cladding for nuclear reactors subjected to damage by hydride compounds. We assume
that the damage affects both the matrix and the microfibers. The free energy function is assumed to
have the form

A
�
C;M; �m; � f

i

�
WD .1 � �m/ f m‰m.C /C

NX
iD1

�
1 � � f

i

�
f f
i ‰

f
i .C;M/ (31)

where C is the right Cauchy–Green tensor, M is a unit vector characterizing the preferred fiber
direction, f m and f f

i are the volume fraction of the matrix and i th fiber, N is the number of
fiber terms, and �m and � f

i are the damage factors corresponding to the matrix and the i th fibers,
respectively. In the following examples, we assume that there are two preferred fiber directions.

We adopt a compressible neo-Hookean type energy function for the effective (undamaged) matrix
component

‰m.C / D
1

8
�.log I3/

2 �
1

2
� log I3 C

1

2
�.I1 � 3/ (32)

where � and � play the role of the Lamé constants of linear elasticity. For the microfibers, we adopt
the particular form of strain-energy function proposed by Holzapfel and Ogden [39]

‰f
i .C;M/ D

ki

qi

®
exp

�
qi .I4 � 1/

2
�¯

(33)

where ki and qi are elastic constants for the i th fiber. The strain invariants I1, I3, and I4 are defined
as follows:

I1 D trC; I3 D detC; I4 DM � C �M: (34)

For the damage parameters, the same evolution law as in (28) is used, except that for each phase of
the material, there is a different set of parameters as discussed in [38].

Given the energy function (31), the fourth-order tangent moduli tensor can be derived as follows:

C WD .1 � �m/Cm � ˇm�m0.Sm ˝ Sm/C

NX
iD1

h�
1 � � f

i

�
Cf
i � ˇ

f
i�

f
i

0 �
S f
i ˝ S

f
i

�i
(35)

where ˇm D 1 if the damage of the matrix evolves within the time increment or ˇm D 0 otherwise,
ˇf
i D 1 if the damage of the i th fiber evolves within the time increment or ˇf

i D 0 otherwise, �m0

and � f
i

0
are the derivatives of the damage parameters defined in (28) with respect to the maximum

thermodynamic force defined in (29), and Sm and S f
i are the effective (undamaged) second Piola–

Kirchhoff stresses for the matrix and the i th fibers given by the following:

Sm WD 2f m @‰
m

@C
(36)

and

S f
i WD 2f

f
i

@‰f
i

@ C
(37)

where f m and f f
i are the volume fraction of the matrix and i th fiber, respectively.

The effective tangent moduli tensors can be calculated as follows:

Cm WD 2
@ Sm

@ C
(38)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
DOI: 10.1002/nme



A. MOTA ET AL.

and

Cf
i WD 2

@ Sm

@ C
: (39)

It should be noted that the fourth-order tangent C from (35) is computed as the second deriva-
tive of the strain energy with respect to the right Cauchy–Green deformation tensor C . The strong
ellipticity condition (1) requires the tangent A that is obtained as the second derivative of the strain
energy with respect to the deformation gradient F . One tangent can be converted to the other using
the following relation (in indicial notation)

Aijkl D Slj ıik C FipCpjlqFkq (40)

where Slj are the components of the second Piola–Kirchhoff stress (including damage contribution)
of the corresponding phase (e.g., matrix or fiber component), ıik is the Kronecker delta, and Fij are
the components of the deformation gradient.

5.2.2. Uniaxial tension test. The finite deformation anisotropic model is tested under monotoni-
cally increasing uniaxial tension loading illustrated in Figure 8.

The material properties for both the matrix and microfibers are listed in Table III.
The axial stress versus stretch behavior of the uniaxial tension test is shown in Figure 9a, where

the X denotes the onset of material bifurcation. We use the two-step procedure together with the
adaptive time increment discussed in Section 4 for the detection of bifurcation. Figure 9b shows
the degradation of the determinant function for all five parametrizations until material bifurcation is
detected. In this loading test, all five parametrizations detect bifurcation at the same time, that is ,
when the axial component of the deformation gradient F11 D 1:1798.

As in the previous example, the computation time of the different parametrizations within the
loading increment leading to bifurcation is recorded and shown in Table IV. Again, the density
of the initial sampling is represented by the sampling interval and the number of sampling points.

Figure 8. Schematic illustrating the uniaxial tension of a reinforced-fiber composite under finite deforma-
tions. Fibers are oriented along EM1 and EM2.

Table III. Material properties for anisotropic damage model.

