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Clemson Under Siege: Ancient
Relic Survives

September 1, 2024

In this series’ third and final podcast episode, discover the untold story
of Clemson College’s existential battle against the Hartwell Dam
project in 1956. Uncover how Plan X became the unexpected solution

that saved Clemson’s...
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Clemson Under Siege: The
Unbuilt Canal

A

AUEUST 10,

In 1956, Clemson College faced potential submersion as Hartwell Dam
plans threatened to flood its campus. We continue to uncover the
high-stakes battle between college officials and the federal

government, revealing a forgotten alternative that...
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‘,’ CIVIL AND ENVIRONMENTAL
Ladner Research Group @ ENGINEERING AND EARTH SCIENCES
Pl: David A. Ladner

Department: Environmental Engineering and Earth Sciences

» Partial desalination of saline and brackish
waters using nanofiltration (NF) and
electrodialysis (ED) technologies for salt-
tolerant crop cultivation.

RESEARCH GROUP FOCUS RESEARCH HIGHLIGHTS

Anaerobic membrane bioreactor-ultraviolet
(AnMBR-UV) process tailored to the needs of
crops in hydroponic controlled environment
agriculture (CEA).

P

Membrane-based Water Treatment

Surface and colloid science

Fouling reduction

Community water and wastewater s ' : - Water Treatment Resiliency
treatment resilience and sustainability. —

Energy assessments for industrial processes. WEARE INTERESTED IN COLLABORATORS WHO:

. . s2a . Work on infrastructure, social science, resilience,

Ambient water quality and citizen science computational modeling, data science, etc. We need folks

through Adopt-a-Stream. : who can provide fundamental insight into what we do, as
weell as folks who can help us scale up and apply our work in
the real world.

Research Group Website
https://davidladner.org
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Controlled Environment Agriculture (CEA)
= @Greenhouses or modular containers
= Controlled water, light, temperature, & ventilation
= Soil-based or hydroponic
= Vertical farming = vertically stacked layers
= Rural, peri-urban, and urban CEA

Wind direction Outside Humidity

Sky temperature

Wind speed

Gilobal radiation

Outside air temperature
QOutputs

PAR onto the canopy
Inside air temperature
Inside air humidaty
Cover tlemperature
Stem

Suil surface lemperature
) 1* layer soil temperature
2™ Jayer Soil temperature 4

INPUTS

Ventilation system (D
Cooling system [D
Shading system [D

Inputs and outputs of CEA (Shamshiri et al., 2018)



Hydroponic CEA Platform

= High-value food crops that can be grown in hydroponic CEA
= Leafy greens, tomatoes, cucumbers, beans, and strawberries
= Water quality concerns:
= |mpacts of water quality on crop yield
= Crop salt tolerance with saline/brackish water
= Pathogens with reclaimed municipal wastewater
= Plant bioaccumulation of metals etc. with urban stormwater

= Nutrient delivery SN e T

= Nutrient Film Technique (NFT) | o e =)
= NFT solution recycling

Reservoir

N\

—— = &

=
!

= Water and nutrient efficiency «—— Nutrient

Return

= Plant pathogen control

Water/Nutrients

Air Nutrient
Pump Pump

https://www.agritecture.com
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Water sources for agricultural irrigation

« Conventional sources
» Freshwater from surface and groundwaters
* Increasingly impacted by regional droughts

* Non-conventional (marginal quality) sources
» Saline/brackish surface and groundwaters (rural)
« Salinity
» Reclaimed municipal wastewater (centralized and
decentralized)

« Human pathogens and chemical micropollutants,
and plant pathogens

« Attribute: presence of nutrients (P & N)
» Urban stormwater (urban and peri-urban)

« Heavy metals, hydrocarbons, pesticides, PFAS,
microplastics



blowdown (based
on ET & sa_linity)

Reclaimed Wastewater CEA Platform Final

Return I
_____________ | | Flow
Residual Su_pp ementa Recycling of
: : Nutrients (N, P, K) _
Soil Conditioner "SR Biosolids NFT Solution
Balancing (UF Filtration

Peri-Urban Nutrients and/or UV
Trunk Sewer High-Quality (N, P. K)
(Sewer Decentralized Irrigation Water
Mining) Anaerobic Membrane w/ In Situ
Bioreactor (AnMBR) Nutrients
+ UV Disinfection N, P, K)
Large-Scale I .
Residential I
Building

