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Introduction 
Concentration polarization (CP) is difficult to measure experimentally, so building models can 
be a better way to characterize and quantify it. Many studies have focused on building analytical 
models to predict CP, in which the classic film theory provides an estimate of the degree of CP 
based on the flux and mass on both sides of the membrane system (Zydney 1997). Numerical 
models, specifically with computational fluid dynamics (CFD),  have been developed to combine 
Navier-stokes, continuity, and convective-diffusion equations to solve for the CP layer and water 
permeation flux condition (Kim and Hoek 2005; Lyster and Cohen 2007).   

A critical piece to the numerical modeling accuracy is to use fully coupled flow and transport 
equations. In one class of the modeling, people have used analytical models to theoretically 
predict permeation flux, and use numerical simulation to predict flow and mass transfer 
(Ishigami and Matsuyama 2015). Peng et al (Xie, Murdoch, and Ladner 2014) studied fouling in 
spacer filled channels with equations fully coupling flow and transport, and predicted fouling 
mitigation that matched the lab results decently. In our models, our flow and transport equations 
are combined to solve for mass transfer equations. Osmotic pressure is linearly related to salt 
concentration, and flux is calculated through the pressure difference. By incorporating diffusivity 
through the convective diffusion equation, we are able to predict permeate flux decline more 
accurately.  

The main goal of this study is to investigate hydrodynamic influence on patterns ranging from 2 
µm up to 512 µm. And for each size, we built ten geometry shapes that cover elementary shapes 
including line and grooves, pillars, chords, pyramids, and bio-inspired patterns. This paper gives 
a detailed overview on important characteristics including CP, shear stress, pressure drop, 
velocity distribution, permeate flux and so on. In the end, we built analytical models to compare 
with the numerical results, and analyzed how patterns affected the mass transfer coefficient.  
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Materials and Methods 
 

Geometries studied 

Multiple models of RO membrane systems with varied geometries were built for analysis. The 
geometries include flat, several line and groove patterns, rectangular and circular pillars, circular 
chords and pyramids, which are based on the same size range. In addition to these elementary 
patterns, a few bio-inspired patterns including shark skin and lotus leaves were also created for 
simulations. Models were partly created with SolidWorks, solved with Comsol Multiphysics 5.3 
and run on the Palmetto Cluster, Clemson University’s primary high-performance computing 
(HPC) resource.  

For the boundary conditions, we have run models at different salt concentrations and with 
different diffusion coefficients, but the conclusions of this study (e.g. the comparative CP results 
among patterns) did not change, so here we are only reporting one salt concentration and 
velocity. To be consistent with an ongoing project in our lab, we used inlet velocity (uin) as 0.1 
m/s, feed (inlet) concentration as 0.025 M MgSO4, which is calculated from 3000 ppm MgSO4. 
The diffusion coefficient is 10-9 m2/s.   

At the outlet, the pressure was set to be 2758 kPa (400 psi). Viscous stress and diffusive flux at 
the outlet were assumed to be negligible. The boundary on the top was set as a wall moving at a 
velocity equal to uin, parallel to the membrane. The flux velocity normal to the wall at the 
membrane um is set as 

𝑢" = 𝐴(∆𝑃 − 𝑎*+"𝑐-)                         (1) 

Where A is the water permeability of membrane that is equal to 5.24x10-12 m/(s·Pa), aosm 

(osmotic coefficient) is 4872 Pa/(mol/m3).  

 
Figure 1. Conceptual model for the membrane simulations. The block represents the water- and 
solute-filled space above the RO membrane. At wall abcd water is moving with a velocity 
adjusted based on the Hagen Poiseuille equation, and at the feed boundary, the inlet velocity is 
set according to the model size, both assuming the full channel is 16 mm high. Inlet 
concentration is 0.025 M. Concentrate boundary is 2800 kPa. Wall abfe and dcgh are periodic 
boundaries. The membrane is at the bottom (pink color).  
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In these models, a block was used to represent the membrane system.  Data including pattern 
lengths, heights, distances and the fillets that were used to curve the edges are shown in the table 
below. Pattern sizes range from 2 µm to 512 µm, with each time the length increasing four times. 
The distance between patterns is the same as the length, while the height of the pattern is equal to 
half of the length (see Table 1. For details). Edges were curved by adding fillets with a radius 
that is one fifth of the height.  

 

 

 

Figure 2. Examples of elementary geometries and bio-inspired patterns. Left: line and groove 
rectangular patterns. Middle: rectangular pillars. Right: shark skin.   

