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ABSTRACT 

Dendritic polymers have recently been shown to entrap polycyclic aromatic 

hydrocarbons (PAHs) and other hydrophobic materials. Laboratory results have 

shown that poly(amidoamine) dendrimers and hyperbranched  poly(ethyleneimine) 

polymers form complexes with linear (hexadecane) and polyaromatic 

(phenanthrene) hydrocarbons, increasing the dispersion of these model crude oil 

components.  It is thus hypothesized that crude oil can be dispersed using these 

polymers. Compared with commercial dispersants, dendritic polymers have the 

potential to be more biocompatible and less toxic.  

The objective of this research was to gain a fundamental understanding of 

the interactions of dendritic polymers with crude oil. We used Louisians Sweet 

Crude oil to explore the dispersion effectiveness of the polymers and the 

mechanisms of oil-polymer interactions. Results were compared with Corexit 9500, 

the dispersant used in response to the Deepwater Horizon disaster of 2010.  We 

investigated the factors that may influence the experimental results, such as dispersant to 

oil ratio (DOR), mixing and settling time, sample preparation methods and sample 

collection methods to establish experimental protocols that adequately characterized the 

effectiveness of the polymers.  

The effects of polymer size and surface groups on oil dispersion effectiveness 

were examined through an optimized effectiveness test. Five hyperbranched 

polyethylenimine polymers (HY-PEI) with molecular weight 1.2, 1.8, 10, 70 and 750 kDa 

and amino surface terminal groups were examined with the effectiveness test. The results 
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showed the 10 kDa HY-PEI had the highest dispersion efficiency (58%) slightly larger 

than Corexit (56%). 70 kDa and 750 kDa HY-PEI also had a relatively high 

effectiveness, 48% and 40% respectively; however, the low molecular weight polymers, 

1.2 kDa and 1.8 kDa had low dispersion efficiency, 11% and 17%, similar to the no 

dispersant scenario which had 13% oil dispersion.  

We also tested three dendrimers with different surface terminal groups: amino 

(positive charge), amidoethanol (neutral charge) and succinamic acid (negative charge). 

The results showed that G4-PAMAM-NH2 with positive surface charge had the highest 

efficiency of these three, 42%. G4-PAMAM-OH and G4-PAMAM-SA had lower 

dispersion capacity, with effectiveness of 16% and 19%.  

We concluded that the polymers with moderate size and positive charged surface 

groups are very capable in dispersing light sweet crude oil. Further exploring the 

interactions of dendritic polymers with crude oil, we conducted dynamic interfacial 

tension test and oil droplet size distribution test. The dynamic interfacial tension curves 

shows that all the polymers can reduce the interfacial tension and the larger polymers are 

more capable at decreasing the interfacial tension rapidly. The efficiency of polymer 

dispersion for oil has also been verified by drop size distribution measurements. Polymers 

with high performance in effectiveness test tend to create smaller droplets than polymers 

that show less effectiveness. Again, moderately sized polymers gave the smaller average 

droplet size and polydispersity. By further analyzing the data we developed a conceptual 

model for the oil dendritic polymer interaction, which is a hybrid surfactant and Pickering 

emulsion mechanism.  
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1 INTRODUCTION 

The Deepwater Horizon incident began on April 20, 2010 and released over 200 million 

gallons of crude oil to the Gulf of Mexico (AFP 2010), second only to the estimated 420 million 

gallons released during the Gulf War (Tawfiq & Olsen 1993). The release was greater than the 

140 million gallons of the IXTOC 1 offshore well spill in 1979 (Patton et al. 1981), and far 

exceeded the 11 million gallons of the 1989 Exxon Valdez spill off the coast of Alaska and the 

4.3 million gallons of the 1969 Santa Barbara spill off California’s coast (C&EN 2010). In 

addition to these major individual blowouts, an estimated 134 million gallons of oil was spilled 

collectively between 1990 and 1999 in the US, mostly from transport (ships and pipelines) and 

fixed facilities (Etkin 2001). It could be argued that oil spills are a part of “normal” petroleum 

industry operations. 

During the Deepwater Horizon incident it was apparent that there was a lack of 

knowledge about how to deal with a release of that magnitude. Not only were engineers 

uncertain about how to stop the flow and collect the spilled oil, but the effects of dispersant use 

were not clearly understood. Decision makers were uncertain as to what extent the dispersants 

would be effective at breaking up the oil and they were even less certain of the environmental 

consequences of such large-scale use. 

Due to the unprecedented nature of the spill, BP along with the U.S. Coast Guard and the 

Environmental Protection Agency decided to try the first subsea injection of chemical 

dispersants directly at the source. Over 700,000 gallons of chemical dispersants were sprayed 

directly onto the gushing oil at the wellhead in an attempt to keep some of the oil under the water 

surface. The dispersant use was intended to facilitate the biodegradation of the spilled oil by 

microbes to ultimately mitigate the shoreline impacts on fisheries, wetlands and other sensitive 
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environments. The National Oceanic and Atmospheric Administration (NOAA) estimated that 

over 400,000 barrels of the spilled oil were dispersed underwater in the form of oil plumes and 

small oil droplets. 

Oil dispersion makes the oil more available to subsurface species where it can have a 

toxic effect. Corexit 9500 (hereafter referred to simply as Corexit) had a 96-hr median lethal 

concentration (LC50) of 25.2 ppm for Menidia beryllina, a small fish that is found in estuaries of 

the Gulf (C&EN 2010). The 96-hr LC50 of No. 2 fuel oil is 10.7 ppm, but a mixture (1:10) of 

Corexit and No. 2 fuel oil is 2.61 ppm, ten times the toxicity of the dispersant alone. Later testing 

on Louisiana Sweet Crude (LSC) oil showed that the combination of Corexit  with LSC was 

slightly less toxic than the LSC alone, but the oil toxicity was not significantly reduced by the 

dispersant (Hemmer, M. J., Barron, M. G., and Greene 2010). A more environmentally friendly 

dispersant would be one that effectively breaks up crude oil and produces a dispersed mixture 

that is significantly less toxic than the oil itself. 

Previous investigations (Nisato et al. 2000; Lin et al. 2005; Maiti & Goddard 2006; Chen 

et al. 2007) have shown  that dendrimers, such as poly (amido amine) (PAMAM) and poly 

(propyleneimine) are capable of encapsulating PAHs, inorganic solutes, and metal cations and 

anions, and then reversibly releasing the contaminant load upon changing the solvent pH and 

electrolyte strength or by a UV trigger (Diallo et al. 1999, 2007b, 2008; Arkas et al. 2003).The 

hydrophobic interior of the dendritic polymers, usually available at neutral pH, is especially 

suitable for the binding of hydrocarobons through hydrophobic, complexation and van der Waals 

interactions. The surface charge of the dendritic polymers, especially at low to neutral pH, 

affords them excellent solubility.  
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In previous study, our collaborators examined the interaction of poly(amidoamine) 

dendrimers and hyperbranched poly(ethyleneimine) polymers with model linear and 

polyaromatic hydrocarbons and found that both dendritic polymers had a strong ability to host 

polyaromatic hydrocarbons and linear compounds (Bhattacharya et al. 2013). Our objective for 

this study was to take the previous knowledge gained from work with model compounds and 

determine if those data are applicable to actual oil samples obtained from Gulf of Mexico oil 

production.   
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2 LITERATURE REVIEW 

2.1 Oil spill dispersants  

2.1.1 Definition of oil spill dispersants  

Dispersants are chemical mixtures that break up oil from the surface and help it move 

into the water column by modifying the characteristics of the oil slick. Dispersants do not 

actually change the oil chemical structure, but coat the surfaces of the droplets to increase their 

solubility in water (Lessard & DeMarco 2000). Dispersants actually do not reduce the total mass 

of oil but accelerate oil’s natural removal process by promoting the oil dissolution into the water 

column. The key for dispersant accelerating oil entrance into the water column is reducing the 

oil-water interfacial tension. Interfacial tension is a free energy that exists between two 

immiscible phases (e.g. oil and water), which is associated with the contact areas between these 

two phases. When the energy of waves in the ocean is introduced, the oil slick on the sea surface 

breaks up into small oil droplets which increases the oil-water interfacial area and interfacial 

tension. Dispersants are applied to reduce the oil-water interfacial tension and promote formation 

of smaller oil droplets. These small oil droplets then transport into the water column followed by 

biodegradation (NRC 2005). 

2.1.2 Components of oil spill dispersant 

In a review by Fiocco & Lewis (1999), it was explained that dispersants are usually not 

made up of just one component. Surfactants are one of the key components used, but solvents 

and other additives are also present and have a function in the dispersant properties. Additives 

are present for many purposes, such as improving the dissolution of the surfactants into an oil 

slick and increasing the long term stability of the dispersant formulation (Fiocco & Lewis 1999). 

Solvents are added to increase the solubility of surfactants and decrease the viscosity of the 
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dispersant mixture. By adjusting to a suitable viscosity, solvents help surfactants penetrate the oil 

slick and diffused to the oil-water interface (Brochu et al. 1986).  

Surfactants typically are amphiphilic compounds that contain both hydrophilic groups 

and lipophilic groups in one molecule. Surfactants reduce the oil-water interfacial tension by 

residing at the oil-water interface with hydrophilic groups towards to water phase and lipophilic 

groups interacting with oil phase. Usually the oil compatible part of the surfactants contains 

hydrocarbons that are either branched linear or aromatic; these typically have similar structures 

from one surfactant type to another; however, the hydrophilic groups have more variability in 

structure among different surfactants (NRC 2005). 

2.1.3 Characteristics of surfactants 

Surfactants are usually classified into two categories according to their hydrophilic 

groups, ionic surfactant and non-ionic surfactant (Brochu et al. 1986). Non-ionic surfactants do 

not carry apparent ionic charge; many long chain alcohols are examples. Ionic surfactants have 

three subtypes, anionic, cationic and amphoteric. Anionic surfactants contain anionic functional 

groups in the water compatible part, such as sulfate and phosphate esters. Cationic surfactants 

carry cations in hydrophilic groups, either pH dependant (e.g. primary and secondary amines) or 

permanent (e.g. quaternary ammonium cations). Amphoteric surfactants contain both anions and 

cations in the head group (e.g.  cocamidopropyl betaine). Typically, the surfactant contains only 

one head and one tail in each molecule. Other interesting surfactants, for example, Gemini 

surfactants, which were found in the late 1980s and early 1990s, has two hydrophilic heads and 

two hydrophobic tails in one surfactant molecule (Schramm et al. 2003).  

The dispersion ability of surfactants largely depends on their solubility in water and oil. 

Usually commercial dispersants are a mixture of several surfactants with different solubility in 
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water and oil. The hydrophile-lipophile balance (HLB) is used to characterize these different 

solubilities. The HLB scale is from 0 to 20 based on its chemical structure (see Table 2-1). At 

low HLB value, surfactants have only a few hydrophilic groups and tend to form water-in-oil 

emulsions where oil is the continuous phase and water drops are dispersed in it. In contrast, at 

high HLB value, surfactants have lots of hydrophilic groups and prefer to dissolve in water rather 

than oil and form oil-in-water emulsion (Brochu et al. 1986). This phenomena has been 

summarized as Bancroft’s rule, “the phase in which an emulsifier is more soluble constitutes the 

continuous phase.” Typically, commercial dispersants usually have surfactants with HLB value 

around 7 to 11 (Clayton et al. 1993). In addition to solubility, other properties also have impacts 

on dispersion ability. In Piispanen’s study, it has been found that surfactants which can become 

charged in water solution would form an electrostatic double layer and stabilize the emulsion. 