Municipal
/Domestic
Wastewater

Crop Cultivation Platform
* Hydroponic Approach
 Greenhouse or
Modular Container
Vertical Farming

* Nutrient Film Technique

L o — — W _

heat (UL ET ) heat, air-con, or
CO, enrichment

Plant High

Grinder Harvest -Value
Crops

Wastes

Decentralized integrated hydroponic CEA/NFT platform: Novel Wastewater Reclamation Scheme




The AnMBR system realizes full automation and high-
frequency data acquisition.
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Data acqwsntlon

!

Flow meter Balance

valves
=1 Inertgas
presressasnaanaas Biogas st LT
: : .

Chemical
Control module ] DFH%_Q
Pumps Solenoid Backwash 2
<
Pressure
relief valve
Differential
_ pressure
B sensor
DI water F
\ 4

Gravity

Water
reservoir w/
thermostat

Heat exchanger

S

A
Sampling

............... @ ...........................

Sampling
| |e——<C=
Gravity

~ Permeate

CP)@ aﬂgT

Storage

uv
Disinfection

Suction

Bioreactor volume: ~9.6 L
Temp:35° C

Typical HRT: 18 hr

Typical SRT: multiple months
Typical OLR: 4 g/L/day

Data acquisition: 4-5 Hz

P: pressure

F: flowrate

O: ORP

C: conductivity

DP: differential pressure



An automated AnMBR was constructed for continuous
operatlon W|th minimal operator time commitment.
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We built a flow meter using a balance and a “toilet” mechanism.

Permeate in

Self-empty level
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Filtration, backwash, and cleaning conditions

; P

= Filtration: . ‘
» Duration: 30 minutes - '
= Flux: 3.4-9.4 LMH
= Crossflow velocity: 0.12 — 0.19 m/s

= Backwash
» Trigger: every 30 minutes
= Duration: 5 seconds

= Strength: 169 LMH (limited by pump)
= DI water

= Super backwash
= Trigger. TMP > 5 psi
= Duration: 30 seconds

» Strength: 169 LMH
= DI water

CLEMS@N
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The program was coded in LabVIEW for full automation.
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» Cleaning strategies are the combinations of

backwash and CEB triggers.

« Backwash
 Time
« TMP

 Chemical enhanced backwash
 Time
« TMP
e Duration

* Filtration is controlled with the following

criteria
e Constant flux

» Constant TMP
» Constant pump speed

17
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We are augmenting the AnMBR with harvest waste for
resource recovery.
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Harvest waste collection
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Cotreatment of harvest waste and municipal wastewater

Municipal
Wastewater
How fermenter
helps s,
&

so""‘e
_,»—-—l— Bioreactor
Fermented harvest waste - [Feed :
performance

Organic C&N, NH,, P, K > — \_

Bioreactor

[0

Membrane
performance

[ Nutrients ]7
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Membrane performance - Raw data
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Membrane performance — Raw data
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Membrane performance - Resistance

Membrane Resistance (1/nm)

2500 10
T e X - — = e —— ————m———— -8
2000
----- Offical membrane permeability - 2,500 LMH/Bar
Bl Membrane Resistance (1/nm)
—— Average TMP (kPa)
—J - Average flux calculated from balance reading (LMH) -6

Average TMP (kPa)
Average flux calculated from balance reading (LMH)
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Membrane performance - Resistance
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] @ e Max&Min Membrane Resistance for current AnMBR
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Bioreactor performance

1200 100% 2250 800
I ml tCH4/day
2000 4 = ml sCH4 / day
000 - ® Feed tCOD adjusted (mg/L) (Outlier) -8~ Target Feed COD (mg/L) - 700
1000 ® Feed sCOD adjusted (mg/L) (Outlier) L 80%
I Feed tCOD adjusted (mg/L) _ 1750 A [ 600
@@ Feed sCOD adjusted (mg/L) -
800 - B Permeate COD (mg/L) . = 1500 A
—@— tCOD removal | o, X £ - 500
- —@— sCOD removal 60% = c
= © 2 1250 1
£ 600+ 2 5 - 400
) 5 5
O = 55_ 1000 -
O -40% S o I
O c 300
400 g 750 -
[}
= - 200
L 50% 500 A
200 A
250 _ B 100
0 - - 0% 0- -0
6‘300 330 3300 3300 3300 6‘30 3300 3300 330 0
TRy TRy TR, R TRy Ry R3S 2
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Target Feed COD (mg/L)
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Nutrients - N

