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A B S T R A C T

The average shear-wave velocity in the first 30 m of subsoil, Vs30, is a key indicator of site response affecting
the ground-motion amplification for many earthquake engineering applications. Mapping of Vs30 over a
large region is commonly done through proxy-based models correlating Vs30 with geological or topographic
information. In this paper, a multiscale random field-based framework is presented and applied to mapping
Vs30 over extended areas. This framework accounts for spatial variations of Vs30 values across different length
scales and is able to adaptively refine around areas of high interest while maintaining consistent description
of spatial dependence. In the case study site, Suzhou City, a total of 309 shear-wave velocity measurements
are compiled and used to calculate Vs30 values, from which the statistical and spatial parameters for the
random field model are inferred. USGS topography-based Vs30 data are also collected and used as secondary
information to improve the accuracy of predictions. The random field models are coupled with Monte Carlo
simulations to obtain a multiscale Vs30 map and its associated uncertainties at the Suzhou site. The new Vs30

map is then applied to site classification and amplification factor characterization in the studied region to
demonstrate its applications.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The time average shear-wave velocity in the first 30 m of subsoil,
denoted as Vs30, is an important site parameter used in estimating
site response, classifying sites in recent building codes and loss esti-
mation (Boore, 2004). Because of its importance and effectiveness as
a site parameter for site response prediction, the NGA-West2 project
(Ancheta et al., 2014; Seyhan et al., 2014) made a project-level deci-
sion to compile a site database in terms of Vs30. The U.S. Geological
Survey (USGS) earthquake hazard program also provides and main-
tains a global Vs30 map server. Site databases in terms of Vs30 give
useful site information that allows engineers to choose appropriate
site conditions for various design and analysis purposes.

While the Vs30 can be computed directly given a shear-wave
velocity measurement, such geophysical measurements are typically
very sparse. Therefore, various descriptors or quantitative metrics
of site condition have been proposed for the purpose of estimating
Vs30 in the absence of geophysical measurements. For instance, Wald
and Allen (2007) proposed a technique to derive first-order site-
condition maps directly from topographic data, where the Vs30 values
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are correlated with the topographic slope. Wills and Clahan (2006)
and Wills and Gutierrez (2008) grouped shear-wave velocity data by
corresponding geologic units to determine the shear-wave velocity
characteristics of each geologic unit. Then, the geologic unit desig-
nation and shear-wave velocity characteristics are applied to sites
without shear-wave velocity data. This revised geologic designation
improves the previous geology-based Vs30 method by Wills et al.
(2000) and Wills and Silva (1998). In addition, geology-topography
hybrid (Scasserra et al., 2009) and geomorphometry-based proxy
relationships (Yong et al., 2012) have been proposed for estimating
Vs30.

A major limitation of proxy-based methods is that, while initially
derived from or constrained by observed Vs30 values, these methods
do not directly incorporate the Vs30 measurements into the gener-
ated site condition map. This, along with the increasing amount of
available direct geophysical measurement data, motivates the appli-
cation of geostatistical methods to Vs30 and site condition mapping.
Examples of recent work along this line include the work of Thomp-
son and his coworkers (Thompson et al., 2014, 2011, 2010), where a
new map of Vs30 for California is developed accounting for geology,
topography and most importantly, site-specific Vs30 measurements.
The geostatistical approach of regression kriging (RK) is applied
to combine these constraints to predict Vs30. This approach allows
the resulting Vs30 map to be locally refined to reflect the rapidly

http://dx.doi.org/10.1016/j.enggeo.2017.01.026
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Fig. 1. Surficial geology map of the Suzhou site and locations of shear-wave velocity measurements (black dots in the figure). II3 is the Taihu alluvial plain; II4 is the lake-swamp
plain; I1, I2 and I3 are outcrops with different rock types. Cross sections 1-1 and 2-2 are used to plot example soil profiles for the top 50 m. The little triangle shows the location of
the sample Vs profile in Fig. 3.

expanding database of Vs30 measurements. Yong et al. (2013) and
Wald et al. (2011) applied the kriging-with-a-trend method to map-
ping Vs30, where the baseline model was derived from topographic
slope. Also, Lee and Tsai (2008) established the spatial relation-
ship between the shear-wave velocity (Vs) and the N value of the

standard penetration test (SPT-N) and adopted the kriging with vary-
ing local means to update the Vs30 maps in Taiwan. Thompson et al.
(2007) modeled the horizontal variability of near-surface soil shear-
wave velocity in the San Francisco Bay Area using geostatistical
methods.