Less water soluble surfactants with large hydrophobic groups which may result in high cohesive 

monolayer energy form a liquid crystal phase depositing on particle surfaces that stabilize oil-in-

water emulsions (Piispanen 2002).  

Table 2-1 Summery of HLB ranges and their applications (Tadros 2013). 

HLB range Application 

3-6 Water in oil emulsifier 

7-9 Wetting agent 

8-18 Oil in water emulsifier 

13-15 Detergent 

15-18 Solubilizer 
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2.1.4 Application of chemical oil dispersant 

Oil dispersants are applied to enhance entrainment of small oil droplets into the water 

column at lower energy input by reducing the interfacial tension between the oil and water 

(Lessard & DeMarco 2000). Entrainment of oil droplets into the water column requires energy 

for increasing the oil-water interfacial area, which is expressed as Equation 2-1. 

 𝑊𝑘 = (𝛾𝑜/𝑤)(𝐴𝑜/𝑤)   (2-1) 

Here WK is the mixing energy (g·cm2·s-2), γo/w is the oil-water interfacial tension 

(dynes·cm-1) and Ao/w is the oil-water interfacial area (cm2). Therefore, by reducing the oil-water 

interfacial tension, dispersants can introduce a larger amount of oil-water interfacial area at the 

same level of energy input (NRC 2005). However, without dispersant, large oil droplets on the 

size range of hundreds of microns form at the same level of energy input. These large oil droplets 

tend to coalesce and resurface unless introducing strong mixing energy (Li & Garrett 1998; Gong 

et al. 2014).  

In order to characterize the effectiveness of dispersants, two parameters have been 

introduced, critical micelle concentration (CMC) and critical packing parameter (CPP).  Micelle 

formation is one of the most important characteristic of surfactants, where several surfactant 

molecules gather together with their hydrophobic parts aggregating toward the non-polar phase 

while the hydrophilic groups of surfactants orient toward the water phase in order to reduce the 

free energy of surfactants (Khan & Shah 2008). CMC has a narrow range and is defined as the 

concentration of surfactants above which micelles form (Schramm et al. 2003). Below the CMC, 

the surfactant has a strong tendency to adsorb on oil-water interfaces and the interfacial tension 

drops dramatically. Above the CMC, the interfacial tension of oil-water interfaces remains 

constant as the concentration of surfactant increases and newly added surfactant molecules 
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combine into micelles (Torchilin 2001). The effectiveness of surfactants can be defined as the 

degree of interfacial tension decrease at critical micelle concentration, the lower the interfacial 

tension, the higher the effectiveness of surfactants (Clayton et al. 1993).   

CPP is another important characteristic of surfactant micelles. It is defined as a geometric 

expression relating the hydrocarbon chain volume (v) and length (l) and the interfacial area 

occupied by the head group and does not take electrostatic and other long range forces into 

consideration (Israelachvili et al. 1976; Piispanen 2002).  

 CPP =
𝑣

𝑙𝑐𝑎0
                   (2-2) 

Here ao is the optimal surface area per head group, v is the hydrocarbon chain volume, lc 

is the critical chain length. This equation is applicable to predict the shape of an aggregated 

structure, for example surfactants that form spherical micelles have a CPP less than 1/3 (Tadros 

2009). 

Besides chemical effectiveness of dispersants, operational effectiveness and 

hydrodynamic effectiveness are also important components of overall effectiveness for oil 

dispersion. Operational effectiveness is described as the probability of dispersant contact with an 

oil slick. Hydrodynamic effectiveness is defined as the transportation of dispersed oil droplets by 

convection and diffusion in sea currents (NRC 2005). In this study, we focus on the chemical 

effectiveness which is defined as the amount of oil dispersed into the water column by 

dispersants compared with the mass of oil remaining on the water surface (Fingas & Advisory 

2002).  

There are many factors that influence the dispersant effectiveness, such as the properties 

of crude oil, water temperature and pressure. Viscosity is one of the important characteristics of 

crude oil. It has been generally reported that increasing viscosity reduces dispersant effectiveness 
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since high viscosity can inhibit migration of surfactants to the oil/water interface and increases 

the shear energy to break up the oil slick into droplets (Clayton et al. 1993). Rewick et al. (1984) 

reported that temperature can affect the dispersant effectiveness through the following aspects: 

the kinetics of surfactant packing at the oil/water interface; diffusion of the surfactant through the 

oil slick; and solubilization differences between the polar and nonpolar ends of the surfactant 

molecules (Rewick et al. 1984). A decrease in temperature would also result in an increase in 

viscosity which exerts a diminishing effects on dispersant effectiveness. Studies confirm that low 

temperature has adverse effects on oil dispersion (Mackay & Hossain 1982). The effects of deep 

water conditions such as high pressure and low temperature, which were present in the BP 

Deepwater Horizon incident, remain unclear and need further exploring.  

 

2.2 Oil water emulsion 

2.2.1 Surface forces  

The goal of this study is to disperse oil, which is essentially to make an oil-in-water 

emulsion. Understanding how emulsions can be formed requires knowledge about the 

interactions between water, oil, and dispersants.  

There are three main forces between molecules. These have been explained in depth in 

many textbooks (e.g. Tadros 2013). The first force is called van der Waals, and there are three 

sub-types for this force: dipole-dipole interactions, dipole-induced dipole interactions, and 

London dispersion. London dispersion is considered the most important of the three sub-types of 

van der Waals forces. They are caused by charge fluctuations as electrons move around atoms. 

There is a useful equation to describe these forces (Tadros 2013): 

     𝑮 = −
𝜷

𝒓𝟔
                       (2-3) 
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Here 𝛽 is the London dispersion constant determined by the polarizability of atoms or 

molecules, r is the separation distance between atoms or molecules. 

The second force is named electrostatic interaction which is also explained in detail in 

many papers and textbooks (e.g. Ivanov et al. 1999; Sjoblom 2005). Particles become charged in 

electrolyte solution by adsorption of ions or ionization of surface groups. This charged particle is 

then balanced by equivalent numbers of oppositely charged counter ions which tend to stay close 

to the particle by electrostatic attraction but also diffuse throughout the solution due to thermal 

energy (Ivanov et al. 1999). This is called the electrical double layer. It prevents particle 

aggregation or oil drop coalesce as a repulsion occur due to the overlap of diffuse layers when 

particles approach close to each other (Sjoblom 2005). Deryaguin, Landau, Verwey and 

Overbeek established the famous DLVO theory by a combination of van der Waals attraction 

and double layer repulsion. 

Steric repulsion also plays an important role in molecular interactions. Steric repulsion 

often occurs in non-ionic surfactants or polymer stabilized systems. When two polymer coating 

surfaces approach to each other, the repulsion osmotic force occurs due to the compressing of 

hydrophilic chains. This steric repulsion stabilizes the colloids in water solution (Israelachvili 

2011).  

2.2.2 Breakdown process and stabilization mechanisms 

The stability of a disperse system is characterized by a constant behavior in time of its 

basic parameters, namely, the dispersivity and the uniform distribution of the dispersed phase in 

the medium (Sjoblom 2005). Various breakdown processes are shown in Figure 2-1.  
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Figure 2-1. Schematic representation of the various breakdown processes in emulsions. 

Among these breakdown processes, flocculation and coalescence are the main reasons for 

oil drop enlargement. Flocculation refers to the small oil drops clustered together to form the 

aggregation by van der Waals force. And this process leads to the increase of oil droplet size and 

probability of coalescence (Ivanov et al. 1999). Coalescence is described as two drops approach 

close to each other and form a thin liquid film between interfaces. This thin liquid film then 

ruptures and becomes sufficiently small, so small oil drops coalescence to one large oil drop 

(Chen 1985; Deshiikan & Papadopoulos 1995). Tadros pointed out two mechanisms to prevent 

coalescence: increasing either electrostatic repulsion or steric repulsion or both, and decreasing 

the oil drop size (Tadros 2009).   

Nowadays, a number of discoveries and investigations are made in stabilization of oil 

droplets in a water column. Venkataraman & Tang (2013) found that adding biopolymer such as 

hydrophobic modified chitosan into commercially used dispersant (e.g., Corexit) can increase the 

efficiency of dispersant stabilizing the oil drops and reduce the use of chemical dispersants 
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(Figure 2-2). This may result from the increasing electrostatic and steric repulsions created by 

biopolymers which form barriers to prevent coalescence between oil drops (Venkataraman & 

Tang 2013).   

 

Figure 2-2 Schematic showing hydrophobically modified chitosan (HMC) molecules stabilizing dispersed oil 

droplets by anchoring the covalently attached alkyl groups at the oil−water interface and forming a 

protective layer around the oil droplet (Venkataraman & Tang 2013). 

 

Ye et al. (2013) discovered that protein coating nanoemulsion droplets (average size 

around 150 nm) can work as an emulsifier to stabilize oil (n-hexadecane)-in-water emulsions. 

These nanoemulsion droplets can stabilize the emulsion at very low concentrations and the size 

of emulsion depends on the nanodroplets concentration (Ye et al. 2013).  

Corexit  

Oil 

HMC 



 

13 

 

 

Figure 2-3 Schematic showing oil drop stabilized by protein-coated nanoemulsion drops (Ye et al. 2013). 

Folter et al demonstrated that water-insoluble proteins, corn protein zein as 

representation, are natural and biocompatible dispersants that effectively stabilize oil-in-water 

emulsions. This Pickering emulsion by corn protein zein prefers a condition of high pH and low 

ion strength (de Folter et al. 2012). Another particle stabilized oil-in-water emulsion has been 

examined by Saha & Nikova (2013). They found that carboxyl-terminated carbon black (CB) has 

great adsorption capacity and ability to stabilize the emulsion which makes these particles a 

viable alternative to commercial dispersants (e.g. Corexit) in dealing with oil spills (Saha & 

Nikova 2013).  

2.3 Pickering emulsion 

Pickering emulsion was named after Pickering who first found that small colloid particles 

can remain at the oil-water interface where they minimize the system free energy and form a 
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rigid barrier to prevent oil drop coalescencence (Pickering 1907; Aveyard et al. 2003). An 

equation illustrates the mechanism of Pickering emulsion, Equation 2-4. 

     E = π𝑟𝑝
2𝛾𝑜/𝑤（1 ± cos 𝜃 ）

2
                    (2-4) 

 Here rp is the radius of the particle, o/w is the oil-water interfacial tension,  is the contact 

angle (Binks 2002). Besides the size and contact angle of particle, the particle stability is also 

influenced by hydrophobicity, shape and wettability (Tadros & Vincent 1983). Binks predicted 

that “Janus” particles which have two surface regions of different wettability would better 

stabilize the oil emulsion than homogenous particles for the combination of Pickering effects and 

amphiphilicity of surfactants would results in considerably increasing surface activities (Binks & 

Fletcher 2001; Glaser et al. 2006).   

2.4 Dendritic polymers and applications  

Dendritic polymers are highly branched spherical three dimensional macromolecules 

which can be divided to two subtypes, dendrimer and hyperbranched polymer. Dendrimers have 

highly uniform, monodisperse structures which are composed of a central core, repeating units 

and terminal functional groups (Seiler 2002). Unlike dendrimers, hyperbranched polymers have 

a polydispersed, irregular branching structure. Dendrimers are usually prepared in multistep 

syntheses with protection/deprotection procedures, with addition chemistry and purifications at 

each step. Hyperbranched polymers, in contrast, can be prepared in a one-step procedure. The 

details are explained in many papers for dendrimers (Tomalia et al. 1985; Matthews et al. 1998; 

Farrington & Hawker 1998) and for hyperbranched polymers (Kim 1998; Sunder et al. 1999).  