225

Feed nitrate (Outlier)
Feed nitrite (Outlier)
Feed nitrate

@ Feed Organic N (Outlier) [ Feed ammonia o
@)
|
@@ Permeate nitrate
I
I

@ Feed ammonia (Outlier) [ Permeate Organic N 5

200 1 [ Feed Organic N [ Permeate ammonia

Feed nitrite
Permeate nitrite

175 A T

150 A

1254 T

100 A

75 A

50 A

Organic N and ammonia concentration (mg/L N)
Nitrate and nitrite concentration (mg/L N)

25

0- 0-
‘930% ‘53‘00% ‘53‘00% 8300% 83002 ‘9300% ‘53‘00% 8300}( 83003 83001 8300% ‘53‘00% 8300% 83002 ‘53‘00% ‘53‘00% 8300% ‘93003
‘ Ry, *R> *R ‘ Ryp FRo, PR3 ‘ Ry, R *R ‘ Koy KRy,
-100 200 300 20, ?00 300 -100 200 300 20, ?00 3 0
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Nutrients — P and K

2026

80

@ Feed total-P adjusted (mg/L PO4) (Outlier)
I Feed total-P adjusted (mg/L PO4)
@ Permeate total-P (mg/L PO4)

N W s wu (@)} ~J
o o o o o (@]
1 1 1 1 1 1

P species concentration (mg/L PO4)
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120 A

K concentration (mg/L)
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artial esalination sirjl/g Rver Osmsis and Nanofiltration for’
Salt-Tolerant Hydroponic Crops

Jing-Hua Tzeng, David A. Ladner, W. Shane Walker, Clinton Williams, Geethakrishna Puligundla, R.
Karthikeyan, & Gary Amy

@8  ENIRONVENTAL ENGINEERING
" AND EARTH SCIENCES

Clemson” University 28




Goal ”

é To develop a new paradigm of desalination for the agriculture sector,
partial desalination (focus on NF innovations) whereby tailored water quality is
produced in accordance with the salinity tolerance of target crops.

NF Partial Desalting Processes -Idroponlc system

o2 ) O
Brackish!| ™° _»( Key Criteria
Waters (e | _»(
‘ ok | ¥ m% SR
), Ts ( L

- Q= B::
= Recovery

(quantity)

>
J[SJ

K LM

(Tzeng et al., Desalination 613 (2025) 119072)




Crop Yield, Water Quality (TDS) & Energy Consumption
of Different Desalting Scenarios

Save the freshwater for
. drinking water purposes
4) 1
/.

P

|| Fruits & Vegetables Yield |-10
() Fruits Yield (Hoffman)

'y

;.;
a Food

m
, O Specific Energy
A Consumption

. § (SEC)

L | | | | [ | I L | n
0 5,000 10,000
TDS, mg/L ~16 dS/m
Diluted Seawater (SW) @10,000 mg/L Wa ter (Data source: Tzeng et al., (2025), Maas and Hoffman (1977), Wallender and

simulate a coastal groundwater aquifer Tanji (2011), and International Water Management Institute (IWMI, 2004).



Desalting processes 4

“'5 EHVlRUHMENTﬁL ENGINEERING USDA Agricultural Research Service Evaluation Criteria:
AND EARTH SCIENCES @ U.S. DEPARTMENT OF AGRICULTURE . Specific Energy Consumption (SEC)

Saline Water

i . ] * Recovery (%) (Water Quantity)
& W, ’ Brackish Waters l . Water Quality (TDS)
| |
3 v < * ‘
Gary  David Clinton Jing-Hua [ Partial Desalting Process ] [Comp,l::,i'z::amng]
Amy Ladner Williams Tzeng I
. l l Re\tarse
Water Quantity: [ Osmosis ]
[ Nanofiltration (NF) ][ Electrodialysis (ED) ][ Blending] (RO)
0 |
Feed water (100%) ¥ 3 (7 T
— Recovery % . S1SD [ o ] ’s .5
1 1S-CR 1s-
(= Product/Feed)
| ] l |

