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Motivation

• Concentration polarization reduced performance of 

membranes in terms of flux and water quality.

• Fouling is more problematic when concentration 

polarization is high. 

Objectives

• Develop a computational framework to predict 

concentration polarization of patterned 

membranes.

• Evaluate the effect of hydrodynamics on 

concentration profiles. 

• Explore the performance of different membrane 

patterns.
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2: Model Introduction
Introduction

• Computational fluid dynamics (CFD) uses numerical 

analysis to solve and analyze fluid flow problems.

• Models were built with COMSOL Multiphysics (version 

5.3). 

Geometry

• Block: width 4.096 mm, depth 2.048 mm, height 8 mm.

• Eight geometry types: elementary shapes including line
and grooves, pillars, chords, and pyramids. Mesh:
boundary layer along the membrane surface due to
drastic gradient changes.

• A pattern size of 512 µm was studied first, and then four
smaller sizes were studied: 2 µm, 8 µm, 32 µm, and 128
µm. Velocity was normalized in different geometries
based on a total channel height of 16 mm.

• This work was partially supported by the National Science Foundation, Designing 

Materials to Revolutionize and Engineer our Future (DMREF) program, under 

grant number 1534304.

• Computational resources provided by the Palmetto Cluster at Clemson University. 

( ) ( )
2

TP


  = − +   +u u u u

0 =u

𝐮𝛻𝑐 = 𝐷𝑐𝛻
2𝑐

• Navier-Stokes

𝑢𝑚 = 𝐴 ∆𝑝 − 𝑎𝑜𝑠𝑚𝑐𝑤

Key Governing Equations

• Permeate flux

• Conservation of momentum

• Convective diffusion

Key Boundary Conditions

• Inlet velocity

(Adjusted based on v=0.1 m/s 
in a 16 mm channel)

• Outlet pressure
pout = 400 psi

3: Results & Discussion
CONCENTRATION AND SHEAR PROFILES

Concentration

ANALYTICAL VS. NUMERICAL SOLUTIONS

PERMEATE FLUX VS PATTERN SIZES

• Analytical solutions were used to validate modeling 

results among all the flat membranes. 

• Seven membranes with different surface features were 

scrutinized and compared with flat membranes. None 

of the patterns reduced CP. 

• Patterns created higher surface areas compared to a 

flat membrane, leading to a higher nominal flux through 

the membrane surface in the models. 

• The fouling mitigation seen in experiments with 

nanoscale patterns is likely due to other factors. 

• Future studies will incorporate adsorptive fouling.

Shear Stress

Feature 

Length (µm)

Feature Height 

(=0.5·Length) (µm)

Between-Feature 

Distance (=Length) 

(µm)

Fillet (=0.2·Height) 

(µm)

2 µm 1 µm 2 µm 0.2 µm

8 µm 4 µm 8 µm 0.8 µm

32 µm 16 µm 32 µm 3.2 µm

128 µm 64 µm 128 µm 12.8 µm

512 µm 256 µm 512 µm 51.2 µm

mol/m3

Feed boundary 

Concentrate boundary

Permeate

(Wall abcd: moving wall. Wall abfe and wall dcgh: periodic boundaries. 
Membranes are located at efgh. Inlet concentration: 0.025 M.) 
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