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In this paper, linear parameter-varying (LPV) control is considered for a solution copolymerization reactor,
which takes into account the time-varying nature of the parameters of the process. The nonlinear model
of the process is first converted to an exact LPV model representation in the state-space form that has a
large number of scheduling variables and hence is not appropriate for control design purposes due to the
complexity of the LPV control synthesis problem. To reduce such complexity, two approaches are pro-
posed in this paper. First, an approximate LPV representation with only one scheduling variable is ob-
tained by means of a parameter set mapping (PSM). The second approach is based on reformulating the
nonlinear model so that it provides an LPV model with a fewer number of scheduling parameters but
preserves the same input–output behavior. Moreover, in the implementation of the LPV controllers
synthesized with the derived models, the unmeasurable scheduling variables are estimated by an ex-
tended Kalman filter. Simulation results using the nonlinear model of the copolymerization reactor are
provided in order to illustrate the performance of the proposed controllers in reducing the convergence
time and the control effort.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Controlling the operation of polymer reactors is a highly im-
portant task that aims at maximizing the production rate and the
product quality and also minimizing the transition losses due to
the high consumer demands, as well as the tight market compe-
tition for producing different grades of polymers (Embirucu, Lima,
& Pinto, 1996). However, the control design task is nontrivial due
to the nonlinear behavior of polymer reactor systems which ex-
hibit strong dependence on multiple operating regimes (Özkan,
Kothare, & Georgakis, 2003; Richards & Congalidis, 2006; Soroush
& Kravaris, 1993). Furthermore, polymer reactors exhibit unstable
modes at some operating points (Congalidis & Richards, 1998), as
well as time-varying parameters that need to be measured since a
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adpour).
polymerization reactor switches through different operating
points depending on the needed polymer grades (Richards &
Congalidis, 2006). Due to the existence of unmeasured dis-
turbances influencing these systems, the development of a robust
control strategy is highly desired. Several control approaches have
been investigated in the literature (Özkan et al., 2003; Richards &
Congalidis, 2006). For example, a classical PID controller is de-
veloped in Congalidis, Richarards, and Ray (1989) without the
need of an accurate dynamical model. However, PID controllers are
not adequate to cope with such complex systems, in which strong
interactions exist between the controlled variables. Hence, model
predictive control (MPC) based on simple process models has been
proposed in Özkan et al. (2003) and Maner and Doyle (1997),
where a rapid transition between two typical operating points is
ensured. A nonlinear controller has been designed and validated
experimentally in Soroush and Kravaris (1993), which depends on
online measurements of time-varying model parameters of a
nonlinear model of the process.

Generally speaking, optimal control techniques are preferred if
a good process model is available (Embirucu et al., 1996). More-
over, adaptive control strategies can be applied in order to take the
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Fig. 1. Copolymerization reactor.
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time-varying nature of the process into account, provided that
online measurements/estimations are available. In this paper, lin-
ear parameter-varying (LPV) control techniques (see Apkarian,
Gahinet, & Becker, 1995) are considered to control a free radical
solution copolymerization reactor described in Congalidis et al.
(1989). LPV systems describe a class of nonlinear/time-varying
systems that can be represented in terms of parametrized linear
dynamics in which the model coefficients depend on a number of
measurable variables called scheduling variables (Rugh & Shamma,
2000; Tóth, chap. 3). The LPV methods provide powerful tools for
designing controllers for nonlinear/time-varying plants (Mo-
hammadpour & Scherer, 2012). The LPV controller synthesis tools
extend the well-known methods of controlling linear time-in-
variant (LTI) systems to control nonlinear systems with guaranteed
stability and high performance over a wide range of operation
(Abbas, Ali, Hashemi, & Werner, 2014; Bachnas, Tóth, Ludlage, &
Mesbah, 2014; Tóth, Van de Wal, Heuberger, & Van den Hof, 2011).

The design of LPV controllers often involves two major pro-
blems: the presence of several scheduling variables in the LPV
model, as is the case in the copolymerization reactor, and the
conservatism arising from the overbounding of the range of var-
iation of the scheduling variables (Kwiatkowski & Werner, 2005).
For the standard LPV- ∞ design approach with polytopic models
(Apkarian et al., 1995), the number of linear matrix inequalities
(LMIs) to be solved increases exponentially with the number of
scheduling variables so the control synthesis problem becomes
computationally intractable (Hoffmann & Werner, 2014). On the
other hand, overbounding the range of the scheduling variables
often renders the LPV model to include some behaviors that are
not exhibited by the original plant due to the dependence of the
scheduling variables on the physical variables, which results in
conservatism.

In this paper, an LPV representation of the copolymerization
reactor is obtained through a transformation capturing the system
nonlinearities in the scheduling variables. However, due to the
existence of different nonlinear terms in the copolymerization
reactor model, the obtained LPV model turns out to have 15
scheduling variables. Two approaches are then introduced for
coping with the high number of scheduling variables. In the first
approach, the number of scheduling variables is reduced via the
parameter set mapping (PSM) procedure based on principal com-
ponent analysis (PCA) (Kwiatkowski & Werner, 2005). The para-
meter set mapping is an effective way to reduce the conservatism
in LPV modeling by resizing the scheduling range such that the
reduced model matches the original system behavior as closely as
possible (Azuma, Watanabe, Uchida, & Fujita, 2000; Kwiatkowski,
2008). The second method is a specific model reduction approach
aiming at reducing the complexity, as well as the number of
scheduling variables of the model while the input–output beha-
vior of the original system is preserved. This method is based on
an alternative conversion of the nonlinear model to an LPV form
by truncating the state variables that have no significant role in the
state evolution.