The properties of dendritic polymers depend on both polymer structure and 

environmental conditions such as pH, temperature and ion strength. The intrinsic viscosity of the 
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dendrimer has a well-observed bell-shaped curve with molecular weight. For example, the 

viscosity of PAMAM increases until generation four and decreases with further increasing 

molecular weight (Cai & Chen 1998; Bhattacharya et al. 2013). The viscosity of hyperbranched 

polymers depends on the degree of branching. At low branching level, the viscosity is 

determined by chain entanglement while at high branching level, the viscosity of hyperbranched 

polymers behaves similarly to dendrimers (Farrington & Hawker 1998).  

Dendritic polymers are more soluble in water compared with the analogous linear 

polymers. And solubility is largely determined by the surface groups. For example, dendrimers 

with very hydrophobic interior can be adjusted to water soluble by introducing hydrophilic 

surface groups into the surface (Inoue 2000). 

The hydrodynamic size of dendritic polymers varies with solvent properties and surface 

groups. It has been found that dendrimers with carboxylic acid surface groups were found larger 

in neutral pH and shrank at acidic pH, while dendrimers with the same interior structure but 

amino terminal group expanded at acidic pH and contracted at basic pH (Newkome et al. 1993; 

Young et al. 1994). Studies by Murat and Grest (1996) and Stechemesser and Eimer (1997) 

suggest that the size of dendrimers is a function dependent on a one third exponental of monomer 

number (Murat & Grest 1996; Stechemesser & Eimer 1997).  

One of important characteristics of dendritic polymers that should be carefully examined 

is the biocompatibility. The success of dendrimer application to oil spills will depend on whether 

the dendrimers or oil-dendrimer complexes can be taken up and biodegraded by microorganisms 

in the subsurface. In one review paper (Lee et al. 2005), it has been reported that PAMAM 

dendrimers are hydrolytically degradable only under harsh conditions because of their amide 

backbones, and the process is slowly under physiological temperature. Dendrimers with 
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polyester backbones are nontoxic, natural metabolities (Grinstaff 2002). Another study found 

that dendritic polymers with thiol-reactive disulfides in their branches should have the ability to 

cleave under reducing conditions in cells (Zhang et al. 2003). And if the chains of dendrimers 

contain enzyme substrates they would add an extra pathway for biodegradation (Seebach et al. 

1996).  

Another significant property of dendritic polymers affecting their application in oil spills 

is light sensitivity. When the polymers are applied at the sea surface, the oil polymer 

complexation and polymer itself may remain for a certain time and be exposed to sunlight. It has 

been reported in a biomedical paper (Lee et al. 2005) that dendrimers can be prepared for 

photolysis. The mechanisms of dendrimer photolysis are variable, including Dendrons released 

from the core, peripheral groups cleaved, or the entire molecule degraded into identical small 

fragments under ultraviolet irradiation (Smet et al. 2000; Watanabe et al. 2000; Grinstaff 2002; 

Amir et al. 2003). Recent studies show that dendritic polymers such as PAMAM and PPI can 

encapsulate polycyclic aromatic hydrocarbons, metal cations and anions, as well as other 

inorganic compounds. By adjusting the solution pH, electrolyte strength or using UV light, the 

dendritic polymer can reversibly release the compounds it encapsulated (Arkas et al. 2003; 

Meijer & Van Genderen 2003; Diallo et al. 2007a, 2008). 

There are many applications for dendritic polymers. Dendritic polymers have been 

employed as building blocks for the self-assembly of several larger nano- and mesoscopic 

structures, micelle aggregates, and discrete hydrogen-bonded superstructures (Zeng & 

Zimmerman 1997). Dendrimers are also considered as promising interfacial agents due to the 

large numbers of controllable surface functionalities, well-defined architecture and chemical 
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stability. Cooper and coworkers demonstrated that the encapsulation ability of dendritic 

polymers can be applied to the area of extraction chemistry (Cooper et al. 1997) 

Compared with dendrimers, hyperbranched polymers are easier to synthesize and 

produce in large scale. It has been reported that hyperbranched polymers could be utilized as 

rheology modifiers, adhesives, coatings, and additives in process engineering. They can also be 

applied for the accelerated processing of commodity polymers (Kim & Webster 1992; Hult et al. 

1999; Seiler 2002). Among these, one of the interesting studies shows dendritic polymers could 

be alternative oil spill dispersant that are both effective and biocompatible (Geitner et al. 2012). 

In the latter paper it was found that both poly (amidoamine) dendrimers and hyperbranched 

poly(ethyleneimine) polymers exhibited a strong and comparable hosting/dispersion capacity for 

the polyaromatic hydrocarbon phenanthrene and the linear hydrocarbon hexadecane (C16H34) 

(Geitner et al. 2012).  

A recent paper (Bhattacharya et al. 2013) from our collaborators thoroughly reviewed the 

physicochemical properties of dendritic polymers and introduced the applications in the 

environmental and biological field. It was reported that dendritic polymers can be applied in 

antifouling, oil spill, dendrimer-fullerenol assembly and dendrimer-gold nanowires for copper 

sensing. The high biocompatibility, hosting capacity, and low toxicity makes dendrimers perfect 

candidates in medical applications. Besides, compared to globular proteins that are essentially 

folded structures therefore susceptible to denaturation by temperature, light and pH, dendritic 

polymer has a covalently fixed nature with well-defined interiors and homogenous surface 

providing a precise function.   

The manufacturing price of dendrimers is much higher than hyperbranched polymers and 

Tween 80 which is one of the key active surfactants in Corexit. From Sigma-Aldrich, the unit 
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price for PAMAM generation 4 is around $1000 per gram; the unit price for HY-PEI is $1 per 

gram; and unit price for Tween 80 is $0.2 per gram. So from a view of mass application in oil 

spill, the Tween 80 is much cheaper than PAMAM dendrimers; however, HY-PEI is still a good 

option because is only $1 per gram and more biocompatible. Also, these prices would certainly 

change once mass production is implemented for HY-PEI if there were a market for oil spill 

dispersion or other applications. Tween 80 has already been on the market for many years, so 

there is a great deal of competition among suppliers and large-scale production techniques are 

well established.  

 

2.5 Dispersant performance evaluation  

2.5.1 Chemical effectiveness test  

Oil dispersant effectiveness includes three components: operational effectiveness, 

chemical effectiveness and hydrodynamic effectiveness. Operational effectiveness evaluates the 

efficiency of dispersant application methods and hydrodynamic effectiveness examines 

transportation of dispersed oil droplets by convection and diffusion in natural ocean conditions. 

Our study is focus on whether the dendritic polymer can disperse crude oil and what are the 

mechanisms of dispersion, such as the oil-polymer chemical interactions. The focus of this 

section of the literature review is on the experimental methods to evaluate dispersant 

effectiveness.  

Chemical effectiveness tests range from bench-scale to large scale field trials (NRC 

2005). Among these, bench scale experiment are a useful tool to compare dispersant 

effectiveness of different products (Venosa et al. 2002). The effectiveness is defined as the 

fraction of oil dispersed in a water column. There are many factors that could affect the 
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effectiveness such as physical and chemical characteristics of crude oil; oil:water ratio; 

dispersant:oil ratio; salinity; temperature; physical and chemical properties of dispersant; 

methods of applying the dispersant to oil; energy input; settling time; and method used to 

measure effectiveness (Sorial et al. 2004a; NCR 2005; Chandrasekar et al. 2006).  

The physical characteristics (such as viscosity and density) and chemical composition 

(such as aromatic, aliphatic and asphaltic hydrocarbon concentration) are important because they 

change greatly among oil with different sources. These characteristics also change with oil 

weathering after a spill (Mukherjee & Wrenn 2011). 

The method of applying the dispersant is also an important factor that influences the 

effectiveness. This is because the dispersant should first penetrate the oil slick and reach to the 

oil-water interface before it disperses the oil (Sorial et al. 2004a). Typically there are three 

methods for applying the dispersant: premix the oil and dispersant before the test (which we used 

in some effectiveness tests for Corexit); premix the dispersant with water before the test (which 

we used in our interfacial tension measurements); and mix the dispersant with oil at the oil-water 

interface as part of the testing procedure (which we used in most of our effectiveness tests). 

The dispersant to oil ratio (DOR) and oil to water ratio (OWR) are critical factors that 

affect dispersion effectiveness. Several studies show that there is a direct relationship between 

DOR and dispersion efficacy (Fingas et al. 1989). The DOR of 1:25 and 1:50 are commonly 

used, but smaller and larger DORs are used in different studies. The OWR also varies over a 

large range, from 1:1 to 1:120,000 (Fingas et al. 1989). The OWR affects the extent of 

partitioning. When OWR is high, more dispersant is associate with oil and droplet formation is 

promoted. On the other hand, high OWR can also reduce the effectiveness by increasing the rate 

of oil droplet coalescence.  
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Energy dissipation or mixing rate is one of the most important factors in effectiveness 

testing. Energy is required for creating a new interfacial area when an oil slick breaks up into 

dispersed oil droplets. Increasing energy input will result in the formation of smaller oil droplets 

which are more stable, having a reduced tendency to resurface (Kaku et al. 2006).  

2.5.2 Interfacial tension and pendant drop method 

Interfacial tension is usually used to measure cohesive energy between immiscible 

phases; it is one of the important parameters that characterizes the dynamic properties of liquid 

adsorption layers. There are many methods to measure the interfacial tension, including the Du 

Nouy ring method, Wilhelmy plate method, spinning drop method, drop-weight method, etc. In 

this study, we used the pendant drop method, where interfacial tension is determined by the 

axisymmetric drop shape analysis (ADSA) technique. The ADSA technique is considered by 

some to be an advantageous method for its accuracy, simplicity, and versatility (Jennings & 

Pallas 1988; Cheng & Neumann 1992). It is also very suitable for automatic computer 

implementation by combination with video frame image analysis (Girault et al. 1984). 

Interfacial tension measurement by drop shape analysis is based on the classical Young-

Laplace equation. 

 ∆𝑃 = 𝛾(
1

𝑅1
+

1

𝑅2
) (2-5) 

Here ∆𝑃 (Pa) is the pressure difference across the drop interface, 𝛾 (mN/m) is the interfacial 

tension and R1 and R2 (m) are the radii of curvature (Woodward 1948). If no external forces are 

present other than gravity, the difference in pressure is linear to the ascending forces, as shown in 

Equation 2-6. 

 ∆𝑃 = ∆𝑃0 + (∆𝜌)𝑔𝑧 (2-6) 
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Here ΔP0 is the pressure difference at a certain datum plane, Δρ is the density difference of two 

bulk phases, g is the gravity and z is the vertical distance between the given point and the datum 

plane. By combining equation Equation 2-5 and Equation 2-6 we obtain Equation 2-7.  

 
𝑑𝜃

𝑑𝑆
=

2

𝑅𝑜
+

(∆𝜌)𝑔

𝛾
𝑍 −

sin 𝜃

𝑋
 (2-7) 

For any pendant drop where the densities of two liquid phases in contact are known, the 

interfacial tension can be calculated by iterating the equations above (Kruss company 2012). 

Figure 2-4 shows a schematic of the pendant drop method with symbols. 

 

Figure 2-4 Schematic of the pendant drop method. 

