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Introduction PART Il. The Performance of TIGERS3 PART 111. Reverse Mapping and Scattering Function Calculation for Atomistic Models
e Fundamental studies of the properties of biopolymers require the dgvelopment of e_fﬁment_ c_omputgtlonal Sampling Efficiency Reverse Mapping Method
methods that are able to handle the huge number of degrees of freedom in such systems in atomistic detail .
e \We have developed efficient coarse graining and reverse mapping methods to equilibrate the structure of poly Tests on amorphous PMMA at 500 K. All Calculations were conducted with CHARMM [4] and e The CG structure determines the contour of the atomistic structure. The position of a CG bead represents the
(DTB succinate) [1], poly (methyl MA). poly(butyl MA) and poly(D, L - lactide) SCFF force field [5]. center of mass of the corresponding atomistic unit, and is fixed during reverse mapping.
e We have developed a new accelerated sampling method, TIGER3, with which the effective speedup reaches 350000 - N * Altractive harmonic constraint Is imposed between the dummy atoms (r,qy,= 0) at the open ends of successive
well into the characteristic experimental regime. A 5 atomic units. The introduced atomistic unit is allowed to rotate freely with fixed center of mass.
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Glass Transition Temperature Calculation
e Energy Terms Considered in Coarse Graining Procedure Two dense amorphous systems of PMMA and PBMA were generated and equilibrated with the Y

TIGER3/TIGER2 mixed scheme. Started from the equilibrated structures, conventional MD
simulation was conducted at various temperatures for 500 ps. The atomic mean squared
displacements (MSD, g,) were calculated from the MD trajectories. An inspection of g, at
different temperature identifies two diffusion regimes across 400 — 410 K for PMMA and 300 —

e Multicentered Gaussian Function for the Parameterization of Bond Stretching and Bending 310 K temperature for PMMA and PBMA, respectively, which corresponds to the glass transition
temperature of the two polymers, and are close to the experimental data of about 400 K and 300

E — Ebonded + Enon—bonded — Estretch + Ebend + Etorsion + EVDW

: _Coarse Graining
The potential terms optimized in the order of their relative strength E..., — Epeng — Evgw — E

torsion*

Reverse Mapping

_ (¥ —x )2 _9(x—x .)? K Ively.
P(x):ﬁexp( 2 Zxcl) )+iexp( 2(X 2X°2) ), A Ay Xeps Xeor Wy, W, are parameters. , respectively _
W w w W ‘v
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of 50-mer DTB succinate.
e Parameterization of Torsional Interaction
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It i1s conducted in parallel with a number of replicas at different temperatures. Each TIGER3 cycle consists of (1) A T=A50K A B | Figure 7: The scattering functions, Sq, calculated for PMMA, PBMA, and poly(DTB succinate) at 295 K

heating up to target temperature, (2) sampling at the target temperature with a Monte Carlo (MC) scheme with temperature showing excellent agreement between predicted and experimental values from x-ray scattering.
reduced vdW radii, (3) quenching to baseline temperature with recovered radii followed by a relaxation using a
hybrid MC/MD scheme, and (4) randomly selecting a quenched replica and comparing it with the baseline
replica (without adjustment of radii) based on the Metropolis criterion [2]. The rest of the guenched replicas are

reassigned based on their energy levels.

CONCLUSIONS

' 1. The new TIGER2/TIGER3 scheme combined with coarse-grained model is

| able to efficiently equilibrate dense polymer systems.

2. The predictions of the properties of the equilibrated systems are in very good
agreement with the experimental observations.

The TIGER3 method leads to fast diffusion of chain segments within the dense system. In actual modeling works,
we use a combined scheme of TIGERZ2 [3] (with normal vdW radii) and TIGER3 (with reduced vdW radii), for
Instance, a TIGER3 cycle Is conducted after every 10 TIGER2 cycles. This scheme can further relax the high
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energy states resulted from a TIGER3 sampling and increase the successful exchange ratio between the 1 10 100
quenched and the baseline replicas. Time (ps] Temperature (K)
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