Sample Vs profile

J548

(a) Cross-section 1-1

(b) Cross-section 2-2

Fig. 2. Example soil profiles in the top 50 m for the cross-sections 1-1 and 2-2 shown in Fig. 1.
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Table 1
Explanation of soil type numbers used in Fig. 2.

In this paper, a multiscale random field-based approach is pre-
sented and applied to mapping Vs30 over an extended region. Unlike
existing geostatistical methods for Vs30 mapping, the presented
approach explicitly accounts for the spatial variability of Vs30 across
different length scales and incorporates the compiled database of
direct geophysical measurements and proxy-based Vs30 values. High
resolution predictions of Vs30 can be obtained by adaptively refin-
ing coarse-scale values into finer scales in areas where deemed
necessary while retaining appropriate spatial correlation, which is
a particular useful feature for analyzing fine scale quantities of
interest, such as estimation of uncertainties. Coupled with Monte
Carlo simulations, the multiscale random field models also allow the
quantification of uncertainties in the Vs30 maps. The resulting Vs30

maps preserve known Vs30 data, uphold appropriate spatial correla-
tion and have multiscale resolutions with information on associated
uncertainties.

The order of presentation of this paper goes as follows: Section 2
summarizes the engineering geology, field data and secondary Vs30

data of the Suzhou site; In Section 3, key components of the devel-
oped geostatistical tools for mapping Vs30 are presented; Statistical
and spatial characterizations of the known Vs30 data will be discussed
in detail in Section 4; In Section 5, new Vs30 maps will be repre-
sented and applications of those new Vs30 maps will be discussed in
Section 6.

2. The Suzhou site: engineering geology and field data

Suzhou is a populous city on the alluvial plain of the Yangtze
River Delta in the southeast of Jiangsu Province, China. In this section,
the engineering geology and field data of the Suzhou site are briefly
summarized. The dominating alluvial deposits beneath the studied

(a) (b)

Fig. 3. Sample shear-wave velocity data obtained from the suspension P-S velocity logging method: (a) depth sequential waveform arrivals; (b) shear wave velocity (Vs) versus
depth.
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Table 2
Summary of soil parameters obtained from borehole samples.

qsat (g/cm3) qd (g/cm3) LL PL

Min 1.73 1.14 22.9 11.5
Max 2.96 2.59 70.1 34.4
Mean 2.81 1.51 35.6 20.1

site are soft and sensitive. In addition to geotechnical engineer-
ing challenges associated with construction on soft soil, long-period
ground motions of far earthquakes may also cause serious damage to
engineering projects in this area (Zhan et al., 2009).

2.1. Engineering geology

The studied area of Suzhou City is covered by Quaternary deposits
of fluvial, lake, lagoon and marine origins. Most of the area is a com-
bination of a lacustrine plain and delta plain. Some layers of the
lake and river deposits are rich in over-consolidated clay. Most of
the lagoonal and marine deposits, however, consist of soft clays,
which are dark in color and rich in organic matters. Fig. 1 shows the
boundaries of the studied area, the major surficial geology units and
locations of shear-wave velocity measurements. As shown in Fig. 1,
the western portion of the studied area belongs to the Taihu allu-
vial plain (II3) with interspersed outcrops (I1, I2 and I3). The eastern
portion belongs to the lake-swamp plain (II4). Almost all of the shear-
wave velocity measurements were taken in the geological units II3

and II4. Example profiles of the top 50 m soil are plotted in Fig. 2 (a)
for the Taihu alluvial plain (II3) (cross-section 1-1 in Fig. 1) and in
Fig. 2 (b) for the lake-swamp plain (II4) (cross-section 2-2 in Fig. 1),
respectively. Explanations of the soil type number are summarized
in Table 1.

2.2. Field data

The field data compiled for this study consists of shear-wave
velocity measurement data and soil parameters from lab tests on
samples collected at boreholes throughout the studied site. The

Institute of Earthquake Engineering for Jiangsu Province, China, per-
formed 309 shear-wave velocity tests in the Suzhou site using the
suspension P-S velocity logging method. The suspension P-S logging
system uses a probe that contains a source and two receivers spaced
1 m apart. The probe is lowered into the borehole to a specified
depth, where the source generates a pressure wave in the bore-
hole fluid to be received by the receivers. The elapsed time between
arrivals of the waves at the receivers is used to determine the aver-
age velocity of a 1-meter-high column of soil around the borehole. An
example sequential waveform arrival along depth profile is shown in
Fig. 3 (a) and the corresponding shear-wave velocity profile is shown
in Fig. 3 (b). The location of this profile is marked in Fig. 1 as an tri-
angle. In general, the shear-wave velocity profile corresponds well
with the expected soil conditions. For the top 20 m, the shear wave
velocity is relatively small (around 150 m/s), which corresponds to
the soft soil layers (types 3-1 to 4-1 in Table 1). When the depth
reaches below 20 m, the shear wave velocity increases significantly
(to around 350 m/s) and remains constant from 20 to 50 m, which
corresponds well to the relatively hard soil layers (type 6-1 to 8-1 in
Table 1).