Once the operating region and the resulting LPV models are
determined, a control design methodology is applied on each
produced model. For the LPV-PSM approach, LPV ∞ control
synthesis, introduced in Apkarian et al. (1995), is used to synthe-
size a controller for the reduced LPV model of the reactor. For the
model based on the second approach, a linear fractional transfor-
mation (LFT) based LPV controller synthesis approach is used to
synthesize a controller (Scherer, 2001). However, the im-
plementation of the designed LPV controllers requires the avail-
ability of all the scheduling variables, some of which are not
measurable in the copolymerization reactor model. Therefore, an
extended Kalman filter (EKF) (Sorenson, 1985) is designed for the
nonlinear model of the copolymerization reactor in order to
estimate its state vector. The aim of this paper is to emphasize the
capability of the LPV controllers, designed on the basis of a re-
duced model, to provide high performance control of the poly-
merization reactor by enhancing the settling time of the output
and reducing the control effort. A comparative study on the de-
signed LPV controllers highlights the compromise between the
design complexity and performance of the LPV controller on one
hand, and the stability guarantee of the closed-loop with the
nonlinear process on the other hand.

The paper is organized as follows. In Section 2, the nonlinear
copolymerization reactor model is introduced. Then, an LPV re-
presentation of the copolymerization reactor model is derived in
Section 3. First, a parameter set mapping-based method for re-
ducing the scheduling variables is applied. Then, an LPV re-
presentation of a specific model reduction approach for the pro-
cess is developed. In Section 4, an LPV controller is synthesized for
each approach produced model. Next, the estimation of state
variables through the use of the extended Kalman filter is detailed.
In Section 5, the performance of the synthesized EKF-based con-
trollers is examined and discussions addressing different aspects
of both approaches are presented. Finally, Section 6 concludes the
paper.

Notation: The symmetric completion of a matrix is denoted by
n, [ ]Xker denotes the null-space of a matrix X and ( )X Ydiag ,
represents a block diagonal matrix with diagonal blocks X Y, .
2. Copolymerization reactor model

Copolymerization is the process of uniting two or more dif-
ferent monomers together to produce a copolymer. In this study,
two monomers are considered, monomer A is methyl methacry-
late (MMA) and monomer B is vinyl acetate (VA). In addition, it is
assumed that the solvent is benzene, the initiator is azobisisobu-
tyronitrile (AIBN), the chain transfer agent is acetaldehyde and the
inhibitor is m-dinitrobenzene (m-DNB). These ingredients are
continuously added into a well-mixed tank (Fig. 1) where an in-
hibitor is considered as an impurity and a coolant flows through
the reactor jacket to remove the liberated heat via polymerization.
The polymer, solvent, unreacted monomers, initiator and chain
transfer agent compose the outflow of the reactor.

The model of the solution copolymerization reactor is based on
a free radical mechanism (Congalidis et al., 1989) described with
the differential equations given as follows (Özkan et al., 2003):
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, Ck is the concentration (kmol/

m3), M is the molecular weight (kg/kmol), Q is the volumetric flow
rate (m3/s), R is the reaction rate (kmol/m3), S is the surface area
(m2), T is the temperature (K), U is the overall heat transfer coef-
ficient (kJ/m2 s K), V is the volume (m3), t is the time (s), θ is the
residence time (s), λ is the molar concentration of monomer in
polymer, ρ is the density (kg/m3), and ψj is the jth moment of
molecular weight distribution. The sub and superscripts a, b, i, s, t,
z, r, j, p, c are related to monomer A, monomer B, initiator, solvent,
chain transfer, inhibitor, reactor, cooling jacket, dead polymer, and
combination, respectively, and the superscript (.) represents the
free radical. The values of the constant parameters are given in
Table 1. For more details on the kinetic and the thermodynamic
parameters (such as kpaa and ΔH ,paa respectively), as well as the
calculation of the reaction rates ( = )R k a, b, i, s, t, zk , the free ra-
dial concentrations C C,a

.
b
. , and the moments ψ ψ,a. b., interested

reader is referred to Congalidis et al. (1989, Eqs. (1)–(12), Eqs.
(31)–(36) & Table 7).

The inputs of the system (1) are the reactor flows Fa, Fb, Fi, Fs, Ft,
Fz and the temperature of the reactor jacket Tj. The important re-
actor output variables for the product quality control are the re-
actor temperature Tr, the polymer production rate Gpi, the mole
fraction of monomer A in the copolymer Yap, and the average
molecular weight Mpw. The output equations are
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The nonlinear model of the reactor (1) was derived in Con-
galidis et al. (1989) from the first principles of mass and energy
balance and was validated on a real plant (see Schmidt & Ray,
1981a,b; Schmidt, Clinch, & Ray, 1984; Teymour & Ray, 1989, 1992).
Moreover, this model has been extensively used as a benchmark
for copolymerization process control in the literature (see, e.g.,
Bindlish & Rawlings, 2003; Maner & Doyle, 1997; Özkan et al.,
2003; Richards & Congalidis, 2006 and references therein). The
main challenge of this high fidelity nonlinear copolymerization
model is its volatile nonlinear behavior and extensive operating
range, which makes it a challenging and highly relevant (from the
practical perspective) application in industrial process control. In
Congalidis et al. (1989), the derived process control schemes have
been successfully implemented and tested in several real-world
plants. Furthermore, as explained in Bindlish and Rawlings (2003),
the process model is given realistic measured disturbances based
on experience with an industrial copolymerization process,
thereby making the feedback control problem representative of
the challenges faced by industrial practitioners.

The control objective considered in this paper is to ensure a fast
transition between two steady-state operating points given in
Table 2 while rejecting unmeasured input disturbance represented
by Fz . The first operating point, OP1, given in Congalidis et al.
(1989) was obtained for a monomer feed ratio =F F/ 0.2a b while the
second one, OP2, was obtained by increasing the ratio by 0.25
keeping Fb constant. It is worth mentioning that the solution co-
polymerization reactor is highly sensitive to changes in the
monomer feed ratios, i.e., F F/a b (Özkan et al., 2003). In order to
achieve this objective, the manipulated variables to control the
four previously specified output variables are chosen – based on
the investigation in Congalidis et al. (1989) – to be Fa, Fb, Ft and Tj.
For comparison purposes, the same control objective and asso-
ciated variables are considered while the other inputs are kept
constant as =F 0.18i (kg/h) and = ( )F 36 kg/hs (Özkan et al., 2003).

