
Graduate Student Research Seminar Fall 2025

Data-driven Koopman Control-Oriented
Learning Framework for Improved
Autonomous Offroad Mobility

Kartik Loya (PhD student) Advisor: Phanindra Tallapragada

Monday, November 24th 3:00 pm (EST) – 132 Fluor Daniel Building

Abstract

Autonomous off-road vehicles generate high-frequency sensor data that encapsulate complex interactions with unstructured terrain, often modeled using computationally expensive physics-based frameworks. This work proposes a data-driven alternative by updating Koopman operator-based models using streaming sensor data. To manage computational and memory constraints, we develop a batch learning algorithm that selectively updates the Koopman operator only when new data exhibits novel dynamics, detected via the Grassmannian distance between subspaces. The algorithm reduces computational load by updating only with novel data and learning basis functions, thereby minimizing data storage and processing time while maintaining prediction accuracy. This method demonstrates its applicability in controlled dynamical systems, thereby reducing model complexity and enhancing control strategies.

Scan the QR code for more information and a schedule of upcoming speakers!