Soil samples were also collected at selected boreholes and ana-
lyzed to obtain various soil parameters of interest including the
saturated density (qsat), the dry density (qd), the liquid limit (LL) and
the plastic limit (PL). Table 2 summarizes ranges of soil parameters
obtained from borehole samples. The water table is found to be at
1.35 to 1.97 m below ground surface.

2.3. Calculation of Vs30 at measurement locations

Given the shear-wave velocity measurement data, a time-
averaged shear-wave velocity to a profile depth z, denoted as Vsz, can
be calculated at each measurement location as

Vsz =
z

Dtz
(1)

Dtz =
∫ z

0

dz
Vs(z)

(2)

Fig. 4. Map of Vs30 measurements in Suzhou City, with histogram inset.
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where Dtz is the travel time for shear waves from depth z to the
ground surface; Vs(z) is the shear-wave velocity at depth z; the
integral is usually evaluated in practice through summation across
velocities taken as constant within depth intervals. When the shear-
wave velocity profile extends to depths of 30 m or greater, z is taken
as 30 m, and the resulting velocity is Vs30. When z < 30 m, Vs30 can-
not be calculated directly and various correlations between Vs(z) and
Vs30 have been developed to estimate Vs30 (Boore, 2004; Boore et al.,
2011). For this study, all shear wave velocity measurements reach
over 30 m.

Fig. 4 plots the Vs30 values at 309 measurement locations as well
as their histogram (the inset).

Those Vs30 values shown in Fig. 4 are only available at loca-
tions with measured shear-wave velocity profiles. To estimate and
map Vs30 values across the region of interest, geostatistical tools and
multiscale random field models will be developed and presented in
Section 3. Statistical and spatial characterization of the known Vs30

will be discussed in Section 4.

2.4. Secondary Vs30 data

In addition to the calculated Vs30 values at measurement loca-
tions, proxy-based Vs30 values are also collected in this study
from the U.S. Geological Survey (USGS) global Vs30 map server
(http://earthquake.usgs.gov/hazards/apps/vs30/). Those Vs30 values
are based on a simplified approach that correlates Vs30 value with the
topographic slope (Wald et al., 2004; Allen and Wald, 2009). Such
secondary Vs30 data are necessary because almost all Vs30 measure-
ments (307 out of 309) are within the Taihu alluvial plain (II3) and the
lake-swamp plain (II4), i.e., within relatively soft soils. There is little
information on Vs30 values in hilly areas (I1, I2 and I3). The USGS Vs30

data will be used to improve Vs30 predictions in hilly areas, which
will be discussed in more detail in Section 5.

Fig. 5 plots the USGS Vs30 data along with its histogram. It is clear
from the map that the hilly areas in the western part of the city have
much higher Vs30 values. Moreover, in the alluvial plain, the mean of
the USGS Vs30 is 219 m/s and the minimum is 180 m/s. The mean of

the measured Vs30 values is 200 m/s and the minimum is 153 m/s.
Distributions of the USGS and measurement Vs30 values have also
been compared. In general, it is found that the USGS Vs30 values tend
to predict a higher estimate in the alluvial plain.

3. Geostatistical approach to characterize spatial variability
across scales

In this section, key components of the developed geostatistical
tools and random field-based models to map Vs30 are presented. The
rational behind a geostatistical approach is the fact that the mea-
sured soil parameters at one location are more similar to those at
neighboring locations than those further away, i.e., soil parameters
are spatially correlated. It is desirable to characterize the spatial
structure of soil parameters of interest to improve the accuracy of
predictions at unsampled locations.

In this study, a form of covariance called the semivariogram is
used to describe the spatial structure, which is equal to one half of
the variance of two random variables separated by a distance h as

c(h) =
1
2

Var[Z(u) − Z(u + h)] (3)

where Z(u) is the variable under consideration at location u and Z(u+
h) is the lagged version of the variable.