A typical pendant drop apparatus contains three parts: a transparent illuminating cell, a 

light and camera system, and an image collecting and analysis system. The software analyses the 

image in four steps. First, it captures and digitalizes the drop image. Second, the drop shape is 

extracted and the important parameters are measured for calculation of interfacial tension, like 

the radius of curvature at the apex. Third, the interfacial tension is calculated and experimental 

data points are compared with theory.  
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When surfactants are present in the fluid, it usually takes a relatively long time to ensure 

stability. Video is taken for recording the changing interfacial tension as the drop ages. If no 

dispersant is present a more stable measurement can be taken (as long as there is little vibration) 

but with crude some small-molecule volatile compounds could be leaving and causing variation 

in drop shape over time.  

The pendant drop method has been widely used in many experiments. Glaser et al. (2006) 

used the pendant drop method to show that the amphiphilicity derived from the Janus character 

of the particles under study led to a significantly higher interfacial activity compared to that of 

the respective homogeneous particles of the same size (Glaser et al. 2006). Morais (2006) used 

the pendant drop method to measure the surface tension of molten polymers (polyvinylbutyral) at 

temperatures ranging from 240℃ to 260℃ (Morais 2006). Reichert and Walker (2013) measured 

surfactant adsorption dynamics to the oil−aqueous interface for a range of surfactant 

concentrations with the pendant drop technique (Reichert & Walker 2013). 

2.5.3 Dynamic light scattering 

Dynamic light scattering (DLS) is a typical method to measure particle size distribution 

of diluted suspensions ranging from around 2 nm to 2 µm. DLS has the advantage of being rapid 

and simple with a solid statistical foundation through measuring large numbers of particles per 

experiment (Sjoblom 2005). 

DLS is based essentially on two assumptions. The first is that the particles are in 

Brownian motion and we use the probability density function, 

 P(r, t|0,0) = (4π Dt)−
3

2 exp (− 𝑟2/4Dt ) (2-8) 
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Here D is the diffusion coefficient. The second assumption is that the particles in suspension are 

spherical and small compared to the molecular dimensions so we can apply the Stokes-Einstein 

relation. 

 D = kB T/6πηa (2-9) 

Here kB is the Boltzmann constant, a refers to the radius of the particles, T is the temperature in 

Kelvin and η is the viscosity of the solvent. The speed of Brownian motion is determined by both 

temperature and particle size, therefore temperature control is important for accurate size 

measurement (Sjoblom 2005). 

To measure the diffusion speed, the speckle pattern produced by illuminating the 

particles with a laser is observed. The scattering intensity at a specific angle will fluctuate with 

time, and this is detected using a sensitive avalanche photodiode detector (APD). The intensity 

changes are analyzed with a digital autocorrelation which generates a correlation function. This 

curve can be analyzed to give the size and the size distribution (brochure from Malvern). 

DLS measurements are widely used in studies of polymers, food emulsions, drug delivery 

vectors, and coagulation rates in colloidal systems. Honary et al (2014) optimized particle size 

and encapsulation efficiency of vancomycin nanoparticles prepared from chitosan (Honary et al. 

2014). Shpigelman and co-workers used the DLS technique to find that nanoparticles about 10 

nm in size, which is marginally larger than those of the pure protein (about 7 nm), makes 

beverages more clear (Shpigelman et al. 2014). Macedo et al. (2014) designed and characterized 

a rutin-loaded nanoemulsion and determined the release profile of the drug in vitro by DLS 

(Macedo et al. 2014). DLS has also been applied in determination of Ostwald ripening rates and 

destabilization phenomena in aqueous phase (Noor El-Din et al. 2013). These are just a few of a 

myriad of studies using DLS, since it is a well-established laboratory technique. 
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2.5.4 Coulter counter 

The Coulter counter method is based on the principle discovered by Wallace H Coulter in 

the late 1940s (Coulter 1953). The Coulter principle states that particles pulled through an 

orifice, concurrent with an electric current, produce a change in impedance that is proportional to 

the volume of the particle traversing the orifice. In a Coulter counter, a small aperture on the wall 

is immersed into a container that has particles suspended in low concentration electrolyte 

solution. Two electrodes are placed: one in front and one behind the aperture, and a current path 

is provided by the electrolyte. When an electric field is applied the aperture creates a ‘‘sensing 

zone.’’ As a particle passes through the aperture, a volume of electrolyte, equivalent to the 

immersed volume of the particle is displaced from the sensing zone. This causes a short-term 

change in the impedance across the aperture. This change can be detected as a voltage pulse and 

its height is proportional to the volume of the sensed particle, see Figure 2-5 (Zhang et al. 2009). 

Due to its simplicity, high sensitivity and reliability, it is a widely used method in many areas 

including medical and biology fields, such as counting and analysis of blood cells (Bowers et al. 

2013), protein (Kulp et al. 2004), and viruses (Wahl-Jensen et al. 2007). The Coulter counter is 

also a very useful technique for size distribution analysis in emulsions and suspensions (Walstra 

& Oortwijn 1969). Sterling et al. investigated the thermodynamics and kinetics of crude oil drop 

coalescence in saline waters using a Coulter counter (Sterling et al. 2004).  Reynolds et al. found 

that a Coulter counter could provide a higher resolution of particle size distribution than laser in-

situ scattering and transmissometry (LISST), characterizing the number of small particles more 

accurately than LISST. In Reynolds’ case the Coulter counter was also better than the FlowCAM 

flow cytometer and imaging system (Reynolds et al. 2010). 
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Figure 2-5  Schematic of Coulter counter. 
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3 OBJECTIVES 

There are three ojectives of this research:  

1) Develop methods to adequately characterize the oil-dispersion effectiveness of 

dendritic polymers. There are many effectiveness tests reported in the literature, with 

different methods resulting in variable data, leading to different conclusions. We need 

a solid technique that can provide high reproducibility.  

2) Test and verify the hypothesis that dendritic polymers can disperse crude oil. In 

previous studies our collaborators demonstrated that the dendritic polymers could 

encapsulate model compounds (linear and polyaromatic hydrocarbons). In this study, 

we aim to explore the dispersion capacity of dendritic polymers in association with 

crude oil rather than model compounds.  

3) Gain a fundamental understanding of the interactions of dendritic polymers with 

crude oil. Whether or not the dendritic polymers have high dispersion capacity on 

crude oil, we would like to figure out the mechanism of oil polymer interactions 

which may benefit the future development of dispersant materials.   
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4 EXPERIMENTAL METHODOLOGY 

4.1 Materials 

4.1.1 Artificial seawater  

Oil was dispersed in artificial seawater which was prepared by dissolving 35 g of sodium 

chloride (Sigma) and 0.2 g of sodium bicarbonate (EMD) in 1 L of ultrapure deionized water. 

The artificial seawater was filtered through a 0.2 µm membrane filter (Millipore, Isopore 

membrane filters, 0.2 µm GTTP) after adjusting pH to between 7.9 and 8.1with a pH meter. 

Filtration removed suspended particles that could interfere with oil droplet measurement. 

Artificial seawater was stored in glass bottles at room temperature (22°C). Sodium chloride is 

used to simulate the typically salinity of seawater 35g/kg, and sodium bicarbonate is applied to 

adjust pH to 8 which is a common value for seawater. 

4.1.2 Crude oil 

Crude oils are mixtures of hydrocarbons ranging from small volatile contents to very 

large, nonvolatile compounds (Speight 2006). Crude oil contains numerous compounds of 

different sizes and classes. Some analysts have identified up to 17,500 compounds in an oil 

(Fingas 2011). Besides hydrocarbons, crude oils also contain varying amounts of sulfur, 

nitrogen, oxygen, mineral salts and trace metals such as nickel and chromium. A well-accepted 

method of classification is by saturates, aromatics, resins, and asphaltenes (SARA). Aromatic 

compounds include at least one benzene ring which is very persistent and can have toxic effects 

on the environment. The common smaller aromatic compounds found in oil are often referred to 

as BTEX, or benzene, toluene, ethyl-benzene, and xylenes. The larger aromatic compounds 

containing at least two benzene rings are referred to as PAHs, which make up 0 to 60% of the 
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composition of oil. In this study, we used Louisiana light sweet crude oil obtained from a 

commercial oil company and stored in a plastic barrel within a hood at room temperature (22°C). 

Table 4-1 shows the composition and properties of light crude oil. 

Table 4-1. Typical composition and properties of light crude oil (Speight 2006).   

Composition (%)  Properties 

Saturates 55-99  Viscosity (mPa·s at 15°C ) 5-50 

Aromatics 10-35  Density (g/mL at 15°C) 0.78-0.88 

Polar Compound 1-15  Solubility in Water (ppm) 10-50 

Metals (ppm) 30-250  API Gravity 30-50 

Sulfur 0-2  Interfacial Tension (mN/m at 15°C） 10-30 

   Pour Point (°C) -40-30 

 

4.1.3 Dispersant and dendritic polymers 

Corexit (Nalco) is a commercially used oil dispersant which was applied in the 2010 

Deepwater Horizon oil spill in the Gulf of Mexico. One key active ingredient in Corexit is 

sorbitan mono-(9Z)-9-octadecenoate (commonly known as Tween 80 or polysorbate 80), a 

nonionic surfactant commonly used in industry and consumer products. Another key ingredient 

is butanedioic acid, 2-sulfo- 1,4-bis (2-ethylhexyl) ester, sodium salt (1:1)  (often referred to as 

dioctyl sodium sulfosuccinate [DOSS]), also a common surfactant in industry and consumer 

products. Other Corexit ingredients are listed on the Nalco website, as requested by the EPA 

(Nalco 2011). HY-PEI is an abbreviation for hyperbranched polyethylenimine polymers with a 

chemical structure of (-NHCH2CH2-)x[-N(CH2CH2NH2)CH2CH2-]y;  x and y indicate the number 

of repeating units, which are variable for the materials used here. In this study five different 

molecular weight polymers 1.2, 1.8, 10, 70, and 750 kDa were used to examine the effect of 

polymer size on dispersant effectiveness. HY-PEI was supplied by Polyscience. With a similar 

interior structure and molecular weight as HY-PEI, dendrimers with various terminal groups 
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were examined to explore the effects of surface group and charge on dispersion efficiency. 

PAMAM dendrimers with different surface functional groups were also studied. G4-PAMAM-

NH2 with a molecular weight of about 14 kDa has an amino surface functional group and is 

positive in the working solutions used here, at about pH 8. According to Cakara & Borkovenc 

(2007) study, primary amine groups of PAMAM protonate in the first step at a pH of 

appximately 9.0 roughly, while the tertiary amine groups protonate in two well-separated steps at 

pH ≈ 6.4 and pH ≈ 3.5 (Cakara & Borkovec 2007). G4-PAMAM-OH, also with a molecular 

weight of 14 kDa has amidoethanol surface groups and has a nearly neutral charge around pH 8. 

G4-PAMAM-SA with molecular weight of about 21 kDa has succinamic acid surface groups and 

is negatively charged in aqueous solution (Ciolkowski et al. 2013). 

4.2 Methods 

4.2.1 Preliminary Experiments  

4.2.1.1 Small vials test  

Small vials refer to the 20 ml scintillation vials used in this series of tests. In experiment, 

we used 12 ml artificial seawater and 25 µl crude oil that is less than the chemical effectiveness 

test we describe later; thus, this section describes our method development for adequately 

characterizing the dispersion effectiveness of the polymers. In order to understand the factors 

that may affect effectiveness results, we tried different dispersant-oil ratios, mixing and settling 

time, sample collection methods, and sample preparation methods. The effectiveness test 

consisted of four steps: sample preparation, mixing and settling, sample collection and sample 

analysis. In sample preparation, we used non-premix and premixed methods to make the sample. 