Matrix Fibers

Lamé constant � D 80 Elasticity constants k1 D k2 D 100
Lamé constant � D 80 Elasticity constants q1 D q2 D 1:0

Damage variable �m
1 D 1:0 Damage variable �f

1I1 D �
f
1I2 D 1:0

Damage variable 	m D 4:0 Damage variable 	 f
1 D 	

f
2 D 4:0

Volume fraction f m D 0:2 Volume fraction f f
1 D f

f
2 D 0:4

Direction vector M1 D .0:8; 0:6; 0:0/
M2 D .0:8; 0:6; 0:0/
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Figure 9. Uniaxial tension test on finite deformation anisotropic damage model: (a)stress versus axial stretch,
with the X indicating bifurcation, and (b) degradation of det A for different parametrizations.

Table IV. Computation time for different parametrizations in the uniaxial tension test within
the loading increment leading to bifurcation.

Total time [�s]

Sampling Sampling [�s] Newton [�s]

Interval Points Spherical Stereographic Projective Tangent Cartesian

0.05 41 396 272 5832 329 407
275 121 116 156 5648 184 183 146 330 77

0.10 21 244 201 968 207 201
83 161 31 170 783 185 51 156 99 102

0.20 11 196 187 302 169 120
30 166 9 178 111 191 17 152 25 95

0.30 7 199 206 249 193 107
12 187 4 202 28 221 6 187 11 96

0.40 5 207 205 266 180 104
7 200 2 203 11 255 3 177 6 98
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Table IV. Continued.

Total time [�s]

Sampling Sampling [�s] Newton [�s]

Interval Points Spherical Stereographic Projective Tangent Cartesian

0.50 5 179 — 233 — 120
10 169 11 222 5 115

0.60 3 181 172 228 190 193
5 176 1 171 3 225 2 188 2 191

0.70 3 211 170 190 143 117
5 206 1 169 2 188 2 141 2 115

0.80 3 — 207 185 179 98
1 206 2 183 2 177 2 96

0.90 3 — 203 221 185 100
1 202 3 218 2 183 2 98

1.00 3 — — 236 — 117
3 233 2 115

1.50 1 — — — — —

The dash ‘–’indicates that the parametrization fails to detect bifurcation in this loading increment.
For each interval, the time on the first line is the total run time, and the two smaller numbers
below it correspond to the time for initial sampling and the time for the iterative Newton scheme,
respectively.

Figure 10. Spherical parametrization: landscapes of det A for the uniaxial tension test of the finite
deformation anisotropic model at different axial stretch levels.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
DOI: 10.1002/nme



CARTESIAN PARAMETRIZATION FOR MATERIAL INSTABILITY

Figure 11. Stereographic parametrization: landscapes of det A for the uniaxial tension test of the finite
deformation anisotropic model at different axial stretch levels.

Figure 12. Tangent parametrization: landscapes of det A for the uniaxial tension test of the finite
deformation anisotropic model at different axial stretch levels.
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Figure 13. Cartesian parametrization: landscapes of det A for the uniaxial tension test of the finite
deformation anisotropic model at different axial stretch levels.

Figure 14. Plane views of the landscapes of the determinant of the acoustic tensor at bifurcation for the
uniaxial tension on the finite deformation anisotropic model. The white stars indicate global minima at

n1 � .0:768;�0:641; 0:000/ and n2 � .0:768; 0:641; 0:000/.
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In addition to the total computation time, the time for the initial sampling stage and the iterative
Newton scheme are also reported. In general, as the number of sampling points decreases, so does
the total computation time. Fewer sampling points, however, may lead to a poor initial guess for
the Newton iterative scheme, which may result in a greater overall computation time to arrive at a
converged solution. Also, it is observed that, except for the very dense sampling case (interval=0.05),
most of the computation time is spent on the second stage, that is , the iterative Newton scheme.
Because of the added complexity of the material model, different parametrizations are more sensitive
to the density of the initial sampling grids. The spherical parametrization fails to correctly detect
the bifurcation when the sampling interval is greater than 0.6. The stereographic, projective, and
tangent parametrizations, although more robust in this case, are computationally more expensive.
The Cartesian parametrization is the most efficient in terms of the total computation time and the
time spent on the iterative Newton scheme. At the same time, this parametrization is relatively
insensitive to the sampling intervals.

To gain insight into the influence of the parametrizations on the determinant function det A as
loading proceeds, we plot in Figures 10–13 the landscapes at four different axial stretch levels for
different parametrizations. Moreover, the corresponding plane views of the determinant landscapes
at the bifurcation are also shown in Figure 14, where the white stars indicate global minima.