For the operating points considered in Table 2, it has been
shown in Maner and Doyle (1997) that closing the temperature
loop with a PI controller, i.e., assigning the manipulated variable Tj

to only control Tr , yields a well-conditioned system, which allows
us to fully exploit the compensation capabilities of multivariable
controllers. Furthermore, safety is another reason for the justifi-
cation of closing the temperature loop to prevent the reactor
runaway. It is mentioned in Maner and Doyle (1997) that a well-
conditioned control problem has been obtained and “ by closing
the temperature loop, the complexity of the problem is not re-
duced, it is merely a structured approach to the control design”.
Consequently, the dynamics of Tr can be eliminated from the
system (1), which reduces the number of states to 11.
3. Linear parameter-varying modeling of the copolymerization
reactor

In this section, linear parameter-varying (LPV) representations
of the nonlinear model of the copolymerization reactor are de-
veloped to hide the system nonlinearities in the LPV scheduling
variables. While other methods for LPV modeling, like Jacobian
linearization based approach or state transformation, tend to de-
scribe only certain aspects of the original nonlinear behavior, the
direct transformation methods generate LPV models that can
completely embed in their solution sets the behavior of the ori-
ginal nonlinear model (Kwiatkowski, 2008). In continuous time,
the state-space representation of an LPV system with static de-
pendency is described as

⎧⎨⎩
θ θ
θ θ

̇( ) = ( ( )) ( ) + ( ( )) ( )
( ) = ( ( )) ( ) + ( ( )) ( ) ( )

A t x t B t u t
y t C t x t D t u t

tx ,
, 3

with the state vector ( ) ∈x t n, the input vector ( ) ∈u t m, the
output vector ( ) ∈y t p and the system matrices A B C, , and D
being continuous matrix functions of the scheduling variable
vector θ( ) ∈t l. θ( )t depends on a vector of measurable signals

ρ( ) ∈t k in the modeled system, according to θ ρ( ) = ( ( ))t q t , where
q is a bounded function. The variable θ( )t is defined over a com-
pact scheduling set  ⊂θ

l such that  θ( ) → θt : l and θ is often
considered as a polytope and defined as the convex hull given by
the vertices θvi

such that

 θ θ θ≔ { … } ( )θ Co , , , , 4v v v1 2 L

where =L 2l and {·}Co denotes a convex hull. The LPV re-
presentation (3) is called affine in scheduling dependence if the



Table 1
Values for the constant parameters.

Ma 100.1 (kg/kmol) S 4.6 (m2)

Mb 86.09 (kg/kmol) V 1 (m3)

Mi 164 (kg/kmol) U × −6.0 10 2 (kJ/m2 s K)
Ms 78.11 (kg/kmol) c 2.01 (kJ/kg K)

Mt 44.05 (kg/kmol) ρ 879 (kJ/m3)

Mz 168.11 (kg/kmol) Trf 353.0203 (K)
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state-space matrices depend affinely on θ as

∑θ θ( ) = +
( )=

M M M ,
5

i
i

l

i0
1

where θi is the ith element of θ. Since θ can be expressed as a
convex combination of L vertices θvi

, the system can be re-
presented by a linear combination of LTI models at the vertices.
The resulting LPV representation is thus called polytopic where
each matrix is represented as

∑θ θα( ) = ( )
( )=

Q Q ,
6i

L

i v
1

i

such that α∑ == 1i
L

i1 with α ≥ 0i .

3.1. Full LPV model of the copolymerization reactor

Eliminating the dynamics of Tr from (1) results in a nonlinear
model with the state vector λ λ ψ ψ ψ= [ ]⊤x C C C C C Ca b i s t z a b 0

p
1
p

2
p ,

the output vector = [ ]⊤y G Y Mpi ap pw and the full input vector

= [ ]⊤u F F F F F Fa b i s t z . The nonlinear model (1) can be represented in
the LPV form (3) with the state-space matrices as
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The scheduling variable θ( ) ∈t 15, as defined in the Appendix,
is a vector of complicated functions that depend on the input and
the state vectors used to construct the measured signals in ρ( )t as

ρ λ λ ψ= [ ] ( )⊤F F F F F F C C C C C C T . 8a b i s t z a b i s t z r a b 1

The scheduling set θ can be defined by obtaining bounds on θ
based on operational limits of ρ, which can be computed according
to the operating region defined in Table 2 as follows: first, one
chooses an initial range for the inputs and refers to such range as
the input range. Then, a set of grid points is produced for the input
range; these points can then be used to generate a set of operating
points by computing the corresponding steady-state values of the
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Table 2
Operating conditions.

Output signal OP1 OP2

Gpi (kg/h) 23.35 24.9

Yap 0.56 0.64

Mpw (10 kg5 /kmol) 0.35 0.39

Tr (K) 353.06 353.3
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state vector of (1), such that the operating points defined in Ta-
ble 2 are covered. Finally, the bounds of θ, and hence, θ (see (4))
can be defined. The input range can be redefined after the control
synthesis step according to the closed-loop operation. It turns out
that for the operating region (Table 2), the input range

≤ ≤

≤ ≤

≤ ≤

=

= ( )

F

F
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F

F

18 22.5 kg/h,

87 93 kg/h,

1 4 kg/h,

0.18 kg/h,

36 kg/h 9

a

b

t

i

s

is sufficient to define θ . In the following the full LPV model is
referred to as θ .

