
ME 403/416/616 Project                                                                                                 Dr. N. Jalili 1

Clemson University Department of Mechanical Engineering 

 ME 403/416/616 Project                Due: Friday December 5, 2008 
 Fall 2008                                                                    Dr. Nader Jalili 
 

GANTRY SYSTEM 

It is desired to control the position of a spring driven cart, while carrying a pendulum.  This system, 
known as gantry system, is used in many industrial applications.  We are assuming small angle of rotation 
for the pendulum, so only linear vibrations are considered.  The pendulum is also assumed to be uniform.  

           

Figure 1. (left) Gantry system, and (right) its free-body-diagram.  

The cart (Mc) is equipped with a DC motor.  As modeled in Figure 2, this motor has an electrical constant 
Ke, a torque constant Kt, an armature inductance La, and a resistance Ra.  The motor shaft is connected to a 
gear with radius r as shown in Figure 3.  The motor shaft has an equivalent inertia of Jm and an equivalent 
viscous friction b.  The gear ratio from motor shaft, mθ , to cart gear, 1θ , is Kg.  Notice, the inertia of the 
gears involved are neglected, and the cart gear contact with the rack is assumed to be a pure rolling 
contact (i.e., 11  θ= rx  in Figure 3).  The viscous damping coefficient as seen at the pendulum axis is Bp. 

 
Figure 2.  Model of the DC motor. 

atm iKT  =

m 
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When the motor runs, the torque created at the output shaft is translated to a linear force which results in 
the cart's motion (see Figure 3).  When the cart moves, the encoder shaft turns and the voltage measured 
from the potentiometer can be calibrated to obtain the track position of driven cart, x2.  

 

 
Figure 3.  Model of the force translation on the driver cart.  

Dymamic Modelign and Analysis: 
1. Set the equations governing the dynamics of this system.  Classify these equations and identify the 

input voltage, va, and output cart position, x1, as the input and output variables, respectively. 

2. Represent the dynamics in the state-variable form (a set of 1st order differential equations) and 
identify your states.  Identify the system coefficient and input force matrices.  

3. Assuming zero initial conditions, transfer the governing equations developed in part 1 into Laplace 
domain and find the transfer function of the system, 1( ) ( ) / ( )aTF s X s V s= .  

4. Extract the characteristic equation from part 2 or 3, and determine whether the system is stable or not 
(using characteristic roots).  What is the order of system?  

5. What is the position of the driven cart as t  ∞ (steady-state error) in response to a unit DC input 
voltage?  Does this agree with the stability results of Part 4? 

6. Find the simplified expressions for the TF of part 3, the order of the resulting system, and steady-state 
error for the following cases:  

a. Neglecting the effect of armature inductance La. 

b. Neglecting the effects of both armature inductance La and viscous friction c.  

c. Neglecting the effects of armature inductance La, viscous friction c, and motor inertia Jm. 

7. Determine the stability characteristics of each simplified system resulted in part 6 (a-c).  Will any of 
these assumptions change the stability characteristics of the system?  

Numerical Questions: 
8. Using either Simulink or Matlab, solve the complete system developed in part 1 with the numerical 

values listed in Table 1 for both: 

a. Constant input voltage (at maximum voltage, for instance), i.e., max)( Vtva = . 

b. Sinusoidal input voltage at maximum amplitude and frequencies 0.5, 1 and 5 Hz (i.e., 
) 10sin()( and  ), 2sin()(  ), sin()( maxmaxmax tVtvtVtvtVtv aaa πππ === .   

Report the system responses (x1(t)) using graphs or tables.  (Hint: You can develop a block diagram in 
Simulink to solve the model developed in part 1 or use Matlab to solve for the set of 1st order ODEs 
developed in part 2). 

1 m1

x1 

θ1 

r 
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9. Use Simulink to numerically solve this system via the transfer function developed in part 3.  Verify 
your results with the findings in part 8.  

10. Numerically solve part 6 (a-c) and verify with the analytical results developed in part 6.   

 

Control System Design:  Clearly, the open loop position response of the system is not acceptable or at 
least desirable.  A “proportional plus derivative – PD” controller can now be used to improve the system 
response.  The controller is taken to be in the form of: 

  1 1( ) ( ( ) ( )) ( )a p dv t K r t x t K x t= − −                                                   (1) 

where )(tr  is the desired cart position (a time-varying variable at this stage) of the cart, and pK  and dK  
are the respective proportional and derivative feedback gains to be designed.  The proposed controller can 
be schematically shown in Figure 4, where both pK  and dK  have the respective “volt/m” and 

“volt.sec/m” dimensions and error )(te  is defined as 1( ) ( ) ( )e t r t x t= − .  All the constant values 
including mechanical and electrical parameters remain unchanged as given in Table 1.  
 