For non-premix, oil was added to the water surface first then the dispersant working solution was 

added to the oil slick. For premix, oil was first mixed with the dispersant and then applied the 
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mixture to the water surface. Both methods are found in the literature (Sorial et al. 2004b; 

Mukherjee & Wrenn 2011) and here we evaluated the differences between them. Three 

dispersant to oil ratios (DORs) were examined in the small vials tests: 0.02, 0.04, and 0.08. DOR 

was calculated on a mass basis (for the small-vials tests and for the high-volume tests described 

later). Oil was added volumetrically to each sample and the oil mass was calculated using its 

density. The oil density is 0.83 g/ml which obtained by measuring the weight of certain volume 

of oil in balance. The polymer mass was calculated from working solutions which were prepared 

by directly weighing the appropriate mass of polymer stock solution as received from the 

manufacturer and correcting for the concentration reported on the bottles (99%, 99%, 30%, 30%, 

and 50% for the 1.2, 1.8, 10, 70, and 750 kDa materials, respectively). Volumetric measurement 

of the polymer stock solutions was not possible because of their high viscosity. The DOR values 

reported here are unitless, but can be interpreted as mass of polymer divided by mass of oil. 

Effects of mixing and settling time were also considered in small vial tests. In this 

experiment, we used the non-premix method to prepare the sample and choose a DOR of 0.02. 

Three combinations were tested: mixing 24 h then settling 2 h, mixing 1h then settling 30 min, 

and mixing 30 min then settling 15 min.  

Sample collection seemed have a significant influence on the effectiveness results in 

early tests, so a few collection methods were used. For small vial trials, the total amount of oil-

water-polymer mixture was 12 ml, so the collected water sample containing dispersed oil (and 

not containing non-dispersed oil floating on the top of the sample) was less than 12 ml. One 

method that was used to collect the water was inserting a needle from the top, through the oil 

layer, to the bottom of the water column and aspirating a 3 ml water sub-sample. The other 
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method was to use a needle penetrating into the side of the plastic vials and extracting the 3 ml 

sub-samples from the bottom, as shown in Figure 4-1. 

 

Figure 4-1. In some experiments, 3 ml water sub-samples with dispersed oil were extracted from the bottom 

of plastic vials using a needle penetrate through the vial. 

For measuring the quantity of dispersed oil dichloromethane DCM was added to the 

sample and the oil was extracted from the water column for 30 minutes into the DCM. The DCM 

with extracted oil was placed in 200 µl aliquots into the wells of a 96 well plate and visible-light 

absorbance was measured at 340 nm. We related the absorbance data with the actual oil mass in 

the vials.. The fraction of oil dispersed into the water was quantified by comparison with 

measurements of the absorbance from whole-oil samples. Table 4-2 shows the experimental 

matrix of the small vial tests. 
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Table 4-2 Experiment matrix of small vial trials. 

Experiment 

number  

Sample 

Preparation  
Materials DOR Mixing/ Settling (hr) 

Sample 

collection 

1 Non-premix  HY-PEI 10 kDa 0.02 24 / 2 Top insertion 

2 Non-premix  HY-PEI 10 kDa 0.02 1 / 0.5 Top insertion 

3 Non-premix  HY-PEI 10 kDa 0.02 0.5 / 0.25 Top insertion 

4 Non-premix  HY-PEI 10 kDa 0.02 0.5 / 0.25 Top insertion 

5 Non-premix  HY-PEI 10 kDa 0.04 0.5 / 0.25 Top insertion 

6 Non-premix  HY-PEI 10 kDa 0.08 0.5 / 0.25 Top insertion 

7 Non-premix  Corexit  0.02 0.5 / 0.25 Top insertion 

8 Non-premix  Corexit  0.04 0.5 / 0.25 Top insertion 

9 Non-premix  Corexit  0.08 0.5 / 0.25 Top insertion 

10 Non-premix  G4-PAMAM-NH2 0.02 0.5 / 0.25 Top insertion 

11 Non-premix  G4-PAMAM-NH2 0.04 0.5 / 0.25 Top insertion 

12 Non-premix  G4-PAMAM-NH2 0.08 0.5 / 0.25 Top insertion 

13 NA* NA* NA* 0.5 / 0.25 Top insertion 

14 Non-premix  HY-PEI 1.2 kDa 0.02 0.5 / 0.25 Top insertion 

15 Non-premix  HY-PEI 1.8 kDa 0.02 0.5 / 0.25 Top insertion 

16 Non-premix  HY-PEI 10 kDa 0.02 0.5 / 0.25 Top insertion 

17 Non-premix  HY-PEI 70 kDa 0.02 0.5 / 0.25 Top insertion 

18 Non-premix  HY-PEI 750 kDa 0.02 0.5 / 0.25 Top insertion 

19 Non-premix  Corexit  0.02 0.5 / 0.25 Top insertion 

20 Non-premix  HY-PEI 1.2 kDa 0.02 0.5 / 0.25 Side penetrate 

21 Non-premix  HY-PEI 1.8 kDa 0.02 0.5 / 0.25 Side penetrate  

22 Non-premix  HY-PEI 10 kDa 0.02 0.5 / 0.25 Side penetrate  

23 Non-premix  HY-PEI 70 kDa 0.02 0.5 / 0.25 Side penetrate  

24 Non-premix  HY-PEI 750 kDa 0.02 0.5 / 0.25 Side penetrate  

25 Non-premix  Corexit  0.02 0.5 / 0.25 Side penetrate  

26 Premix HY-PEI 1.2 kDa 0.02 0.5 / 0.25 Top insertion 

27 Premix HY-PEI 1.8 kDa 0.02 0.5 / 0.25 Top insertion 

28 Premix HY-PEI 10 kDa 0.02 0.5 / 0.25 Top insertion 

29 Premix HY-PEI 70 kDa 0.02 0.5 / 0.25 Top insertion 

30 Premix HY-PEI 750 kDa 0.02 0.5 / 0.25 Top insertion 

31 Premix Corexit  0.02 0.5 / 0.25 Top insertion 

32 Premix HY-PEI 1.2 kDa 0.02 0.5 / 0.25 Side penetrate  

33 Premix HY-PEI 1.8 kDa 0.02 0.5 / 0.25 Side penetrate 

34 Premix HY-PEI 10 kDa 0.02 0.5 / 0.25 Side penetrate  

35 Premix HY-PEI 70 kDa 0.02 0.5 / 0.25 Side penetrate  

36 Premix HY-PEI 750 kDa 0.02 0.5 / 0.25 Side penetrate  

37 Premix Corexit  0.02 0.5 / 0.25 Side penetrate  

NA*= none applicable 
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4.2.1.2 Calibration curve  

Calibration curves were developed to transcribe the absorbance data to actual oil mass. 

Five volumes of oil (10 µl, 15 µl, 20 µl, 25 µl and 30 µl) were separately added to 40 ml 

artificial seawater in plastic centrifuge tubes, then rotated for 30 min and left to stand for 15 min. 

Oil was extracted from the water phase by adding 10 ml DCM then placing the extraction in a 96 

well plate followed by examining absorbance at a wavelength of 340 nm. Also, five 

concentrations of oil in DCM solution (0.125, 0.25, 0.5, 1, 2 µl oil/ ml DCM) were prepared and 

measured via spectrophotometer (also at 340 nm, as above). 

 

4.2.2 Higher volume chemical effectiveness test  

4.2.2.1 Sample preparation 

In order to obtain more repeatable data and understand oil dispersion and coalescence 

more thoroughly, a larger-volume chemical effectiveness test was developed. Artificial seawater 

(120 ml) was measured with a graduated cylinder and added to 125 ml glass bottles, which were 

sealed with plastic caps. Using a plastic tipped micropipette, 100 µl of crude oil was added to the 

surface of the water to reach an oil: water ratio of 1:1200. The dispersant of interest was then 

applied dropwise to the center of the oil slick using a plastic tipped micropipette for a DOR of 

1:50. The oil reacted instantly when dispersant was added. The entire procedure was carried out 

at a room temperature (about 20°C). 

4.2.2.2 Sample mixing 

After the dispersant was applied to the oil, the glass bottles were attached to a rotating 

table with an orbital distance of 2 cm and rotating speed of 200 revolutions per minute.  The 

rotational mixing lasted for 30 min, then the bottles were added to 125 ml separatory funnels and 
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left to stand for 15 min to allow the droplets to stabilize. The separatory funnels were drained 

sequentially, collecting four 30 ml samples into 45 ml plastic centrifuge tubes. 

4.2.2.3 Oil extraction and analysis 

Similar to the small-vial tests, in the higher volume effectiveness tests the mass 

concentration of dispersed oil was determined by extracting the oil into DCM followed by 

spectrophotometric measurement of the concentration of extracted oil. Ten ml DCM was added 

to each centrifuge tube (containing its 30 ml sample) and was shaken manually about 30 s to 

allow the oil and DCM to mix well. The tubes were then left standing a few minutes for 

DCM/water layer separation. With a repeating pipette, 200 µl of the DCM extraction was added 

to each well in a 96 well plate followed by spectrophotometer measurements at 340 nm.   

4.2.2.4 Experiment Matrix 

In this experiment, the effects of polymer size and surface groups were evaluated. All 

experiments in this set were conducted at the same conditions of pressure and temperature (1 atm 

and 22°C), and the same DOR of 0.02. Triplicate measurements were used to evaluate 

repeatability. The negative control group, called “oil only”, was the oil added to water without 

any dispersant or polymer. The following table shows the experimental matrix for higher-volume 

effectiveness tests. 
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Table 4-3. Experimental matrix for higher-volume effectiveness tests of various sized hyperbranched 

polymers and different surface group dendrimers 

Experiment number Polymer MW (kDa) Surface group 

1 G4-PAMAM-NH2 14 Amino 

2 G4-PAMAM-OH 14 Aminoethanol 

3 G4-PAMAM-SA 21 Succinamic acid 

4 HY-PEI 1.2 Amino 

5 HY-PEI 1.8 Amino 

6 HY-PEI 10 Amino 

7 HY-PEI 70 Amino 

8 HY-PEI 750 Amino 

9 Corexit  NA* NA* 
*NA = Not applicable 

4.2.3 Particle and Droplet Size Distribution Measurement 

In order to measure the oil and polymer size distributions we used both a Coulter counter 

and DLS.  

4.2.3.1 Coulter counter  

In this experiment, we adopted a hand-held automated cell counter (EMD Millipore) 

which uses the Coulter principle to measure the particles. We selected a sensor with a 60 µm 

sample port size, which is appropriate for measuring particle sizes from 6 µm to 36 µm. Oil 

droplets larger or smaller than this range could not be examined by this instrument. 

Thirty three microliters crude oil were added into 40 ml artificial seawater followed by 

adding either 67 µl of a 1% 10 kDa HY-PEI working solution or a 1% working solution of 

Corexit. Then the samples were placed on a shaker table and rotated for 30 min. After rotation, 1 

ml sample was diluted into 10 ml PBS (phosphate buffered saline) and mixed well. We 

submerged the sensor into the solutions and the results were reported by the instrument in 30 

seconds. 

4.2.3.2 Dynamic light scattering 



 

36 

 

In order to know the drop size distribution in the range of less than 6 µl, we used DLS. 

Two series of experiments were developed for particle and oil droplet size distribution 

measurement. One is the hydrodynamic size distribution of hyperbranched polymer itself. Five 

HY-PEI polymers were dissolved in artificial seawater to reach a mass concentration of one 

percent, then sonicated for 5 min. One ml of this solution was transferred to a cuvette and 

measured by Malvern Zetasizer Nano ZS.  