Using the full LPV model θ could be too complex for LPV
control synthesis to achieve a specific desired control performance
due to the large number of scheduling variables l¼15. Based on
the observations reported in Hoffmann and Werner (2014), the
large number of scheduling variables renders the synthesis pro-
blem intractable due to the large number of underlying matrix
inequalities (Apkarian et al., 1995) or decision variables (Scherer,
2001). Furthermore, even if rendered tractable in the linear frac-
tional transformation (LFT) framework, the necessary structural
constraints, e.g., defining structure for so-called multipliers or
scalings commonly used in LFT synthesis framework (Scherer,
2001), may render the resulting control performance overly con-
servative. Finally, online controller implementation may turn out
to be excessively costly. Therefore, the number of scheduling
variables is reduced by means of two different techniques de-
scribed in the following sections. In the first method, the para-
meter set mapping (PSM) method results in an approximate LPV
model with reduced number of scheduling variables, whereas, in
the second one, reformulating the nonlinear model allows us to
reduce the number of scheduling variables while preserving the
input–output behavior of the initial process.
3.2. Reduced LPV modeling via parameter set mapping

The parameter set mapping can allow us to develop an ap-
proximate LPV model of the original LPV model with fewer sche-
duling variables. For LPV models with affine dependence on the
scheduling variables, PSM exploits the correlation of the variables
and neglects the “less significant” directions in the mapped space.
Hence, it allows us to obtain a lower dimension and tighter range
of variation of the scheduling variables and possibly reduce the
conservatism of the overall modeling concept. The PSM can allow
a trade-off between the number of scheduling variables and the
desired model accuracy (Kwiatkowski, 2008; Kwiatkowski &
Werner, 2005).

For the sake of completeness, the PSM procedure is reviewed
next. Given the LPV model (3), the LPV model reduction problem is
to find a mapping  ϕ θ( ) = ( ( )) →t h t h, : ,k m where <m l, such
that an approximation of the LPV model (3) is obtained as
⎧
⎨⎪
⎩⎪

ϕ ϕ

ϕ ϕ

̇ ( ) = ^( ( )) ( ) + ^( ( )) ( )

( ) = ^( ( )) ( ) + ^( ( )) ( ) ( )

x t A t x t B t u t

y t C t x t D t u t

,

. 10

PSM PSM

PSM

The use of PSM procedure for LPV model reduction involves the
following steps (Kwiatkowski, 2008; Kwiatkowski & Werner,
2005):

1. Obtain typical trajectories of the scheduling variables, from
either measurements or simulations that cover the expected range
of system operation. These trajectories are collected in a matrix

Θ ∈ ×l N by sampling the scheduling variables at time instants
= ( = … − )t kT k N, 0, 1, , 1 with ⪢N l, or by determining steady-

state values of the scheduling variables related to a gridded op-
erating regime.

2. In order to weight the elements of Θ equally, a normalization
is required. The rows Θi of the data matrix Θ are normalized such
that

Θ σΘ Θ Θ= ( ) ¯ = = { } =Var, with 0, 1,i i ii i
n nn n

where denotes row-wise scaling to achieve zero mean data
with one standard deviation, Θ̄i

n is the sample mean value of Θi
n

and σi
n is the sample standard deviation of Θi

n. The normalized

data matrix Θ ∈ ×l Nn is given by:

Θ Θ= ( ) ( ). 11n

3. The PCA method is then applied to the normalized matrix Θn in
(11) in order to find a mapped parameter set with most significant
information contained in the data. Singular value decomposition
(SVD) is used to deduce an orthogonal set of basis vectors to Θn

such that

Θ Σ Φ^ = = ( )⊤U V U , 12
n

s s s s

where the first m significant singular values are selected in Σs, and

the unitary matrix ∈ ×U l m
s represents the basis of the significant

column space of Θn.
4. The key idea of using PSM as proposed in Kwiatkowski

(2008) is to apply the normalized mapping Us to determine a
parameter function that defines the reduced LPV representation.
More specifically, the reduced scheduling variable ϕ( )t will be
defined via

ϕ θΦ Θ= ^ ⇔ ( ) = ( ( )) ( )⊤ ⊤U t U t . 13s

n

s

Thus, the mappings ^ ^ ^ ^A B C D, , , in (10) are related to the new

scheduling variables θ̂( )t by Kwiatkowski (2008),

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ϕ ϕ

ϕ ϕ

θ θ

θ θ

^( ( )) ^( ( ))
^( ( )) ^( ( ))

] = [
(^( )) (^( ))

(^( )) (^( )) ( )

A t B t

C t D t

A t B t

C t D t
,

14

where the vector θ̂( )t is defined by

θ ϕ^( ) = ( ( )) ( )−t U t , 151
s

and −1 denotes row-wise rescaling. Each element of θ̂( )t is de-

termined as ϕθ Θ σ^( ) = ¯ + ( ( ))U tti i i is , where Θ̄i and si represent the
mean and the standard deviation of the rows of the data matrix Θ,
respectively. Since the LPV model (3) is affine in θ, each matrix in
(14) is described as

∑ϕ θ θ^( ( )) = (^( )) = + ^( )
( )=

Q t Q t Q Q t ,
16

i
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which leads to
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where ( )U i js , represents the ( )i j, th component of the matrix Us.
This proves that the reduced model is also affine in the reduced
scheduling variable ϕ( )t .