Under the condition of second-order stationarity, the semivari-
ogram is related to the spatial correlation q(h) by

q(h) = 1 − c(h)
COV(0)

(4)

where COV(0) is the covariance at h = 0. The semivariogram c(h)
is typically preferred by the geostatistics community because it only
requires the increment Z(u)−Z(u + h) to be second-order stationary,
which is a weaker requirement than the second-order stationarity of
the variable itself. In the following examples, the spatial structure of

Fig. 5. USGS global slope-based Vs30 data: map of the Vs30 values in Suzhou City and the corresponding histogram (inset).

http://earthquake.usgs.gov/hazards/apps/vs30/
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the soil parameter under consideration (i.e., the Vs30 value) is char-
acterized by the semivariogram model, which can be converted to q

and implemented within a random field model.
To account for the multiscale nature of soil variability, Chen et

al. (2012) and Baker et al. (2011) extended the definition of spa-
tial correlation to multiple scales based on the notion that material
properties at the coarser scale are the arithmetically averaged val-
ues of the properties over corresponding areas at the finer scale.
Such notion is formally similar to the block kriging (Goovaerts, 1997)
but with a different intention to consistently and adaptive refine
a coarse scale random field. The multiscale random field allows a
higher resolution field to be adaptively generated around areas of
high interest.

In this work, two scales of interest are considered and all the
subsequent developments apply to variables following the standard
Gaussian distribution, i.e., variables after the normal score transfor-
mation. The variable of interest Zc

I at the coarse scale is defined as the
arithmetically averaged fine scale values over corresponding areas as
(Chen et al., 2012)

Zc
I =

1
N

N∑
i=1

Zf
i(I) (5)

where the superscripts “c” and “f” correspond to coarse and fine
scales, respectively; N is the number of fine scale elements within a
corresponding coarse scale area (element) I.

Defining the variable of interest at the fine scale and using the
relation of Eq. (5), the expression for the mean, the variance and the
spatial correlation of coarse scale variables of interest can be explic-
itly derived. The mean of a coarse scale element Zc

I can be derived by
taking the expectation of Eq. (5) as

lZc = E[Zc
I ] =

1
N

N∑
i=1

l
Zf

i(I)
= 0 (6)

where l
Zf

i(I)
is the mean at the fine scale, which equals to zero for

variables following the standard Gaussian distribution. Accordingly,
if the variance of the fine scale variable is unity, the coarse scale
variance, denoted as s2

Zc , can be computed as

s2
Zc = E

[
(Zc

I )
2
]

− 0 =
1

N2

N∑
i=1

N∑
j=1

q
Zf

i ,Zf
j
s

Zf
i
s

Zf
j

(7)

where q
Zf

i ,Zf
j

is the correlation between two fine scale element i and j

with variance s2
Zf

i

and s2
Zf

j

, respectively.

The covariance between any two elements Zi and Zj within the
random field is defined as

COV[Zi, Zj] = qZi ,Zj
sZi

sZj
(8)

The correlations between all considered scales can be calculated
by rearranging the definition of covariance such that

qZi ,Zj
=

COV[Zi, Zj]
sZi

sZj

(9)

where Zi and Zj are two elements within the random field at any
scale with variance s2

Zi
and s2

Zj
. By making appropriate substitutions

at each scale using Eqs. (8) and (9), the correlation between elements
at different scales can be obtained as (Chen et al., 2015, 2016)

qZc
I ,Zc

II
=

∑N
i=1

∑N
k=1 qZf

i(I) ,Zf
k(II)√∑N

i=1
∑N

j=1 qZf
i(I) ,Zf

j(I)

√∑N
i=1

∑N
j=1 qZf

i(II) ,Zf
j(II)

(10)

qZf ,Zc
I

=

∑N
i=1 qZf ,Zf

i(I)√∑N
i=1

∑N
j=1 qZf

i(I) ,Zf
j(I)

(11)

where the Roman numerals I, II... are used for the coarse scale ele-
ment number; qZc

I ,Zc
II

is the correlation between two coarse-scale
elements I and II; qZf ,Zc

I
is the correlation between a fine-scale ele-

ment and a coarse scale element I; q
Zf

i(I) ,Zf
k(II)

is the correlation between

a fine element i and a fine element k, which belong to two different
coarse scale elements I and II, respectively. Given the correlation q

between elements at different scales, the corresponding covariances
COV can be easily obtained via Eq. (8).