 

 
Figure 4.  Feedback control of the linear system shown in Figure 1. 

 

11. Set the equations governing the dynamics of this system (this is the same as in Part 1).  Replace the 
input voltage, va, with the expression given in equation (1) and classify the new input r(t) (i.e., the 
desired cart position) and output driven cart position, x1(t), as the input and output variables, 
respectively. 

12. Assuming zero initial conditions, transfer the governing equations developed in Part 1 into Laplace 
domain and find the transfer function of the system, 1( ) ( ) / ( )TF s X s R s= .  This will form the 
closed-loop transfer function of the system from )(tr  to 1 ( )x t  as shown in Figure 4 (inside dashed 
lines). 

13. Extract the characteristic equation from Part 12 and determine whether the system is stable or not 
(using characteristic roots).  What is the order of system?  How does this compare with the 
characteristic equations developed in Part 4? 

14. What is the position of the driven cart as t  ∞ (steady-state error) in response to a unit DC input 
voltage (i.e., )()( tutr =  or ssR /1)( = )?  Does this agree with the stability results of Part 13?  
Compare this with the open-loop case (Part 5) and draw your conclusion.  

 
 
 
 

Feedback Control 

B(s)

A(s)

Plant Transfer Function 
X1(s)/Va(s) 

PD

PD Controller
Output Desired or Command  

Input 

r(t) e(t) va(t) X1(t) 

Closed-loop Transfer 
Function X1(s)/R(s) 
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Open-loop Control:  

15. With 1=pK , 0=dK  and 10)( =tr cm, implement the open-loop block diagram of Figure 4 (with 
NO feedback line) in Simulink.  Does the cart follow the command properly?  Draw your conclusion.  

 
Closed-loop Control:  

16. Implement the closed loop controller of Figure 4 in Simulink.  It is now desired to vary pK  and dK  
to obtain the three cases of under-damped, critically-damped and over-damped systems.  Try to 
numerically obtain pK  and dK .  One approach is to numerically calculate the corresponding roots of 
the characteristic equation (using “fzeros” in Matlab, for instance) and determine the corresponding 
damping ration, ξ, of the dominant root (using “sgrid” in Matlab, for instance).  

17. Implement each set of your pK  and dK  and plot the system response (x1(t)).  Determine the 
damping ratio, settling time and overshoot and collect the results in a table for the three cases of 
under-damped, critically-damped and over-damped systems.   

 

Case  Kp  Kd  ξ ts  Mp  

Under Damped      

Critically Damped   N/A  N/A 

Over Damped    N/A  N/A 

 

18. Now, try to see the effect of each controller gains ( pK  and dK ) by varying them in some ranges.  
Decide as to what procedure you will take.  For instance, keep one of them unchanged and vary the 
other one and so on.  Observe and take notes from the responses.  

19. Using Routh-Hurwitz, Root-Locus or Nyquist techniques, find out each gain’s effect on the 
performance of the closed loop controller.  From the exercises above, find out the best (to the extent 
possible) combination of these gains and report.  Justify your choice of “best” gains.  Explain the 
procedure used.  

20. Now, monitor pendulum angle as you change controller gains and determine the best gain selection 
for minimum angle variation of the pendulum.  Do you see any contradiction between best gains 
selection for cart position and pendulum minimum vibration?  

 

Reporting Format: 
Present your report in the order below: 

• Analytical model, transfer functions, dynamic representation,    40 pts. 
• Control development, numerical results, Matlab, Simulink, …     40 pts. 
• Discussion on the results and conclusions       10 pts 

The remaining 10 pts. is reserved for the presentation style.  Please return ONE report per group by the 
due date. 
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Table 1. Linear Position Servo System Parameters. 
PARAMETER SYMBOL VALUE UNITS 
Motor Torque Constant, 
Back Emf Constant 

Kt, Ke, Kb 0.00767 Nm/amp 
V/(rad/sec) 

Armature Resistance Ra 2.6 Ohms 
Armature Inductance La 0.18 mHenry 
Maximum Input Voltage Vmax  6.0 Volts 
Internal Gear Ratio Kg 3.7:1 - 
Armature Inertia Jm 3.87e-7 Kgm2 
Motor Gear Radius r 0.635 cm 
Cart Mass  Mc 0.360 Kg 
Motor Shaft Equivalent Viscous 
Friction 

b 0.02 Kg.m/sec 

Mass of the Pendulum Mp 0.230 Kg 
Length of the Pendulum Lp 0.6413 m 

Viscous Damping coefficient, as 
seen at the pendulum axis 

Bp 0.0024 N.m.s/rad 

Gravitational Constant of Earth g 9.81 m/s2 
 