At any given time, the mapped vector ϕ( )t is computed from

(13), which is used to generate the scheduling variable θ̂( )t from
(15) and then implemented in the original LPV model (3). This
leads to a reduced LPV model that depends on the new scheduling

variable θ̂( )t (Kwiatkowski, 2008).
Next, the PSM technique is applied to the LPV model θ . Here

the matrix Θ is defined based on steady-state values of the
scheduling variables corresponding to grid points in the schedul-
ing signal range that had been used to define θ . Then, Σs from (12)
is obtained as

Σ = (

× × × ) ( )− − − − − −

diag 14.23, 12.2, 6.01, 1.36, 0.58, 0.27, 0.08, 0.03,

0.01, 5 10 , 2 10 , 10 , 6 10 , 10 , 10 . 18
s

3 3 3 4 5 6

According to the scheduling dimension considered, the matrix Us
is calculated from (12) and then used for the online calculation of

ϕ( )t in (13) and θ̂( )t in (15). For the transition from OP1 to OP2 as
shown in Table 2, the reduced LPV model provided by the PSM
method is simulated with various scheduling dimensions

=m 1, 2, 3, since the first three singular values of the matrix Σs in
(18) are the most significant ones. The end result of this simplifi-
cation is a projection matrix which projects the old measured
variables to a new set of variables. Therefore, unlike the balanced
truncation method in the LTI case, it is not possible to explicitly
deduce which variables have been neglected. PSM projects the
scheduling variables range of an LPV model to another set with
smaller dimension, which results in an LPV representation with a
reduced number of the scheduling variables.

The best fit rate (BFR) of the state evolution between the ori-
ginal state vector x obtained from (1) and the state vector of the
scheduling dimension reduced LPV model xPSM obtained from (10)
is calculated as

⎛
⎝⎜

⎞
⎠⎟= × −

∥ − ∥
∥ − ¯ ∥ ( )
x x

x x
BFR 100% max 1 , 0 ,

19
PSM 2

2

where x̄ is the sample mean of x, and ∥ ∥. 2 is the ℓ2 norm. The
relative accuracy, which is an indicator of the quality of the re-
duced LPV model by PSM, is defined as

σ

σ
=

∑

∑
=

=

r ,a
i
m

i

i i

1
2

1
15 2

where si denotes the ith singular value of the matrix Σs in (18) and
is presented in Table 3.Despite its low accuracy, the reduced LPV
Table 3
Accuracy and BFR corresponding to the LPV models with reduced scheduling
dimensions.

Scheduling dimension Accuracy (%) BFR (%)

m¼1 55 77.8
m¼2 90.1 82.4
m¼3 99.4 96.5
model with scheduling dimension of m¼1 is considered for syn-
thesizing LPV controller for the copolymerization reactor as it
yields minimal complexity. Furthermore, the LPV controller de-
signed based on the reduced LPV model with m¼1 shows a better
closed-loop performance in terms of the lower convergence time
and less overshoots of the outputs compared to the reduced
models with scheduling dimensions of m¼2 and m¼3. As dis-
cussed in Kwiatkowski (2008), the potential benefit of a tighter set
of scheduling variables might not necessarily complicate the
controller synthesis and may even lead to a better closed-loop
performance. In the sequel, this reduced model is referred to as

ϕ. The new scheduling variable ϕ( )t is defined in a new sche-
duling set  ⊂ϕ

m, which is the convex hull of the vertices ϕvi
as in

(4).

3.3. LPV modeling based on the reformulated nonlinear model

The LPV model ϕ derived in the previous section provides an
approximation of the original nonlinear model. Therefore, the
stability and performance guarantees are rendered void if the
designed controller, based on such approximate model, is im-
plemented on the original plant. In some cases, a posteriori ana-
lysis should be performed on the full model to assess – and if
applicable to recover – these guarantees, see Hashemi, Abbas, and
Werner (2012) and Hoffmann, Hashemi, Abbas, and Werner (2014)
for more details. To avoid such analysis, next, the representation of
the nonlinear model (1) is reformulated in order to produce, for
control synthesis, a reduced complexity LPV model, in terms of the
number of scheduling variables, that can preserve the same input–
output behavior of the nonlinear model in a prespecified range of
operation. Consequently, at the expense of some conservatism,
controllers based on such model guarantee stability and perfor-
mance when implemented on the original plant. Again, the non-
linear model (1) is considered after closing the temperature loop.
The idea of reformulating the nonlinear model is based on trun-
cating those states that do not explicitly affect the outputs of the
model. Using (2), it can be seen that the three outputs of the
model are directly affected by the states λ ψC C, , ,a b a 2. Therefore,
the remaining states of the original model can be truncated, and
hence, the following reduced model can be obtained:
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with the outputs in (2), where

θ
θ θ˜ =

+
( )

C C
C

,
21

a b

a
12

12 13

and = + +F F F Fisz i s z , which is assumed to be a constant
parameter1 as it is composed of non-manipulated variables. Due to
the variations of Fi, Fs and Fz during operation, these three reactor
flows are considered to be unmeasured disturbances. In (21),

=C 0a is prohibitive2 since it is meaningless to have zero con-
centration of polymer A, and hence, (21) remains bounded in the
1 It is possible to consider Fisz time-varying at the expense of increasing model
complexity.

2 It is possible to consider θ̃ =
θ θ+Ca Cb

Cb
13

12 13 instead (as =C 0b is also
prohibitive).



Fig. 2. Open-loop simulation of the reformulated nonlinear model.
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operational regime. The reformulated nonlinear model (20) with
(2) depends on the variables θ2, θ3, θ̃12, θ13 and θ15 which are
functions of all states of the system. In simulation, the re-
formulated nonlinear model (20) should receive all the truncated
states from the system to be able to compute θ2, θ3, θ̃12, θ13 and
θ15, see Fig. 2. In this sense, the reformulated model can preserve
the same input–output behavior of the original one. Note that an
LPV controller based on such reformulated model should receive
all the states of the system in order to compute the scheduling
variable θ.