= Brine % - Brine B )

(" Brine | (CTTTTTTTTTEEETY Y

| Nutrients Stock
| Management : | Nutrient Solution Tank : ——————! PP(:Irmfatet/
S e - : w/ Water for plant growth | Processed roduct water
[
\ /

L K F F F § N N N N § N |




Nanofiltration (NF) Modeling

Input

o1

© o N

Feed Flowrate: 2.1 m3/h
Feed TDS: 10,000 mg/L
Variable:

e #ofStage:1,2,3

« #of pressure vessels (PV): 1 per stage

« #of elements per PV:
o 6at1ststage,
o 2to4 at2" stage;
o 3at3"stage (2.5-inch element)
Feed pressure (15 stage): 10-40 bar
Boost pressure (2" and 3" stages): 20-40
bar
Concentrate recycle
Internally staged design (ISD)
Closed circuit
Membrane type:
NF90, NF200, BW30

I

32

Output

s

DuPont

Flowrate (m3/h): Feed, Conc., Permeate
Perm Flux (LMH)
Recovery (%)
Feed pressure (bar)
Water quality:
e TDS(mg/L): Feed, Conc., Perm.
* lon concentration: Feed, Conc. Perm.
° pH
6. Utility & Chemical cost
« SEC (kWh/m?3)

a0~

Membrane

Permeate
Collection Tube

Feed Flow

Permeate carrier
Feed spacer

Fiberglass pressure vessel




-

Applied pressure (bar)

1S vs.
_>‘ Permeate (Product)
Feed

1-stage

Pressure Vessel

Recovery (%)

M aX. PreSSUNe oo
40 -
NF90 CR = 70, 50 %
' :
30_ ........................................................................... :
- 0
1S-6 CR 70', 50, 30 IA
201@ 1S-6+CR : :
I I
10 >
Higher
Recovery%
0 ' I T T y T T .
0 20 40 60 80 100

1S-CR -
=
1S- Feed _>( Permeate (Product)
CR ? Concentrate
N Valve

2.5

1 NF90

. CR 70% CR 70%
— 2.0—_
m i
£ : CR 50% CR 50%
£ 157 CR 30%
= ]
X
o 1.0—:
- : 0
D ;5] 156 As CR%1

1 & 15+CR-6 Recovery%! &

0 SEC |
y J y J — 1 J '
0 20 40 60 80 100

Recovery (%)



1S-ISD (Internally Staged Design)

Applied pressure (bar)

SEC (kWh/m?®)

Feed O—»(.muuﬁ: Permeate (Product)
Concentrate

40 ISD NF90+NF200-2:4
ISD NF90+NF200-3:3
304 @ ISD NF90+NF200-4:2
20-
® o
® L
10 &
0 T T T T T T T T
0 20 40 60 80 100
Recovery (%)
25
] ISD NF90+NF200-2:4
2ol ISD NF90+NF200-3:3
T ISD NF90+NF200-4:2
1.5
1.0
] # of Tighter membrane ¢
0.5
1 Recovery% ¥
.1sect
T T T T y T T T T
0 20 40 60 80 100

Recovery (%)

Applied pressure (bar)

SEC (kWh/m?®)

407 ) ISD NF200+NF90-2:4
ISD NF200+NF90-3:3
30-{ @ ISD NF200+NF90-4:2
o .
- o
o *
10- *
0 T T T T T T T T
0 20 40 60 80 100
Recovery (%)
2.5
] ISD NF200+NF90-2:4
2o ISD NF200+NF90-3:3
T @ ISD NF200+NF90-4:2
1.5
1.0-. ° * S » ®
1# of Looser membrane %
0.5
1Recovery% %
+JSEC?
i ] v 1 v 1 4 1 v
0 20 40 60 80 100

Recovery (%)

34



CC (Closed Circuit) *
s

Permeate (Product)
Concentrate (periodic blowdown)