 

Table 1 Parameters of the geometries 

Feature Length 
(µm) 

Feature Height 
(=0.5·Length) (µm) 

Between-Feature Distance 
(=Length) (µm) 

Fillet (=0.2·Height) 
(µm) 

2 µm 1 µm 2 µm 0.2 µm 
8 µm 4 µm 8 µm 0.8 µm 
32 µm 16 µm 32 µm 3.2 µm 
128 µm 64 µm 128 µm 12.8 µm 
512 µm 256 µm 512 µm 51.2 µm 

In these models, all the geometries are proportional to the pattern sizes.  

 

Governing equations 

Fluid and transport of magnesium sulfate (the assumed rejection rate is 100%) inside the 
membrane system was described by Eqs. (2)-(4). 

                                                                        (2) 

                                                                                                                         (3) 

                                                     ∇ ∙ 𝑐 = 𝐷∇2𝑐                                                              (4) 

Where u is the fluid velocity vector, t is time, ρ is density, P is pressure, µ is dynamic viscosity, 
c is concentration, and D is the diffusion coefficient. Navier-Stokes equations include 
conservation of momentum (Eq. (2)) and conservation of mass (equation (3)). Equation (4) is the 
convection-diffusion equation. Due to the full coupling of momentum and mass transport, the 
solutions are simultaneous, combining Navier-stokes, continuity and convective diffusion 
equations to show the most accurate results.  
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Results and Discussions 
 

Concentration and Shear Stress 

In nanometer and micrometer scale, the concentration profiles for most models showed a low 
concentration at the entrance with a gradual increase towards the downstream end. Concentration 
polarization was manifest with a high concentration near the membrane surface and a decrease 
towards the bulk solution. For patterned membranes, the concentration accumulation is more 
intense before getting to the valley, but less intense after coming out of the valley. An example 
of concentration profiles of membranes with line and groove rectangular patterns is shown in 
Figure 3 (left).  

Shear stress in these models was highest in the apex of the patterns and lowest in the valleys. The 
value reduced as it entered further into the channel with each peak value being smaller. The low 
shear stress corresponds to high concentration area.  

                      
Figure 3. Concentration distribution (left) and shear stress (right) along the membrane 
surface for line and groove rectangular 512 µm patterns. 

 

Concentration Polarization (CP) Factor 

The method to compare CP is by calculating CP factor, defined as the ratio of salt concentration at the 
membrane surface to bulk concentration (cw/cf). In this paper, CP factor is calculated as the ratio of salt 
concentration at the patterned membrane surface to inlet concentration (25 mol/m3). Several models were 
run and results were collected. 

Results indicate that none of the patterns, and none of the pattern sizes, decrease concentration 
polarization. Compared to a flat membrane, they all resulted in higher CP factors.  

 

Velocity Distribution and Streamlines 

In these models, we adjust the velocity based on a total channel height of 16 mm. To do so, we 
applied a moving wall on the other side of the channel and applied a velocity calculated through 
the Hagen Poiseuille equation.  
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Smaller patterns resulted in the distortion of velocity distribution, but they did not cause any 
significant interruptions. The velocity at the valley around the corner is the lowest, indicating a 
potentially high salt concentration accumulation. 

 

Analytical Results vs. Numerical Simulations 

In the analytical results, we built up the correlation between Reynolds number, Schmitt number, 
and Sherwood number. 

                                                    𝑆ℎ = 1.85 7𝑅𝑒 ∙ 𝑆𝑐 ∙ CD
E
:
F.2G

          (6) 

Sherwood number is the rate of convective mass transfer to rate of diffusive mass transport.  

																												𝑘 = 𝑆ℎ ∙ I
CD

                          (7) 

																										JK
JL
= 𝑒𝑥𝑝 7O

P
:                        (8) 

 

 Figure 4. Analytical results in comparison to numerical simulations for 5 flat models. 

Numerical simulations fit the analytical results very well, reassuring us of the accuracy of these 
models.  

Conclusions 
Patterned membranes with various sizes and shapes were studied and analyzed. Velocity 
distribution, concentration, shear stress, permeate flux and pressure gradient were plotted and 
compared. None of the patterns decreased CP, despite the fact that some vortices were developed 
near the membrane surface. Our study confirmed the influence of flow characteristics and shear 
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stress to changing concentration distribution in a membrane system. Higher shear stress at the 
apex resulted in lower concentration, whereas lower shear stress at the valley caused more CP, 
resulting in a higher CP value on average. Our models provide a systematic examination over a 
wide pattern size range, and they covered most of the common sizes of patterns that can be 
fabricated. Our models showed that reduced foulants on patterned membranes observed in the 
lab or simulated in other models might not be due to the mitigation of CP. Other factors such as 
system hydrodynamics or operating conditions can cause different fouling results.  
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