Table V. Anisotropic finite deformation model: success rate and computation time of the
Newton iterative scheme with a single random initial guess.

Spherical Stereographic Projective Tangent Cartesian

Success rate (%) 13.4 32.3 71.5 32.3 74.4
Average iteration count 4.37 4.91 8.04 4.57 6.93
Average run time (�s) 270 274 483 245 267

A total of 1000 random trials are performed for each parametrization.

Figure 15. Anisotropic finite deformation model: results of the Newton iterative scheme with a single ran-
dom initial guess plotted on contours of the determinant function at bifurcation. A solid circle (�) indicates
that the initial point leads to a successful detection of bifurcation and its directions. A cross (�) indicates

failure. A total of 1000 random trials are performed for each parametrization.
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As can be seen from Figure 13, the Cartesian parametrization again results in a simple bowl-
shaped landscape of the determinant function consistently throughout the loading process, which is
in contrast to the more complex landscapes of the spherical (Figure 10), stereographic (Figure 11),
and tangent (Figure 12) parametrizations. Note that for the Cartesian parametrization, the two global
minima are separated by a very small ridge. Although our method is able to detect multiple global
minima, the implementation stops when finding the first of the multiple minima, which is sufficient
for the purpose of identification of the bifurcation condition.

As in the case of the small deformation model example in Section 5.1, the robustness of the
different parametrizations on the detection of material bifurcation is analyzed by randomly gen-
erating a single initial point for the Newton iterative scheme and eliminating the initial sampling.
A total of 1000 random initial guesses are generated for each parametrization. The success rate
and computation time are recorded and summarized in Table V. The results are consistent with the
small deformation model example, that is , the Cartesian parametrization is the most robust and
computationally efficient of all the ones tested.

A visualization of the robustness of each parametrization with 1000 random initial guesses
is shown in Figure 15. If the initial guess leads to a successful detection of bifurcation and its
directions, the point is marked as a solid circle (�). Otherwise, it is marked as a cross (�).

As in the case of the small deformation model example in Section 5.1, the Cartesian parametriza-
tion performs better in terms of trade-off between computational efficiency and robustness. In a
nonlinear large-scale finite element simulation, this optimal trade-off between computational effi-
ciency and robustness becomes critical. We note that for this finite deformation example, the
single-stage approach of [25] cannot correctly detect the bifurcation time nor the bifurcation
direction. The Cartesian parametrization thus provides a valuable tool in numerical bifurcation
analysis.

6. CONCLUSION

In this work, we examine the numerical performance of five different parametrizations for the detec-
tion of the loss of the ellipticity condition for the analysis of material instabilities. An algorithm
based on an initial sampling on a parametric grid followed by an iterative Newton scheme is intro-
duced as a robust and efficient method for the detection of the bifurcation condition. In addition,
we introduce a new parametrization that we term Cartesian for the representation of the normal
vector that defines the acoustic tensor in terms of the tangent moduli tensor. We demonstrate with
numerical examples that the Cartesian parametrization offers the best performance in terms of com-
putational efficiency and robustenss as compared with other four parametrizations. In summary,
we find that

1. The classical bifurcation condition by means of the acoustic tensor can be used for a very
general class of materials that include viscoelasticity, viscoplastiticy, and rate dependence by
recourse to incremental varriational constitutive updates.

2. Idealized isotropic and anisotropic damage models subjected to simplified loadings provided
sufficient complexity to evaluate the proposed parametrizations for minimization.

3. The parametrization of the normal vector significantly affects the complexity of the objective
function to be minimized, which in turn influences the computational efficiency and robustness
of the algorithm used for the detection of bifurcation.

4. The commonly used spherical parametrization is efficient provided that the initial sampling
interval is fine enough and the initial guess is a good approximation to the minimum. This
parametrization, however, suffers from singularities for the representation of points at its poles.

5. The stereographic and tangent parametrizations are the least robust, that is , they are more
likely to have convergence issues. The projective parametrization is much more expensive.