Now, an exact LPV representation for (1) with (2) can be
written in the form (3) where the state matrices are given by
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where ∑ = + + +F F F F Fk k isz a b c. Note that for the representation

(22), the functions θ θ θ θ θ˜, , , ,2 3 12 15 14 and the states ψC C, ,a b 2 define
the scheduling variables, resulting in a total of 8 scheduling vari-
ables. Next, this dimension is further reduced by introducing a
new input vector
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The transformation matrix in (23) is non-singular for all values
of Ca, Cb and ψ2 in the specified operating range. Then, a new
constant matrix B for the LPV model can be introduced as
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in terms of the new input vector (23) considered for the model.
Moreover, the new set of outputs is defined as
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and hence, the new C matrix for the model can be introduced as
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Introducing the new inputs and outputs results in the LPV re-
presentation (3) of relatively low complexity for the nonlinear
model. The new state-space matrices in terms of the scheduling
variable ζ are given by
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where ζ θ=1 2, ζ θ=2 3, ζ θ= ˜
3 12, ζ = + +F F Fa b t4 and ζ ζ…, ,1 4 are the

elements of the entries of the scheduling vector ζ . Taking into
consideration (23) and (25), the LPV representation (3) with (27)
has the same input–output map as that of the nonlinear model (1)
as long as the LPV model receives the truncated states from the
nonlinear model as shown in Fig. 2. Note that ζi are functions of
the preserved variables collected in ρ as described by (8). Based on
the input range defined in (9), the bounds of ζ are



Fig. 3. Generalized plant interconnected with the LPV controller.
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which can be used to define a new compact parameter set ζ . In
the sequel, the LPV model (3) with (27) is referred to as ζ .

The resulted low complexity LPV model, ζ , in terms of the
dynamical order and scheduling dimension guarantees the stabi-
lity and desired performance for the original nonlinear model.
However, losing the dynamical effects of the truncated states in

ζ might limit the achievable performance of such controllers
without affecting the closed-loop stability, provided that all the
scheduling variables are confined within their prespecified bounds
(see Section 4.2).
4. LPV control synthesis

In this section, the control synthesis approaches proposed in
Apkarian et al. (1995) and Scherer (2001) are utilized to design
LPV controllers based on ϕ and ζ , respectively. The LPV model

ϕ has just one scheduling variable, whereas ζ has 4 scheduling
variables, which is relatively large. Therefore, the linear fractional
transformation (LFT) gain-scheduling approach (Scherer, 2001) is
adopted to design the LPV controller for ζ . This approach pro-
vides a versatile LPV controller synthesis framework capable of
handling plants with a relatively large number of scheduling
variables while maintaining low implementation complexity
through affinely scheduled controllers in the case of plants with
affine parameter-dependency (Hoffmann & Werner, 2014), as is
the case in the copolymerization reactor. With both ϕ and ζ ,
the LPV controllers are designed with a fixed Lyapunov function
using an ∞ loop-shaping approach based on the gain-scheduled
LPV synthesis. In order to implement both controllers in reality,
the elements of the signal vector ρ (8) should be available to
compute θ. Since some of these elements are difficult to measure,
the procedure adopted to estimate them is introduced later in this
section.
4.1. LPV control synthesis based on ϕ

The mapped parameter set ϕ obtained via (13) allows defining

a set of 2m LTI models, based on which an LPV- ∞ controller is
synthesized by means of the MATLAB Robust Control toolbox
command hinfgs (Apkarian et al., 1995). This results in a poly-
topic LPV controller ϕ with the state-space representation

⎪

⎧⎨
⎩

ϕ ϕ
ϕ ϕ

̇ ( ) = ( ( )) ( ) + ( ( )) ( )
( ) = ( ( )) ( ) + ( ( )) ( ) ( )

x t A t x t B t e t

u t C t x t D t e t

,

, 29

c c c c

c c c

where xc is the state vector of the controller and the matrix
functions A B C, ,c c c and Dc are affine in ϕ( )t ; ϕ is scheduled with
respect to the reduced scheduling variable ϕ( )t according to (29).
Note that the controller can still receive the information of Tr via
the functions shown in (34) in the Appendix.

The control design objective is to stabilize the closed-loop
system in the operating range defined in Table 2 with a fast
tracking capability and disturbance rejection taking into con-
sideration the control input constraints as (Özkan et al., 2003)
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A standard mixed sensitivity loop-shaping approach is adopted to
meet the design objectives. The following weighting filters are
selected:
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The sensitivity weighting filter WS is responsible for tuning the
closed-loop bandwidth and ensuring almost zero steady-state er-
ror. The required bandwidth has been inferred from the set of 2m

LTI models of the form (14) after freezing the mapped parameter
set ϕ. On the other hand, the complementary sensitivity
weighting filter WKS has been adjusted to impose an upper bound
on the control sensitivity in order to restrict the control effort and
reduce the output overshoot. The generalized plant is shown in
Fig. 3.

The complexity of the LPV model via PSM procedure is ideally
reduced into one scheduling variable, which allows a minimal
design complexity for the deduced LPV controllers and can yield
high performance. However, these synthesized controllers may
not guarantee the achieved closed-loop stability and performance
once they are tested with the full nonlinear model of the copoly-
merization reactor since they are designed based on an approx-
imation of the nonlinear model.

4.2. LPV control synthesis based on ζ

In the following, an LPV-LFT gain-scheduling controller is de-
signed based on ζ , which can provide the same input–output
behavior as the full nonlinear model in a prespecified operating
regime. The ∞ loop-shaping approach based on the gain-sche-
duling LPV synthesis results of Scherer (2001) requires the for-
mulation of ζ in an LFT form as
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where ζ ζΓ = ( … )
ζ ζ

I Idiag , , n r1 r n1
is a parameter matrix that includes

all the scheduling variables provided that Γ( − )ζζ
−I D 1 exists for all

ζ ∈ ζ , i.e., the well-posedness condition. For parameter-affine LPV
models, =ζζD 0. Moreover, for the derived LPV model of the



Fig. 4. Real (blue line) and noisy (red line) output measurements. (For interpretation of the references to color in this figure caption, the reader is referred to the web version
of this paper.)

Fig. 5. Estimated state variables during the transition from OP1 to OP2: actual (blue line) and estimated (red dashed line). (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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Fig. 6. (a) Manipulated variables, and (b) closed-loop response: reference (solid black line) with ϕ (blue dashed line) and ζ (red dash-dotted line) during the transition
from OP1 to OP2. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Table 4
Closed-loop performance of the LPV controllers and MPC.