N (] b
o o o
1 1 1

Applied pressure (bar)
2

Membrane
Cross-section
4-inch
2.5
.................................................... # of elements|
NF90 pressure{& SEC{
-~ 2.0~
oy ™
/ .E ]
=1 é 197 ':3.5’55: R Y
= . i , Recovery %
8-inch = 1 cc3
CC-4 o 1.0/ cc-4
CC-5 w Jccs
CC-6 @ 51 1 cce
CC-3**(8-inch) | 1 | cc-3**(8-inch) Size of elements t
CC-6**(8-inch) [ ] ccC-6**(8-inch) pressurel&SECI
' . . . . 0 : : . ' .
0 2I0 4I0 6I0 BIO 100 0 2I0 4IO 6I0 8I0 100

Recovery (%) Recovery (%)



2S with various numbers of elements

2-stages

Applied pressure (bar)
—h N W =

o

Feed =)
@ d (w(m Permeate (Product)
Boost Concentrate
--------------------------------------------------- e B L= B T T e
& 25-6:38+19 | 8 % o 25-6:3-8+10 |8 25-6:2-8+10
O 2S-6:3-10+19| 5, ¢ 25-6:3-8+16 | ¢ ¢ 25-6:3-8+16
(1] ol O 25-6:4-8+19
© 25-6:3-15+19| 5 30- <{ 25-6:3-8+19 | 5 30- :
» ®
2"d stage 8 ond gta 3 nd
— O = 204 < 5@ 9€ = 20- 2™ stage
................................................... ‘ ¢ .g' ;---?-5'9--51?99---»0»0 .g' i2nd stage...... 4 o
1st stage o : 2" stage aQ EZ“" stage
175 15 age e 10 2 107...¢
1%t stage 2‘ 1st stage % 11% stage
g T T T 1 T T 0 T T T T y T T T 0 N T — y —
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Recovery (%) Recovery (%) Recovery (%)



2S with various numbers of elements

2-stages

@ Feed O»(M(m Permeate (Product)
Boost Concentrate
2.5 . 2.5
1@ Variable 1%t Stage Pressures and 1@ Constant 18t Stage Pressures and
1 Constant 2" Stage Pressures. 1 Variable 2" Stage Pressures.
-~ 2.0 - 2.0
™ . ™ -
E 10 256:2-8+19 E 25-6:2-8+10
L 1.5 25-6:2-10+19 L 1.5 25-6:2-8+16
S ] 2s-6:2-15+19 6:4 . 4 25-6:2-8+19
X< 10 28-6:3-8+19 <>O ..... < 1.0 64 4 . % 25-6:3-8+10
8 T 25-6:3-10+19 ’ """ > 8 e o > 22—6:3-8+16
] -6:3- i n 25-6:3-8+19
W 19256315419 4o aoanressure | | oy | # of 2™ stage eIementI<> 25-6:3-8419
0.5 < 25-6:4-8+19 | 054 Recovery % :4-8+
1 25-6:4-10419 Recovery%f 1 secl @ 25-6:4-8+16
@ 25-6:4-15+19  SEC | . O 25-6:4-8+19
v b | ' 1 v | B ' ! ' | ' | !
0 2I0 40 60 80 100 0 2I0 4I0 60 80 100

Recovery (%) Recovery (%)
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3S 38

Applied pressure (bar)
k. N (4] =&

[=]

B 3-stages R
(=] e o N
Boost ( Permeate (Product)
Boost » Concentrate
2.5+ 2.5
--------------------------------------------------- : 1St & 2nd stage pressure t 3rd stage pressure t
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General Rating of NF Processes
based on the parameter chosen
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Ongoing Work

Bench-Scale Nanofiltration Experiments

W\

”‘r [ SEE N,

'}

r-

é Membrane properties:
» Surface charge

* Pore size
* Molecular weight cutoff (MWCO)

4 Operating Conditions:
* Applied pressure
* Flux
* Recovery
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Ongoing Work

Bench-Scale Electrodialysis Experiments

Conventional Monovalent
selective
Concentrate:
Na®*, Cl,

. Product Water:
Product Water: Ca?*, Mg2*, Ca2 Concentrate:

Lowinions S0, g Na*, Cl

PPN 4~4~4¥

Feedwater: Feedwater:
Na*, Cl,, Ca®*, Mg?*, SO,* Na*, Cl,, Ca?*, Mg?*, SO,*
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