Once the covariance COV between any two elements at any scale
in the random field is determined, a conditional sequential simu-
lation approach is taken for the simulation procedure. The process
simulates each value individually, conditional upon all known data
and previously simulated values. Using such a process, the condi-
tional distribution of the next value to be simulated in the random
field, denoted as Zn, is given by a univariate normal distribution with
the updated mean and the variance as

(Zn|Zp) ∼ N
(
Snp • S

−1
pp

• Zp,s2
n − Snp • S

−1
pp

• Spn

)
(12)

where Zp is a vector of all known or previously simulated points;
Snp,Spp,Spn are covariance matrices; s2

n is the covariance of the next
simulated point; the subscription “p′ ′ and “n′ ′ refer to the “previous”
simulated point(s) and the “next” point to be simulated, respectively.

Eq. (12) means that the unknown value Zn at an unmeasured loca-
tion can be drawn from the conditional normal distribution with
the mean Snp • S

−1
pp

• Zp and the variance s2
n − Snp • S

−1
pp

• Spn. Once Zn

is generated, it is inserted into the “previous” vector, i.e., Zp, upon
which the “next” unknown value at another unsampled location will
be generated. Such process is repeated until all locations within a
random field are simulated. A key advantage of such conditional
simulation is that it preserves the field data in the random field.
Moreover, as pointed out by Baker et al. (2011), such a simulation
approach is particular suitable for an adaptive refinement process,
where additional fine-scale simulations can be progressively added
in the random field in locations deemed necessary.

4. Data inference - statistical and spatial characterizations of the
known Vs30 data

The multiscale random field models require as inputs the statis-
tical distributions and the spatial structures of the variable under
consideration. In the Suzhou site, a total of 309 Vs30 values are
obtained from direct shear-wave velocity measurements. Fig. 6 plots
the histogram of the 309 Vs30 measurements. Among those 309 Vs30

measurements, 307 measurements are located in the two domi-
nating surficial geological units: the Taihu alluvial plain (II3) and
the lake-swamp plain (II4) as shown in Fig. 1. Those Vs30 measure-
ments are grouped by geological units II3 and II4 to see whether
significant differences exist. Table 3 summarizes the statistical char-
acteristics (e.g., mean, variance, maximum, upper quantile, median,
lower quantile, minimum) of the two groups. As can be seen from
Table 3, the statistical characteristics do not differ significantly
between the two dominant surficial geological units. In subsequent
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Fig. 6. Histogram of all 309 Vs30 values calculated from shear-wave velocity
measurements.

Table 3
Statistical characteristics of the known Vs30.

Statistical parameter II3 II4 Combined II3 and II4

Data count 143 164 307
Mean 198 202 200
Variance 205 216 192
Maximum 236 233 236
Upper quantile 208 212 210
Median 196 203 200
Lower quantile 188 193 191
Minimum 172 153 153

characterizations and examples, geologic units II3 and II4 are grouped
together in random field models. In the outcrop areas (I1, I2 and I3),
no direct shear-wave velocity measurement is available. The USGS
proxy-based Vs30 data are collected (refer to Fig. 5) and incorporated
as known data in those outcrop areas in subsequent random field
simulations.

Fig. 7 plots all measurement data projected in the east–west
and north–south directions along with the trend lines. The trend
line along the west–east direction is almost a horizontal line, indi-
cating little trend in this direction. On the other hand, Fig. 7 (b)
shows slightly increased Vs30 values from north to south. However,
the change is still relatively mild to make any significant impact. It
should be pointed out that 307 of the 309 Vs30 measurements are in
the Taihu alluvial plain (II3) and lake-swamp plain (II4). So, the trend
analysis reveals the trend (or no trend) of Vs30 in those geological
units only.

The empirical or sample semivariogram of Vs30 measurements
are also computed to infer their spatial structure in the studied

Fig. 8. Empirical and fitted semivariogram based on known Vs30 at measurement
locations.

region. The empirical semivariogram, denoted as ĉ(h), is calculated
as (Goovaerts, 1997)

ĉ(h) =
1

2N(h)

N(h)∑
a=1

[Z(ua) − Z(ua + h)]2 (13)

where N(h) is the number of pairs of data (Z(ua) and Z(ua + h))
separated by a vector distance h.

To facilitate the incorporation of the semivariogram into ran-
dom field models, the empirical semivariogram is typically fitted
by a basic semivariogram model or a linear combination of several
basic semivariogram models that are permissible (Goovaerts, 1997).
Fig. 8 plots the empirical semivariogram model as well as the fitted
exponential model of the form

c(h) = y

[
1 − exp

(
− 3h

a

)]
+ t (14)

where h is a scalar measure of the separation distance between a pair
of points; a is the range, i.e., the distance at which the semivariogram
levels off and beyond which the semivariance is constant; y+t is the
sill, which is the constant semivariance beyond the range. The fitted
range for this study site is 2973 m and the sill is 0.9833.