The other experiment was to measure the size distribution of dispersed oil drops. Crude 

oil (33.4 µl) was added to 40 ml artificial seawater in plastic centrifuge tubes and followed by 

applying the HY-PEI diluted solution (1% mass concentration) to the center of the oil slick 

reaching a DOR of 0.02. Centrifuge tubes were then placed in a rotating table to shake for 30 

minutes at 200 rpm. Immediately after mixing, one ml of the oil/water emulsion sample was 

placed in cuvettes to measure the oil droplet size distribution. All of the measurements were 

conducted at 20°C. 

A Malvern Zetasizer Nano ZS is the instrument we used in these experiments to 

characterize the particle and oil droplet size distribution.  This instrument worked with the 

mechanism of DLS and it can detect oil drop size ranging from 1 nm to 10 µm. Light from the 

laser light source illuminates the sample in the cell. The scattered light signal is collected with 

detectors of 173 degrees (back angle) scattering angle. Particles can be dispersed in a variety of 

liquids. Only liquid refractive index and viscosity need to be known for interpreting the 

measurement results. The refractive index used for crude oil was 1.45 and for HY-PEI it was 

1.53. Water viscosity around room temperature is 0.001 (Pa∙s).       
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3.2.4 Interfacial Tension Measurement  

We used a pendant drop method to measure the interfacial tension between the oil and 

water interface. We used different methods to test interfacial tension changes in Corexit and 

dendritic polymers. . For Corexit we used a premix method involving premixing oil and Corexit 

at a concentration of 500 ppm and putting this premix sample on a shaker table rotating for 24 h. 

During the experiment, the oil phase was the premix Corexit and oil, and the water phase was 

artificial seawater. The reason for premixing the oil and Corexit is that the effectiveness of 

Corexit would decrease dramatically when diluted in water before it was applied to the oil slick 

(Belore & Ross 2000), and Corexit active ingredients are dissolved in non-polar petroleum 

distillates. Different from Corexit, hyperbranched polymers are not easily miscible with oil and 

are dissolved in water from the manufacturer; premixing is thus less effective. In experiment of 

measuring hyperbranched polymers, the oil phase was crude oil and the water phase was 

hyperbranched polymers in saline solution. We prepared samples in concentrations of 0.1, 0.05, 

0.025, and 0.0125 g/l and all the solutions were prepared immediately before the experiments. 

We performed our experiment using a drop shape analyzer called Easy Drop (Kruss, 

Germany). This instrument mainly consists of a camera with zoom lens, a sample height 

adjustment table, a 10 x 10 x 10 cm glass cuvette, and a syringe/needle sample delivery unit. 

Images are recorded via computer and analyzed with the shape analysis software Drop Shape 

Analysis (DSA) provided by Kruss (Figure 4-2). 
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Figure 4-2 Screen shot of drop shape analysis software. 

 

In order to measure oil in water interfacial tension, we selected a floating pendant bubble 

mode which was performed using a J-shaped needle that delivered oil upward. First the glass 

cuvette was filled with aqueous solution—either artificial seawater alone or dispersant working 

solution—and the plastic syringe was loaded with crude oil. Then a 3 µl drop was delivered by 

the syringe motor controller and a video recording was begun at the same time. In presence of 

dispersant, the drop shape changed with time as the interfacial tension decreased (Figure 4-3). 

Eventually (after a few seconds or up to over a minute or two) the interfacial tension was low 

enough that the drop would be released from the needle.  
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Figure 4-3 Video frames of oil drop shape varied with time. 0.0125 g/L HY-PEI 10kDa at time of 20 s, 70 s 

and 115 s. Needle diameter is 0.632 mm. As the age of drop increased, the drop shape became elongated.  

At steady (or quazi-steady) state, the shape and size of the pendant oil drop are 

determined by gravity, buoyancy, and surface forces. Buoyancy pulls the drop upwards, 

increasing elongation. Interfacial tension (which exists at the interface between two immiscible 

phases) attempts to reduce the contact area by pulling the drop into a spherical shape. The 

interfacial tension can be determined by characterizing the shape using the Young–Laplace 

equation.  
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5 RESULTS AND DISCUSSION 

5.1  Preliminary Experimental results  

5.1.1 Calibration curve 

In order to relate DCM absorbance data with the actual amount of oil dispersed in water, 

we developed two calibration curves (Figure 5-1). Curve 1 was made by adding oil into artificial 

seawater and extracting into DCM following the same procedure as used during effectiveness 

tests. Curve 2 was made by dissolving oil directly into DCM.  The linear fit to Curve 1 is in 

Equation 4-1. 

  y = 3.0399x − 0.0363 (5-1) 

Here y is the oil concentration in DCM (µl/ml), and x is the absorbance at 340 nm. The R2 was 

0.9967 which shows a good linear fit. The linear fit for Curve 2 is in Equation 4-2. 

 y = 2.4719x + 0.1482  (5-2) 

Here again y is the oil concentration in DCM (µl/ml) and x is the absorbance at 340 nm. The R2 

value was again high, 0.9868, showing a good linear relationship. However, by calculating 

Equation 4-1 and 4-2, we see that the DCM extraction efficiency was not 100% for the higher oil 

concentrations. Thus, we used Equation 4-1 to calculate the mass of oil in extracted samples, 

based on the absorbance measurements.  
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Figure 5-1 Calibration curves of oil extraction method and oil dissolution method. 

 

5.1.2 Small vials trial 

In initial experiments using the small vials protocol, two dendritic polymers, 10 kDa HY-

PEI and G4-PAMAM-NH2 were tested for their dispersion effectiveness under three different 

DORs. These were compared with commercial dispersant Corexit 9500. Figure 5-2 shows the 

data, with the y-axis being the amount of oil dispersed in the water column divided by the total 

amount of oil added to the sample; thus the number should be less than or equal to 1. When no 

dispersant was added, there was a limited amount of oil dispersed in the water; even though the 

oil/water emulsion is unstable, some of the oil was entrained in the water column. After a period 

of settling, the oil drops in both dispersed and non-dispersed samples coalesced and floated up to 

the water surface. The dispersant addition caused this time to increase greatly. At a DOR of 0.02 

0

1

2

3

4

0 0.5 1 1.5

O
il 

c
o

n
c
e

n
tr

a
ti
o

n
 (

µ
l/
m

l)

Absorbance (340 nm)

Curve 1, extraction

Curve 2, directly
dissolution



 

42 

 

the effectiveness of Corexit and HY-PEI were about 0.55 and 0.71. The effectiveness of G4-

PAMAM-NH2 increased to 0.27 which is much larger than the 0.02 found when no dispersant 

was added. When increasing the DOR, there is an increasing trend of oil dispersed in the water 

for the polymers, with effectiveness of HY-PEI and G4 reaching 0.93 and 0.67 at a DOR of 0.08. 

However, the effectiveness of Corexit decreased with increasing DOR, which was counter to our 

expectation.   

 

Figure 5-2 Fraction of oil dispersed by three materials at three dispersant to oil ratios in the first small-vial 

experiment. These tests were done without premixing the oil and dispersant, and used the top-insertion 

sample collection method. Error bars show standard deviation of six samples.  

Mixing and settling effects were evaluated in a separate experiment. In order to figure out 

the appropriate mixing and settling time we choose three combinations (mixing / settling) 24 hr / 

2 hr, 1 hr / 30 min, and 30 min / 15 min. The results are shown in Figure 5-3. The highest 

effectiveness, 0.83, appeared with the 30 min / 15 min case. The effectiveness at 1 hr / 30 min 

and 24 hr / 2 hr were 0.64 and 0.66, seems smaller than the 30 min / 15 min case. In a previous 

study longer mixing times led to higher effectiveness because more energy is applied to break oil 

into droplets and better contact is achieved between dispersant and oil. Longer settling times 
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resulted in low effectiveness because of coalescence and floating of the oil (Sorial et al. 2004a). 

In our tests it was apparent that settling time was most important, so for future experiments we 

chose the shortest settling time (15 min). We also chose the shortest mixing time (30 min) for 

convenience, since even the shortest mixing time provided sufficient energy and contact to show 

good dispersion.  

 

Figure 5-3 Fraction of oil dispersed by 10 kDa HY-PEI at different mixing and settling times. These tests 

were done without premixing the oil and dispersant, and used the top-insertion sample collection method. 

Figure 5-4 shows the results of different sample preparation and collection methods. Two 

sample preparation methods, premix and non-premix and two sample collection methods, side 

penetration and top insertion. The results did not show clear trends as to how these different 

sample preparation and collection methods influenced the effectiveness. The methods gave 

different results about which polymer had better dispersion ability, though there was an overall 

result of the three high molecular weight polymers having better dispersion capability than the 

two low molecular weight polymers. Also, replicate experimental results (not shown) were quite 

different with one other. It was hypothesized that the small sample volume made the results 
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unrepeatable, leading to our development of the higher volume effectiveness protocol (data 

shown later).  

It was also observed that the premix method often used in the oil dispersion literature was 

not applicable for hyperbranched polymers. In the premix method, we first mixed the crude oil 

with polymer working solution which contained 99% water. Since water and crude oil are 

immiscible, the oil-polymer premix was not homogenous and polymer concentration likely 

varied in each separate drop removed from the premix vial. The premix method did work for 

Corexit, as the active ingredients (surfactants) are dissolved in an oil-miscible petroleum 

distillate solvent.  

 

 

Figure 5-4 Effectiveness results of various sample preparation and collection methods. 
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5.2 Higher-volume chemical effectiveness results 

5.2.1 Effect of molecular weight on dispersion effectiveness 

The effects of various molecular weights on dispersion capacity of dendritic polymers 

were tested using the higher-volume protocol, including a separatory funnel. Data are shown in 

Figure 5-5 and Figure 5-6. The five HY-PEI polymers were used, with the same chemical 

structure but different molecular weight ranging from 1.2 kDa to 750 kDa. The dispersion ability 

was compared with commercial dispersant Corexit and no dispersant (oil only) scenarios. Each 

sample preparation resulted in four data points representing the 30 ml column segments of water 

from the bottom to top of the separatory funnel. Figure 5-5 shows the fraction of oil dispersed in 

each of these four column segments. Figure 5-6 shows the total dispersion effectiveness of the 

overall sample, which we defined as the sum of the fractions of oil dispersed in the bottom three 

segments (90 ml of the 120 ml total sample volume). This leaves out the top segment, which 

could contain non-dispersed oil floating on top of the sample.  

 

Figure 5-5 Fraction of oil dispersed by HY-PEI in each 30 ml increment of the water column. 
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HY-PEI 10 kDa, 70 kDa, 750 kDa and Corexit dispersed more oil in all four water 

column segments than HY-PEI 1.2 kDa and 1.8 kDa. Compared with the no dispersant scenario, 

HY-PEI 1.2 kDa and 1.8 kDa seemed to have little dispersion ability; HY-PEI 1.2 kDa dispersed 

11% crude oil in first three water column segments which is smaller than the 13% oil dispersed 

with no dispersant, and HY-PEI 1.8 kDa dispersed 18%. HY-PEI 10 kDa, 70 kDa, and Corexit 

showed the expected tendency that the mass of oil dispersed increases with the height of water 

column. Oil and water are two immiscible liquids and these oil-water emulsions were unstable; 

or at least some of the droplets were unstable and rose in the column. After mixing by shaking 30 

min, the oil mass distribution should have been identical in each water column segment, but 

during the 15 min settling period when no shear force was introduced, small oil droplets 

flocculated and coalesced, resulting in larger oil drop formation. The large oil drops resurfaced 

due to buoyant forces which increased with the size of the oil drop.  