6. The Cartesian parametrization is the most robust for the material models and loading condi-
tions tested. It does not have any singularities, and it is also computationally efficient. The
Cartesian parametrization represents an optimal trade-off between computational efficiency
and robustness and provides a valuable tool for efficient and robust numerical analysis of
material instability in a large-scale finite element analysis.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
DOI: 10.1002/nme



CARTESIAN PARAMETRIZATION FOR MATERIAL INSTABILITY

Future work will develop the computational infrastructure necessary to extend our current
work on inelastic constitutive models undergoing large deformations to the complex loadings that
accompany the fracture and failure of engineering structures.
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APPENDIX A: VARIATIONAL CONSTITUTIVE UPDATES

The mechanical response of the solids considered here is characterized by a dissipation potential of the form

D.F; PF ;Z; PZ/ WD PA.F;Z/C �.F; PF ;Z/C  �.Z; PZ/; (A.1)

in which A.F;Z/ is the Helmholtz free-energy density, �.F; PF ;Z/ is a viscous potential,  �.Z; PZ/ is a
dual-kinetic potential or dissipation function, F is the deformation gradient, andZ is a collection of suitable
internal variables that describe the state of the material at a given point. The first Piola–Kirchhoff stress and
the conjugate thermodynamic forces to Z are given by the following:

P WD
@D

@ PF
.F; PF ;Z; PZ/ D

@A

@F
.F;Z/C

@�

@ PF
.F; PF ;Z/; Y WD �

@A

@Z
.F;Z/; (A.2)

respectively. In order to ensure a variational structure, we have postulated the existence of a dual-kinetic
potential or dissipation function  �.Z; PZ/ such that

Y D
@ �

@ PZ
.Z; PZ/: (A.3)

Next, we minimize the dissipation potential (A.1) with respect to the internal variable rates as follows:

inf
PZ

ŒD.F; PF ;Z; PZ/� D inf
PZ

�
PA.F;Z/C  �.Z; PZ/

�
C �.F; PF ;Z/;

D inf
PZ

�
@A

@F
.F;Z/ W PF C

@A

@Z
.F;Z/ � PZ C  �.Z; PZ/

�
C �.F; PF ;Z/:

(A.4)

This is equivalent to stating that the internal variables should not produce any net work, that is,�
@A

@ Z
.F;Z/C

@ �

@ PZ
.Z; PZ/

�
� PZ D 0 8 PZ; (A.5)

which in turn leads to Biot’s equation for standard dissipative systems

@A

@ Z
.F;Z/C

@ �

@ PZ
.Z; PZ/ D 0: (A.6)

Approximate solutions to (A.6) may be found by recourse to the incremental energy density function for
a time increment t 2 Œtn; tnC1�

w.FnC1; ZnC1/ WD

Z tnC1
tn

�
PA.F;Z/C �.F; PF ;Z/C  �.Z; PZ/

�
dt; (A.7)

in which the integral is evaluated using a midpoint-like rule as follows:

w.FnC1; ZnC1/ �A.FnC1; ZnC1/ � A.Fn; Zn/C

4t

�
�

	
FnC˛;

4F

4t
; ZnC˛



C  �

	
ZnC˛;

4Z

4t


�
(A.8)

with

4t WD tnC1 � tn; 4F WD FnC1F
�1
n ; 4Z WD ZnC1 � Zn; (A.9)
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and

FnC˛ WD expŒ.1 � ˛/ log Fn C ˛ log FnC1�;
ZnC˛ WD .1 � ˛/ Zn C ˛ ZnC1;

(A.10)

where ˛ is an algorithmic parameter. The implicit assumption in this interpolation is that the deformation
gradient F belongs to a Lie group and thus requires the exponential and logarithmic maps for its proper
interpolation, whereas the internal variables Z belong to a space that admits direct linear interpolation [40].
In order to obtain an explicit scheme, we choose ˛ D 0. Next, we define the incremental stress potential as
follows:

W.FnC1/ WD inf
ZnC1

Œw. FnC1; ZnC1/�

D inf
ZnC1

�
A. FnC1; ZnC1/ � A. Fn; Zn/C4t 

�

	
Zn;
4 Z

4t


�
C

4t�

	
Fn;
4 F

4t
; Zn



:

(A.11)

This minimization provides an optimal path for the internal variables Z in the time increment t 2 Œtn; tnC1�.
Furthermore, the Euler–Lagrange equation corresponding to (A.11) is

@A

@ ZnC1
. FnC1; ZnC1/C4t

@ �

@ ZnC1

	
Zn;
4 Z

4t



D 0; (A.12)

which is a discrete version of Biot’s equation (A.6) [41]. The incremental first Piola–Kirchhoff stress and
tangent moduli can be computed in turn as follows:

PnC1 WD
@W

@ F
. FnC1/; AnC1 WD

@2W

@ F 2
. FnC1/; (A.13)

respectively.
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