5. Vs30 mapping of the Suzhou site

With the inferred model parameters, the known Vs30 at mea-
surement locations and the secondary Vs30 information in the out-
crop areas (I1, I2, I3), the multiscale random field models are used
to generate Vs30 maps of the Suzhou site. An initial coarse grid
with an element size of 500 × 500 m is used. Lakes are excluded
from the Vs30 maps. The new maps account for and preserve the
site-specific shear-wave velocity measurements and the inherent
multiscale soil spatial structure. When coupled with Monte Carlo
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5
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(a) West-east (b) North-south

Fig. 7. Trend of the known Vs30 values at measurement locations along (a) the west–east direction and (b) the north–south direction.
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(a) Single scale (b) Multiscale

Fig. 9. Sample random field realizations of Vs30 in Suzhou site.

simulations, uncertainties associated with the generated Vs30 maps
can also be estimated. The generated Vs30 maps will be compared
with the available topography-based Vs30 map obtained from the U.S.
Geological Survey global Vs30 database.

5.1. Random field realizations of Vs30

A typical set of Vs30 realizations (single and multiscale) is shown
in Fig. 9. In the multiscale realization, each coarse grid neighbor-
ing a measurement location is refined into 36 fine scale elements,
where high resolution Vs30 are generated through the multiscale
model described in Section 3. Such fine scale field enables predictions
across different scales and can facilitate estimation of uncertainties
at much finer scales without sacrificing computation efficiency. The
secondary Vs30 data from USGS, placed on a grid with a spacing of
800 m, are incorporated as known point data values in the random
fields in the outcrop areas. It should be noted that for the current
study, the amount of the secondary data is fixed. A preliminary work
(Liu et al., 2017) is undergoing to investigate the effect of secondary
data on the spatial structure and the distribution of the resulting Vs30

realizations.
The corresponding histograms and empirical semivariograms of

the simulated Vs30 are shown in Fig. 10. Both single and multi-scale

simulations preserve the statistical characterizations and the spatial
structures of Vs30 inferred from the known measurement data.

Coupling the random field model with Monte Carlo simulations,
the expected Vs30 values across the Suzhou site as well as the asso-
ciated uncertainties can be obtained. Maps of the expected Vs30

values, averaged from 1000 independent Monte Carlo simulations,
are shown in Fig. 11 (a) and (b). An obvious trend manifested in
the map is that high Vs30 values occur in the southern and western
part of the city, especially the hilly areas. Low values are common in
the northern and eastern part, which are consistent with the trends
observed in the measurement data and the knowledge about the
geology of this studied area. It should be noted that, in the current
study, geological boundaries are not explicitly incorporated in the
data reference or in random field simulations.

One of the strengths of the proposed method is its ability to esti-
mate uncertainties associated with generated Vs30 maps. To quantify
uncertainties, coefficients of variation (COV) from 1000 independent
Monte Carlo simulations are calculated at each location and plotted
in Fig. 11 (c) and (d). As shown in the figure, the COVs are generally
very small and approach zero around locations with measurement
data. It is interesting to note that the uncertainties associated with
single scale map are smaller compared to the multiscale counterpart,
especially around locations with known data. Recall that the coarse
(single) scale field can be seen as the average of the corresponding

(a) Single scale (b) Multiscale

Fig. 10. Semivariograms and histograms (the insets) of simulated Vs30 from one set of random field realizations in Suzhou site. Black dots are the empirical semivariogram and
the red solid line is the specified exponential model. The red solid line in the histogram inset is the fitted probability density function. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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(a) Single scale (b) Multiscale

(c) Single scale (d) Multi scale

Fig. 11. Expected Vs30 values and associated uncertainties (coefficient of variations) at the Suzhou site.

fine (multi) scale realizations and such averaging process results the
reduced uncertainties observed in Fig. 11 (c) and (d).

The empirical semivariograms of the predicted Vs30 values are cal-
culated and shown in Fig. 12 along with the error bars indicating
±one standard deviation. It can be seen from Fig. 12 that the specified
exponential spatial structure, which is inferred from measurement
data, is preserved well in the simulations. It is noted that the spa-
tial structures, quantified here by the semivariogram, are different
between single and multiscale. This is because the coarse (single)
scale spatial correlation is derived based on the notion that a coarse

scale element is the average of the corresponding fine scale element.
This averaging of the fine scale points will effectively increase the
correlation of a given distance relative to the fine scale. This effect
has been previously reported and studied in Chen et al. (2012).