 

Figure 5-6 Effects of molecular weight on dispersion effectiveness of HY-PEI. 
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Contrary to the above explanation and results seen with Corexit and most polymers, the 

HY-PEI 750 kDa sample had more oil remain in the bottom column segment. Sixteen percent of 

oil dispersed in that lowest segment while only 10% and 12% oil dispersed in second and third. 

One explanation could be that the oil-polymer complexes were actually denser enough to sink.  

Similar phenomenon has been observed in natural systems that application of chemical 

dispersants in coastal waters may increase oil sedimentation due to oil-SPM (suspended 

particulate matter) aggregation (Khelifa et al. 2006). And this oil-SPM will finally settle down to 

the bottom of sea unless it is biodegraded during the sedimentation. And the anaerobic 

conditions in sea bottom is an obstructor for oil biodegradation by microorganism. 

In Figure 5-7 we plotted the data in another way to show the relationship between the 

molecular weight of polymer and its effectiveness. The X-axis is the molecular weight of five 

hyperbranched polymers and the y-axis is the fraction of oil dispersed in each column. HY-PEI 

10 kDa shows the highest performance of dispersing the oil, followed by HY-PEI 70 kDa and 

750 kDa. HY-PEI 1.2 kDa and 1.8 kDa showed less capacity of dispersion. A previous study by 

our collaborators showed that oil molecules incorporated into the hyperbranched polymers 

(Geitner et al. 2012). So we hypothesize that hyperbranched polymers with a large molecular 

weight may have a larger interior space which can hold more oil molecules. In contrast, small 

polymers with less interior space may have less hosting capacity. However, the effectiveness 

decreased when molecular weight was over 10 kDa. This may result from the fewer number of 

large polymers existing in the mixture. Since we added the polymer by equal mass, the polymer 

with large molecular weight has a lower molar concentration. The total interior space created by 

large polymers such as HY-PEI 70 kDa and 750 kDa was likely actually smaller than the total 
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interior space created by HY-PEI 10 kDa; this manifested itself as lower effectiveness in oil 

dispersion.  

 

Figure 5-7 Relationship between molecular weight and fraction oil dispersed by each water column 

Further examining the data, Figure 5-8 shows the relationship between the polymer 

molecular weight and the oil incorporation capacity for single polymer molecule. In order to 

calculate how many oil molecules were dispersed by a single polymer molecule, we made 

several assumptions. Our first assumption was about the average molecular weight of crude oil. 

Mass spectrum of crude oil showed the mean value is about 500 g/mol (Magnet lab 2014). We 

only calculated the oil dispersed in the first three water column segments and assumed that only 

1.5 µl polymer was incorporated with the oil. The molecule number was obtained by dividing the 

mass by the molecular weight therefore we can get the oil/polymer molecule number ratio.  
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Figure 5-8 Molecular ratio of oil to polymer in dispersed system. 

From Figure 5-8, we can observe that the oil/polymer molecular ratio increased with the 

molecular weight of the polymer which indicates that the large polymers can entrap more oil 

molecules than smaller polymers, which was expected. The magnitude of the ratio ranged from 

50 to 100,000. For example, with HY-PEI 10 kDa, one polymer molecule can incorporate 1,000 

oil molecules. However, the molecular weight of HY-PEI 10 kDa is only 20 times larger than the 

oil molecule. This indicates that the way the polymer interacts with oil is not limited to 

encapsulation because one polymer cannot hold 1,000 oil molecules. So we hypothesized a new 

mechanism where the polymer may have surfactant-like characteristics where polymers coat the 

surface of oil droplets and lower their interfacial tension. Alternatively, the globular structure of 

the polymers may share some properties with particles such as carbon black which stabilize oil 

through a Pickering emulsion mechanism.  

5.2.2 Effects of polymer end group on dispersion effectiveness 

The effect of different surface groups on dispersed oil is shown in Figure 5-9. The three 

dendrimers have the same interior structure, similar molecular weight but different outer 
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functional groups. The amino group in G4-PAMAM-NH2 had a positive surface charge, 

amidoethanol group in G4-PAMAM-OH is neutral and succinamic acid groups in G4-PAMAM-

SA are negative. G4-PAMAM-NH2 had a certain capability to disperse oil, though it was weaker 

than Corexit. Dendritic polymers with neutral and negative charge showed barely any potential 

for oil dispersion. This may result from the electrostatic force between the polymers and oil 

drops. Typically oil drops acquire a certain number of negative charges in aqueous solution, so 

they would attract polymers with a positive surface charge and repel polymers with negative 

charge. As for neutral surface charge, there would be only a weak interaction between the 

polymers and the oil drops. Therefore neutral and negatively charged polymers can hardly adsorb 

on the oil drop which results in low effectiveness.  

This also points to another mechanism of stabilization for dendritic polymers with 

positive charge. They may form a surface coating making the particles have an overall positive 



 

51 

 

charge, and an electrical double layer. This double layer gives electrostatic repulsion between the 

oil drops and keeps them away from each other therefore stabilizing the oil-water emulsion. 

 

Figure 5-9 Effectiveness of dendritic polymer with different surface functional groups. 

 

5.3 Particle and oil droplet size distribution results 

5.3.1 Coulter counter results of oil drop size distribution 

 

Figure 5-10 shows the droplet size distribution of oil dispersed by HY-PEI 10 kDa and 

Corexit. It should be stressed that the Coulter counter particle size results were not repeatable 
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size, but they are not conclusive. Since the instrument can only present the drop size range from 

6 µm to 36 µm, the oil drop size besides this range is not shown in Figure 5-10.  It is probably 

that the oil drops in Corexit sample tended to have smaller droplet size than HY-PEI 10 kDa. 

And oil drop size distribution in both samples mainly lay in the range less than 7 µm. This result 

indicates that we should examine the oil droplet smaller than 7 µm to get a better understanding 

of drop size distribution behavior. In Corexit, 58 percent of the oil droplets were smaller than 6 

µm and the largest drop size was 8.4 µm. However, only 28 percent of the oil drops in HY-PEI 

sample were smaller than 6 µm and the largest drop size was 9.4 µm. We can conclude that the 

large numbers of oil drops were smaller than 6 µm in both samples. Corexit formed more small 

oil drops than HY-PEI 10 kDa. 

 

Figure 5-10 Normalized result of drop size distribution of crude oil dispersed by HY-PEI 10 kDa and Corexit. 
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Table 5-1 shows the hydrodynamic size of hyperbranched polymers with different 

molecular weight. The molecular weight increased as hydrodynamic size increased. The smallest 

HY-PEI 1.2 kDa polymer had a size of 2 nm and the largest HY-PEI 750 kDa had a size of 32 

nm. HY-PEI 10 kDa had a diameter of 6 nm which is consistent with previous data (Geitner et 

al. 2012). 

 

Table 5-1 hydrodynamic size of hyperbranched polymers. 

Polymer HY-PEI  HY-PEI  
 

HY-PEI 
  

HY-PEI 
  

HY-PEI 
 

MW (kDa) 1.2 1.8 10 70 750 

Hydrodynamic size (nm) 2.00 2.05 6.09 10.96 32.03 

 

5.3.3 DLS results of hydrodynamic sizes distribution of oil droplets dispersed by 

hyperbranched polymer 

Figure 5-11 shows the volume distribution of dispersed oil by hyperbranched polymers 

and Corexit. The volume distribution refers to the total volume of oil within the droplets of a 

certain size. Since the oil droplets were measured by DLS, the droplets smaller than 1 nm and 

larger than 10 µm were not detected by the instrument. Oil dispersed by 10 kDa HY-PEI had a 

mean size of 1990 nm, slightly smaller than that of Corexit, 2300 nm. One group examined the 

volume distribution for Arabian light crude oil and found that the mean size of oil drops 

dispersed by Corexit was around 3500 nm (Mukherjee & Wrenn 2011), on the same order of 

magnitude with our measurements, though larger. Oil droplet size distribution patterns of HY-

PEI 70 kDa and 750 kDa were similar and the mean size was larger than HY-PEI 10 kDa. Oil 

dispersed by HY-PEI 1.8 kDa had the largest mean size of 5559 nm and the oil distribution in 1.2 

kDa HY-PEI cannot obtain by DLS data; it may be too large and unstable to be detected by the 
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instrument. Previously it was shown that the smaller the size distribution the better the dispersion 

performance (Mukherjee & Wrenn 2011).  Our results were difficult to repeat and the data are 

inconclusive as to the actual size of droplets obtained in our work; however, the data available 

are consistent with the hypothesis that the dispersed oil droplets are much larger than the 

polymers, which means that the main mechanism of dispersion may not be encapsulation into the 

polymers, but surfactant-like or Pickering emulsion instead. Aggregation of polymers with 

encapsulated hydrocarbons is also a possibility. 

 

Figure 5-11 Volume distributions for dispersed oil. 

5.3.4 Conceptual model of oil drop size distribution 

As mentioned previously, it is assumed that after shaking for 30 min the oil drops were 

equally distributed in the water column of the separatory funnel. During the subsequent 15-

minute settling period the drops coalesced and rose. In order to check our theoretical 

understanding of the system regarding oil droplet size we built a conceptual model using the 

Stokes terminal settling (rise) velocity equation (Equation 4-3). By calculating the terminal 
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velocity we could determine the theoretical maximum size of the oil drops in the four water 

column segments. 

 Vt =
g𝑑2(𝜌𝑠−𝜌)

18𝜇
 (5-3) 

In equation 4-3 Vt is the terminal velocity of the oil drop floating up to the water surface, g is the 

acceleration of gravity, µ is the water viscosity, ps-p is the density difference between the water 

and crude oil, and d is the diameter of the oil drop.  

We measured the heights of each of the four water column segments in the separatory 

funnel and calculated the rise velocities by dividing the height by the settling time of 15 min.  

We estimated the largest possible oil drop in each water columns (Figure 5-12). The largest oil 

droplet size in the first 30 ml water column (from bottom to top) was 29 µm which was larger 

than the 7.5 µm in the sample of HY-PEI 1.8 kDa measured by DLS and 9.4 µm of HY-PEI 10 

kDa measured by the Coulter counter. We can conclude that the testing results of DLS and 

Coulter counter are in the range of the theoretical size of the largest possible oil drop which 

indicates that the results are consistent with theory. Further, these results suggest that the 

maximum droplet sizes that could have been formed by the polymer-oil dispersions in our 

effectiveness tests were 29, 33, 35, and 37 µm for the four respective water column segments.  
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Figure 5-12 Conceptual size of largest oil drops in each water column. 

5.4 Oil /water interfacial tension measurement 

In interfacial tension experiments, we measured the dynamic interfacial tension in the oil 

–dispersant–water system by making a series of HY-PEIs and Corexit artificial seawater 

solutions with different concentrations. By taking videos, the drop shape and interfacial tension 

were recorded and analyzed. 

Figure 5-13 shows the dynamic interfacial tension in a Corexit sample and no dispersant 

sample. Corexit was premixed with the crude oil for 24 hr with a concentration of 500 ppm 

(dispersant in oil). A 3 µl oil drop was delivered from the tip of the needle and the video 

recording was started at the same time. Right after a stable drop formed, the interfacial tension 

between oil and water was 10.7 mN/m. This number rapidly decreased to 3.79 mN/m at drop age 

of 40 seconds when the interfacial tension was too small to hold the drop against buoyancy 

forces and the drop floated away; this is the drop release point. In no dispersant sample, 

interfacial tension started with a value of 18 mN/m, and then reached a consistent number around 

12 mN/m.   
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Figure 5-13 Dynamic interfacial tension of curve of Corexit pre-mixed with oil at a concentration of 500 

ppm. 