Convergence time (h) ϕ ζ MPC

9 10 15

Input overshoots (%) Fa 17 15.5 50

Fb 0.5 4 11

Ft E 0 E 0 18

Tj E 0 60 0.5

Output overshoots (%) Gpi 4.4 3.4 6.4

Yap 0 E 0 0

Mpw 0 0.7 0

Tr 0 E 0 E 0
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copolymerization reactor, one has =D 0yu ,

ζ ζΓ = ( … ) ∈ ×diag , , 41
4 4. Since both the plant and the controller

correspond to time-varying systems, the ∞ norm is interpreted
in terms of the induced 2-gain.

To meet the control design objectives, the closed-loop system is
shaped using weighting filter matrices for the sensitivity WS and
the complementary sensitivity WKS channels (see Fig. 3) as
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It is worth noting that these weighting filter matrices are different
from the ones obtained in the first approach since they are tuned
with different reduced LPV models ϕ and ζ . Given WS and WKS,
an LFT representation of the generalized plant is obtained as
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Then, a linear matrix inequality (LMI) condition for the existence
of a gain-scheduled ∞ controller in an LFT form (Scherer, 2001)
based on the so-called multipliers is employed. In order to syn-
thesize an affinely gain-scheduled controller such that the sche-
duling block Γ of the plant is copied to the controller, the multi-
pliers are chosen according to Hoffmann et al. (2014).

The parameter-dependent state-space model matrices of the
affinely scheduled controller ζ are then computed by
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which is a 10th order 3�3 LPV controller for the problem under
study. In terms of the control implementation, the LPV controller
(31) requires relatively low online computation as it only needs to
update the controller state-space matrices at each time instant
given the value of the Γ block; see Hoffmann and Werner (2014)
for more details about the implementation complexity of LPV
controllers.

It is important to point out that the implementation of LPV
controllers ϕ and ζ based on the designed LPV models requires
the possibility of measuring or estimating ρ chosen in (8) at every
time instant. Therefore, the next section is dedicated to design an
extended Kalman filter in order to estimate ρ.

4.3. An extended Kalman filter to estimate ρ

The availability of the vector ρ is required at each sampling
time instant in order to compute the scheduling variable θ and
consequently ϕ or ζ for the controller ϕ or ζ . In the copoly-
merization reactor model, the flow rate and composition of the
feed ( = )F k a, b, i, s, t, zk are measured along with the reactor
temperature Tr (Bindlish & Rawlings, 2003; Richards & Congalidis,
2006; Yoon et al., 2004).

On the other hand, the molecular weight is measured online
using a capillary viscometer as described in Richards and Con-
galidis (2006), and the copolymer product composition is



Fig. 7. (a) Manipulated variables, and (b) closed-loop response: reference (solid black line) with ϕ (blue dashed line) and ζ (red dash-dotted line) during the transition
from OP1 to OP2 in the presence of a disturbance. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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measured using nuclear magnetic resonance (NMR) spectroscopy.
As discussed in Richards and Congalidis (2006), the on-line mea-
surements of polymer architecture such as composition and mo-
lecular weight may be simply unavailable. Moreover, the choice of
sampling frequency depends on the requirements for good quality
control and the need to minimize analytical costs. Usually, when
the reactor residence time is much shorter than the sampling
frequency, integral control is appropriate.

In other cases, the sampling time introduced by the periodic
analysis of polymer concentration, polymer composition, and
molecular weight may not be long enough so the incorporation of
online state estimators of polymer properties is necessary (Ri-
chards & Congalidis, 2006).

As a result of the above analysis, the elements of ρ that must be
estimated are ρ λ λ ψ= [ ]C C C C Ct Cz a, , , , , , , ,a b i s b

est
1 . Conse-

quently, the estimation of the state vector for the copolymeriza-
tion reactor model (1) is required. In Bindlish and Rawlings (2003),
the same copolymerization reactor model as (1) was used to de-
velop an extended discrete-time Kalman filter for state estimation.
For more realistic study, an additive disturbance is added to the
measurements.

In this paper, a continuous-time extended Kalman filter is ap-
plied for the nonlinear model of the copolymerization reactor (1)
which can be written as

̇( ) = ( ( ) ( )) + ( )

( ) = ( ( )) + ( ) ( )

x t f x t u t w t

y t h x t v t

, ,

, 32

where ( ( ) ( ))f x t u t, and ( ( ))h x t are nonlinear functions and ( )w t
and ( )v t are the process and observation noises assumed to be
zero mean Gaussian noises with covariance ( )R t and ( )Q t , re-
spectively. The extended Kalman filter is implemented as follows:

Initialization step:
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Prediction and update steps:
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where ( )P t is the covariance estimate and ( )K t is the Kalman filter
gain.
5. Implementation of the EKF-based LPV controllers

The control design objectives that are considered in this paper
are the same as those in Özkan et al. (2003). It is basically required
to examine the effect of the transition from OP1 to OP2 as shown
in Table 2, for each of the four output variables. The designed
controllers have been simulated with the nonlinear model of the
copolymerization reactor (1). For the output Tr , a tuned PI con-
troller is considered based on the design procedure discussed in
Congalidis et al. (1989); this is justified as the change of Tr from
OP1 to OP2 is very small. In order to compute the state-space
matrices of the controllers via (29) and (31) at each sampling in-
stant, the estimation of ρest, which is the unmeasurable part of ρ, is
obtained by means of the extended Kalman filter (33). The mea-
surement noises added to the output signals are equal to 3% of the
operating point except for Tr , for which the added noise is 1%
(Sirohi & Choi, 1996) (see Fig. 4). A comparative analysis of the
closed-loop performance is done between the LPV controllers
synthesized for both modeling approaches and the model pre-
dictive controller (MPC) developed in Özkan et al. (2003).