5.2. Comparison with USGS Vs30 maps

The newly generated multiscale random field-based Vs30 maps
incorporate and preserve the site-specific shear wave velocity mea-
surement data and their spatial dependency. To understand the
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Fig. 12. Empirical semivariograms of predicted Vs30. Error bars indicate ±one standard deviation.
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(a) USGS (b) Multiscale map

Fig. 13. Comparison of Vs30 maps: (a) USGS topography-based proxy; (b) current study.

effect of local measurement data and spatial dependency on Vs30

mapping, Fig. 13 plots side-by-side the Vs30 map from the current
study and the one from the USGS global Vs30 map server. Note that
the upper limit of the color map is set to Vs30 = 360 m/s, which
corresponds to the upper bound of the NEHRP site class D (refer
to Table 4). Since most of the Suzhou site has soft soil with rela-
tively low Vs30 values, such scale makes the difference among two
maps more distinguishable. As can be seen from Fig. 13, while both
maps capture the general trend of high Vs30 values in the western
hilly area and low Vs30 values in the eastern region, the current map
has significantly higher resolution and has captured the transition
from hilly to plain region fairly well. The current Vs30 map captures a
northeast–southwest band with low Vs30, as reflected from the Vs30

measurement data, which is missed in the proxy-based USGS map.
Moreover, the current map precisely preserves the known Vs30 val-
ues at measurement locations and provides multiscale resolution,
which contains small-scale Vs30 information. Such information can
be used to estimate uncertainties at a much higher resolution with-
out sacrificing the overall computational efficiency.

To quantify the performance of the proxy-based USGS map, the
difference between USGS Vs30 values and the measured Vs30 normal-
ized by the measured Vs30 value is calculated and the histogram of
all 309 data is plotted in Fig. 14. As shown in Fig. 14, many of the
normalized differences are within 0 to 40% range with a few points
indicating over 100% difference.

6. Applications of the new Vs30 maps

Vs30 is a key indicator of site response in many earthquake engi-
neering applications, such as ground-motion prediction equations,
site classification, and earthquake hazard maps. In this section, two
of the applications of the newly generated Vs30 maps will be pre-
sented: Vs30-based site classification in Section 6.1 and the estima-
tion of site amplification factors in Section 6.2.

Table 4
NEHRP site class and corresponding Vs30 range.

Site class Description Vs30

A Hard rock >1500 m/s
B Firm to hard rock 760 to 1500 m/s
C Dense soil, soft rock 360 to 760 m/s
D Stiff soil 180 to 360 m/s
E Soft clay <180 m/s
F Soil requiring site specific evaluation –

6.1. Vs30-based site classification

The National Earthquake Hazards Reduction Program (NEHRP)
classifies a site into 5 groups and provides the range of Vs30 values for
each class as shown in Table 4. Given a Vs30 map, the site of interest
can be classified based on Vs30 values following the NEHRP criteria.

Fig. 15 shows the site classification maps for the Suzhou site based
on the new multiscale random field-based Vs30 and the USGS proxy-
based Vs30 maps. The classification map of Fig. 15 (a) shows that most
of the studied region can be classified as NEHRP soil type D, where
Vs30 ranges from 180 to 360 m/s. In the hilly area in the western part,
the site is classified as soil type C with Vs30 values ranging from 360
to 760 m/s. This is consistent with the known engineering geology of
this region previously described in Section 2.

The site classification shown in Fig. 15 (a) is based on the expected
Vs30 values averaged from 1000 Monte Carlo simulations as previ-
ously shown Fig. 11 (b). To quantify the associated uncertainties in
the site classification, upper and lower bound site classification maps
are also generated by using ±one standard deviation of the expected
Vs30 values. The results are shown in Fig. 16. Compared to the mean
Vs30-based site classification shown in Fig. 15 (a), most of the hilly
areas in the western part of the city remain in the site class C, but the
eastern plain changes to site E when the lower bound (mean minus
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(a) Multiscale (a) USGS

Fig. 15. Vs30-based NEHRP site classification (Table 4): (a) based on the new multiscale Vs30 map; (b) based on the USGS Vs30 map.

(a) Lower bound (b) Upper bound

Fig. 16. Uncertainties associated with the site classification maps based on expected Vs30 values ±one standard deviation: (a) lower bound (mean −one standard deviation);
(b) upper bound (mean +one standard deviation).

one standard deviation) Vs30 map is used, which is considered to be
a more conservative estimation.