Figure 5-14 to Figure 5-18 show the dynamic interfacial tension of 5 HY-PEIs in four 

different concentrations, 0.0125 g/L, 0.025 g/L, 0.05 g/L and 0.1 g/L. Here the concentrations 

refer to the polymer dissolved in the artificial seawater phase. By changing the polymer 

concentration in water phase we examined the effect of dispersant concentration on interfacial 

tension.  

Figure 5-14 shows the dynamic interfacial tension of 1.2 kDa HY-PEI at four different 

concentrations. All four curves show the same trend that interfacial tension declined with the 

increasing age of drops. The interfacial tension started with values of 15, 13.25, 10.63 and 5.8 

mN/m and end up with 10.79, 9.15, 7.25 and 3.5 mN/m at concentrations of 0.0125, 0.025, 0.05, 

0.1 g/L, respectively. The higher the concentration of polymer the lower the interfacial tension. 

At concentration of 0.1 g/L the interfacial tension decreased to 3.5 mN/m at age of 20 s reaching 

the drop release point. 
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Figure 5-14 Dynamic interfacial tension curve of HY-PEI 1.2 kDa at concentrations of 

0.0125 g/L, 0.025 g/L, 0.05 g/L and 0.1 g/L of polymer dissolved in artificial sewater. 

Figure 5-15 shows the dynamic interfacial tension of 1.8 kDa HY-PEI at three different 

concentrations.  The interfacial tension at three curves started with values of 16, 12, and 10 

mN/m at concentrations of 0.0125 g/L, 0.025 g/L and 0.05 g/L. After 2 min the interfacial 

tension in the three concentrations seemed to reach a stable value around 6.8 mN/m.   
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Figure 5-15 Three dynamic interfacial tension curve of HY-PEI 1.8kDa at concentration of 

0.0125 g/L, 0.025 g/L and 0.05 g/L 

Figure 5-16 shows the dynamic interfacial tension of 10 kDa HY-PEI at different 

concentrations.  All four curves show a similar pattern that interfacial tension declined with 

increasing drop age. At the same drop age, the interfacial tension is smaller with higher polymer 

concentration. For example, at the time when the stable drop just formed, interfacial tension 

started with a values of 15, 12, 7, 5.2 mN/m at concentrations of 0.0125 g/L, 0.025 g/L, 0.05 g/L 

and 0.1 g/L, respectively. Only at a concentration of 0.0125 g/L did the drop last for 2 min. At 

the other three concentrations the drop release point occurred before 2 min since the interfacial 

tension dropped down around 3.5 mN/m.  
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Figure 5-16 Dynamic interfacial tension curves of HY-PEI 10kDa at concentration of 

0.0125 g/L, 0.025 g/L, 0.05 g/L and 0.1 g/L. 

Figure 5-17 shows the dynamic interfacial tension curve of 70 kDa HY-PEI at different 

concentrations. All four curves had the trend that interfacial tension decreased with drop age 

which is similar with 10 kDa HY-PEI. However, the 70 kDa had a stronger reduction effect on 

interfacial tension than 10 kDa HY-PEI at the same concentrations. For example at a 

concentration of 0.05 g/L and 0.1 g/L, the interfacial tension in 70 kDa started at 8, and 6 mN/m 

respectively and reduced to 3.5 mN/m at the age of 12 s and 4 s, respectively. Compared to the 

dynamic interfacial tension in 10 kDa HY-PEI, the interfacial tension started with 7 and 5.7 

mN/m at concentrations of 0.05 g/L and 0.1 g/L, and then dropped down to 3.5 mN/m at age of 

30 s and 10 s, respectively.   
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Figure 5-17 Dynamic interfacial tension curves of HY-PEI 70 kDa at concentration of 

0.0125 g/L, 0.025 g/L, 0.05 g/L and 0.1 g/L. 

Figure 5-18 shows the dynamic interfacial tension curve of HY-PEI 750 kDa at three 

concentrations. At 0.0125 g/L and 0.025 g/L, the interfacial tension dropped from 12 mN/m to 

5.94 mN/m and 4.51 mN/m respectively, reaching the drop release point. When concentration 

reached to 0.05 g/L, the drop stayed at the top of the needle for only 8 seconds with the final 

surface tension of 3.8 mN/m. 

 

Figure 5-18 Three dynamic interfacial tension curve of HY-PEI 750 kDa at concentration 

of 0.0125 g/L, 0.025 g/L and 0.05 g/L. 
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In Figure 5-14 to Figure 5-18, the oil water interfacial tension decreased as the drop aged. 

This is perhaps because the polymer molecules have an amphiphilic structure with a hydrophilic 

surface and a hydrophobic interior.  HY-PEI has a tendency to stay at the oil/water interface 

therefore the discrete polymer molecules in bulk water moved to the oil drop surface and 

adsorbed onto it while reducing the oil/water interfacial tension like a surfactant. In the control 

group with no dispersant added, the interfacial tension stayed at 12 mN/m after a short aging 

period. All five hyperbranched polymers were able to reduce the interfacial tension and as the 

concentration increased the interfacial tension dropped more dramatically.  

Figure 5-19 shows the final interfacial tension for five HY-PEI sizes at three 

concentrations. We did not put the interfacial tension of Corexit here since Corexit sample is 

prepared in premix method and have a much small concentration.  At 0.025 g/L and 0.05 g/L, 

interfacial tension in HY-PEI 10 kDa, 70 kDa and 750 kDa dropped to around 3.5 mN/m, which 

is a typical value at the drop release point, while interfacial tension in HY-PEI 1.2 kDa and 1.8 

kDa remained around 7.8 mN/m. We can conclude that hyperbranched polymers with high 

molecular weight, 10 kDa, 70 kDa and 750 kDa have better ability to reduce the interfacial 

tension than smaller molecular weight polymers 1.2 kDa and 1.8 kDa, and as the concentration 

increased, all polymers showed greater capacity to decrease the interfacial tension.  Compared 

the interfacial tension data with chemical effectiveness data, we found that even though the 

Corexit working best in reducing the interfacial tensioin, the chemical effectiveness is similar 

with HY-PEI 10 kDa and 70 kDa. This may because the polymer is not a surfactant and its 

working mechainsim is different with Corexit. Surfactant is very effective when reach the critical 

micelle concentration. However, as for Pickering emulsion, even though in the low 

concentration, particle can still formed stable emulsion.  
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Figure 5-19 Final interfacial tensions for hyperbranched polymers under different 

concentrations. 
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6 CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions  

The first conclusion from this work relates to method development. Using only 12 ml 

water volume in 20 ml scintillation vials (our “small-volume” trials) resulted in significant 

variability in dispersion effectiveness data. Using 120 ml water volume (our “higher-volume” 

trials) and a separatory funnel resulted in more reproducible results. The higher-volume trials had 

an additional benefit in that four subsamples could be collected from different elevations in the 

separatory funnel. This allowed for characterizing the distribution of oil within the sample and 

enabled the theoretical calculation of particle size based on terminal rise velocity. 

By combining the results from effectiveness tests, interfacial tension measurements, and 

drop size measurements we have developed a conceptual model of oil-dendritic polymer 

interactions and a description of the possible mechanisms of oil dispersion. Dendritic polymers 

are characterized by what can be thought of as an amphiphilic structure with the hydrophilic end 

groups at the surface and less hydrophilic regions in the interior. When interacting with crude oil 

hydrocarbon molecules appear to penetrate the polymer surface and adsorb inside the polymer. 

Some large hydrocarbons could partially protrude into the polymer with tails that remain in the 

bulk oil droplet. These can be thought of as hydrocarbon bridges since they link the polymers to 

the oil drops (see Figure 6-1). Dendritic polymers may adsorb onto the oil droplet surface 

through these hydrocarbon bridges reducing the oil/water interfacial tension and coating the 

droplets with hydrophilic external surface groups that enable a more stable emulsion. Because 

the polymers behave like particles on the surface, this can be thought of as a Pickering emulsion 

mechanism. This may be possible even without the hydrocarbon bridges, but because the 

effectiveness data and previous work (Geitner et al. 2012) suggest hydrocarbon uptake into the 
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polymer and the formation of polymer/oil aggregates, the hydrocarbon bridge model seems 

likely.  

 

Figure 6-1 Conceptual model for dendritic polymer interaction with crude oil. 

Small dendritic polymers with limited interior space were not effective, probably because 

they cannot hold hydrocarbons inside. Even though they were shown to decrease the interfacial 

tension at high concentrations, that effect was not sufficient to produce stable emulsions.  

The charge of surface functional groups on the exterior of the dendritic polymers had a 

significant impact on the interactions between the oil and polymers. Crude oil drops typically 

display negative charges in water (Marinova et al. 1996). Polymers with positive surface charge 

would be attracted electrostatically to the oil drops and the polymers with negative charge would 

be repelled. Our data were consistent with this model, since the positively charged dendrimers 

were more effective than the neutral or negatively charged dendrimers. It is possible that 

electrostatic interactions alone were responsible for the polymers adhering to and stabilizing the 

oil emulsion, and that hydrocarbon uptake or bridging was less important.  
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6.2 Recommended future studies 

Effectiveness tests in this study were based on mass ratios, which means that the 

polymers with larger molecular weight had fewer molecules in solution. This could be one of the 

reasons that the effectiveness of 70 kDa and 750 kDa HY-PEI were less than that of the 10 kDa 

material. Further experiments with equal molar ratios (or a range of molar concentrations) could 

help elucidate the mechanisms further by testing whether the per-polymer hydrocarbon uptake is 

consistent across concentrations; this would help us understand the importance of encapsulation 

as a dispersion mechanism.  

The effectiveness of dendritic polymers with other surface functional groups should also 

be examined. Surface charge is an apparently important reason for different performance on oil 

dispersion; however, besides the electrostatic forces other interactions between surface groups 

and oil molecules, such as van der Waals forces may also influence the effectiveness. Polymers 

with equal charge but different functional group structures are recommended for further work. 

Ideally, negatively charged functional groups that are still effective at dispersion could be found. 

These should be less toxic than the positively charge polymers we mostly used in this study. pH 

and ionic strength are also important factors to be examined. pH will alter the surface charge of 

the polymer and ionic strength will influence the electrical  double layer formation and 

electrostatic repulsion between the oil droplets.  

Even after our size measurement attempts, the relationship between the drop size 

distribution and size of the polymer remains unclear. Previous studies showed that the smaller 

the droplet size, the more stable the system. The optimal size of the polymer and how the size 

influences the structure of the oil-polymer complex should be further examined. This is difficult, 

as noted in our work, because typical size measurement techniques often fail under the dynamic 
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conditions of crude oil in water emulsions; more robust methods should be developed or learned 

from others. 

According to interfacial tension data, dendritic polymers share a similar mechanism with 

surfactants, which disperse oil by reducing the interfacial tension. However, unlike surfactants, 

dendritic polymers seem to lack a key characteristic: the CMC. Without being able to measure a 

CMC we cannot a priori determine the best polymer/oil ratio as is done with surfactants. 

Understanding which other physical parameters beside the CMC—parameters that can be easily 

measured for dendritic polymers—would be most predictive of dispersant effectiveness would be 

a significant step forward in this field.  
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