5.1. Implementation with the LPV controller ϕ

The state vector is estimated by the extended Kalman filter for
the nonlinear model of the copolymerization reactor (1). The
highly accurate estimation of the most important state variables is
shown in Fig. 5. The resulting input flow rates and the estimated
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outputs during the transition from OP1 to OP2 with the controller

ϕ are shown in Figs. 6a and b. The real outputs (without noise)
coincide with the estimated ones as seen in Fig. 6b. A fast con-
vergence of the temperature Tr is achieved. The production rate Gpi,
the polymer composition Yap and the molecular weight Mpw take
almost 9 h to reach their steady states. This result emphasizes the
importance of PCA in reducing the model complexity for devel-
oping a controller, as well as in providing enhanced closed-loop
performance.

It is important to note that the target of the controller ϕK is to
get Yap to reach 0.64 as shown in Fig. 6b. It reached 0.636 that is
equivalent to 0.6% of error, which is acceptable. The reason is that
the controller ϕK designed based on a mixed sensitivity loop-
shaping approach cannot provide a pure integral action that does
achieve zero steady state error. A steady-state error up to71%
could be considered to be reasonable. Hence, such an objective in
terms of the shaping filters was used during the control synthesis.

5.2. Implementation with the LPV controller ζ

The implementation of the LPV controller ζ on the full non-
linear model of the plant is shown in Figs. 6a and b, which illus-
trate the input and the closed-loop output responses, respectively,
during the transition from OP1 to OP2. As observed in Özkan et al.
(2003), the production rate Gpi and the temperature Tr show faster
response in comparison with the polymer composition Yap and the
molecular weight Mpw; however, all outputs require less than 10 h
to reach the steady-state values without violating the input
constraints.

Next, the results of our comparative study of the performance
of the controllers synthesized for both approaches and the MPC
controller proposed in Özkan et al. (2003) are reported. As shown
in Table 4, ϕ provides a better performance than the controller

ζ and the MPC controller. The convergence time of ϕ is the
lowest and, unlike the other two methods, the outputs Yap, Mpw

and Tr in Fig. 6b do not exhibit any overshoot. On the other hand,
the input flow rates of ζ and those of ϕ in Fig. 6a do not saturate
and the overshoots are less than those shown in Özkan et al.
(2003). The improvement brought by ϕ in the output settling
time and the input quality has a significant impact on the in-
dustrial process of polymer production.

Finally, the effect of an unmeasured disturbance is examined
while taking into consideration the presence of an inhibitor flow
in the fresh feed during the transition from OP1 to OP2, i.e., ≠F 0z .
The capability of the LPV controllers is demonstrated for an in-
hibitor disturbance of 4 parts per thousand (mole basis) during the
period (1.5–3.0 h) as in Özkan et al. (2003). Unlike the MPC con-
troller developed in Özkan et al. (2003), ϕ and ζ (Fig. 7a) pre-
vent the saturation of the input flow rates. Also, these controllers
reject the disturbance effect without showing aggressive response
as illustrated in Fig. 7b. Furthermore, with ϕ, no oscillations are
observed and the convergence interval (around 10 h) is slower
than the case without disturbance; however, it remains faster than
the response of ζ that takes 30 h to reach the desired values, as
well as the response of MPC controller in Özkan et al. (2003)
which takes more than 15 h to converge. In addition, in Özkan
et al. (2003), the convergence time of the polymer composition Yap

is longer than 30 h.
It is worth to mention that the synthesis complexity of ϕ is

much lower than that of ζ as the scheduling dimension of the
former is one, whereas it is 4 with the latter. This reduces the
complexity of ϕ and demonstrates the improvement of its
achieved performance. On the other hand, ϕ cannot guarantee
closed-loop stability (theoretically) when it is implemented on the
nonlinear process as it is based on the approximate model ϕ.
However, given the exact state estimation, a theoretical stability
can be guaranteed with ζ for all ζ ∈ ζ as it is designed based on
the exact model ζ . A trade-off is illustrated between the design
complexity and performance of the LPV controller on one hand,
and the stability guarantee of the closed-loop with the nonlinear
process on the other hand.
6. Conclusions

In this paper, two different approaches are proposed to reduce
the large number of scheduling variables in the LPV model of the
copolymerization reactor. In the first approach, the parameter set
mapping based on principal component analysis has been em-
ployed to reduce the number of scheduling variables resulting
from LPV modeling. In the second approach, a low complexity LPV
model has been derived by reformulating the representation of the
nonlinear model. Based on the developed LPV models, an LPV
controller has been designed for the LPV model obtained with
each of the approaches. An extended Kalman filter is designed to
estimate the unmeasurable state variables. The performance of the
extended Kalman filter-based controllers applied to the original
nonlinear model has been compared for a transition between two
operating points of the copolymerization reactor. The LPV con-
troller ϕ, based on one scheduling dimension LPV model, has
shown a better disturbance rejection without either output oscil-
lation or input saturation. This enhancement in the closed-loop
performance is due to the low conservatism of the design by the
PSM approach. However, the inability to guarantee the closed-loop
stability with the nonlinear reactor model remains the main
drawback of the PSM procedure. The stability is, however, guar-
anteed with the LPV controller ζ which is designed based on
state truncated model, but its design is more complicated with
four scheduling variables. A trade-off is illustrated by the low
complexity and good performance on one hand, and the stability
guarantee of the closed-loop system with the nonlinear model of
the reactor on the other hand.
Appendix

The scheduling variables θ θ,...,1 15 in the LPV representation of
the copolymerization reactor in (3) are defined as
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An example of representing the dynamics of the first state ( )C
t

d
d

a in
the LPV form is shown as follows:
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where the kinetic parameters k are function of Tr (see Congalidis
et al., 1989) and ( )g C C,1 a b and ( )g C C C C, , ,2 a b i z are nonlinear
functions.
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