6.2. Amplification factor mapping

The second application of the new Vs30 map is the estimation
and mapping of site amplification factors. Among various commonly
used models for estimating site amplification factor, the model by
Choi and Stewart (2005) is used in this work to illustrate the applica-
tion. In the Choi and Stewart (2005) model, the model for estimating
the amplification factor Fij is expressed as

ln(Fij) = c ln

(
Vs30ij

Vref

)
+ b ln

(
PHArij

0.1

)
+ gi + 4ij (15)

where PHAr is the peak horizontal acceleration for the reference site
condition and is expressed in the unit of the gravitational accel-
eration g; b is a function of the regression parameters as given in
Eq. (6.2); c and Vref are the regression parameters; gi is a random
effect term for the i-th earthquake event with zero median and a
standard deviation denoted as t; 4ij represents the intra-event model
residual for the j-th motion in i-th earthquake event, which has a
median near zero for well-recorded events with a standard deviation
denoted as s .

The variation of model parameter b is described in the following
model (Choi and Stewart, 2005):

b = b1 Category E

b = b2 + (Vs30 − bv)2 b1 − b2

(180 − bv)2
180 < Vs30 < bv (m/s)

b = b2 bv < Vs30 < 520 (m/s) (16)

b = b2 − (Vs30 − 520)
b2

240
520 < Vs30 < 760 (m/s)

b = 0 Vs30 > 760 (m/s)

where the units of Vs30 are in m/s; b1, b2 and bv are model parame-
ters. For this reference model, Abrahamson and Silva (1997) provided
values of site factor model parameters from regression analysis,
which are summarized in Table 5.

With the amplification model Eq. (15), Eq. (6.2) and the fitting
parameters in Table 5, site factors Fa (corresponding to a low-period

Table 5
Regression parameters for site amplification factors after Abrahamson and
Silva (1997).

Parameter b1 b2 bv c Vref (m/s) t s

Fa (0.3) −0.41 −0.11 300 −0.46 532 0.35 0.54
Fv (1.0) −0.39 0.02 300 −0.69 519 0.41 0.55
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(a) T=0.3s (b) T=1.0s

Fig. 17. Maps of amplification factors in Suzhou City based on the Choi and Stewart (2005) model: (a) Fa (T = 0.3 s) and (b) Fv (T = 1.0 s).

range with T = 0.1–0.5 s) and Fv (corresponding to a mid-period
range with T = 0.4–2.0 s) are calculated based on an assumed
PHAr of 0.1 g. Results of the site factors are plotted in Fig. 17 for Fa

(T = 0.3 s) and Fv (T = 1.0 s). Fig. 17 shows that most of the eastern
and central areas have relatively high amplification factors with a
maximum of 1.7 for T = 0.3 s and 2.2 for T = 1.0 s, which corre-
lates well with the softer soils (NEHERP site classes D and E, refer to
Fig. 15 (a)).

7. Conclusions

In this work, a multiscale random field-based framework is pre-
sented to map Vs30 values over extended areas. The random field
model explicitly accounts for the spatial variability of Vs30 across dif-
ferent scales while incorporates and preserves measured Vs30 data.
The framework is applied to map Vs30 over the Suzhou site, where
309 shear-wave velocity measurements and topography-based Vs30

values are compiled. Monte Carlo simulations are coupled with the
random field model to quantify uncertainties of the generated mul-
tiscale Vs30 map. The new map is then applied to site classification
and amplification factor characterization in the studied region. In
summary, it is found that:

1. Quantitatively consistent Vs30 estimates over different length
scales over the entire studied region can be obtained using the
multiscale random field model. The resulting map has multi-
scale resolutions and is particular convenient to incorporate
and preserve local measurement data into a regional Vs30 map.

2. Comparison of the new Vs30 map with existing USGS
topography-based Vs30 map shows that the new Vs30 map
provides more accurate and more detailed Vs30 values, espe-
cially in the eastern plain region of the studied site because
of the incorporated local Vs30 measurements and their spatial
dependency.

3. Uncertainties associated with the new Vs30 map are quanti-
fied in terms of the coefficient of variation (COV) calculated
from Monte Carlo simulations. In general, the COVs approach
zero around locations with measurement data and gradually
increase in areas without any known Vs30 values. COVs in sin-
gle scale random field map are found to be slightly smaller
when compared to the multiscale counterpart.

4. The site application map based on the newly generated Vs30

map shows that relatively stiff soil (NEHRP site class C) is found
in the northwestern part of the city and the soil tends to be
softer in the southeastern region (NEHRP site class D and E).
This trend in the soil type correlates well with the calculated

amplification factor map, where high amplification factors
are predicted in the southeastern part of the city, indicating
potential seismic amplification effect in this region.
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